SN74LVCZ16240A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES276D – JUNE 1999 – REVISED AUGUST 2002

 Member of the Texas Instruments Widebus™ Family 		R DL PACKAGE VIEW)
 Operates From 2.7 V to 3.6 V 	1 <u>0</u> [1	48 20E
 Inputs Accept Voltages to 5.5 V 		47 1A1
 Max t_{pd} of 4.2 ns at 3.3 V 	1Y2 3	46 1A2
 I_{off} and Power-Up 3-State Support Hot 	GND 🛛 4	45 GND
Insertion	1Y3 🛛 5	44 [1A3
 Supports Mixed-Mode Signal Operation on 	1Y4 🛛 6	43 AA
All Ports (5-V Input/Output Voltage With		42 V _{CC}
3.3-V V _{CC})	2Y1 🛛 8 2Y2 🗍 9	41 2A1 40 2A2
 Latch-Up Performance Exceeds 100 mA Per 	GND 10	39 GND
JESD 78, Class II	2Y3 11	38 2A3
 ESD Protection Exceeds JESD 22 	2Y4 [12	37 2A4
- 2000-V Human-Body Model (A114-A)	3Y1 🛛 13	36 🛛 3A1
 1000-V Charged-Device Model (C101) 	3Y2 🛛 14	35 3A2
description/ordering information	GND 🛛 15	34 GND
	3Y3 16	33 3A3
This 16-bit buffer/driver is designed for 2.7-V to	3Y4 [] 17	32 3A4
3.6-V V _{CC} operation.	V _{CC} [18 4Y1 [19	31 0 V _{CC} 30 4A1
The SN74LVCZ16240A is designed specifically to	4 Y 1 1 19 4 Y 2 20	29 4A2
improve both the performance and density of	GND 21	28 GND
3-state memory address drivers, clock drivers,	4Y3 22	27 4A3
and bus-oriented receivers and transmitters.	4Y4 23	26 4A4
The device can be used as four 4-bit buffers, two	40E 24	25 30E
8-bit buffers, or one 16-bit buffer. This device provides inverting outputs.	L]

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

During power up or power down when V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGE [†]		PACKAGE [†] ORDERABLE PART NUMBER	
	SSOP – DL	Tube	SN74LVCZ16240ADL	LVCZ16240A
–40°C to 85°C	330F - DL	Tape and reel	SN74LVCZ16240ADLR	LVCZ10240A
-40°C 10 85°C	TSSOP – DGG	Tape and reel	SN74LVCZ16240ADGGR	LVCZ16240A
	TVSOP – DGV	Tape and reel	SN74LVCZ16240ADGVR	CW240A

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

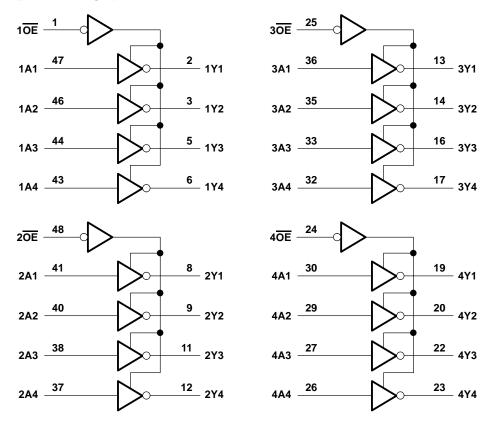
Widebus is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74LVCZ16240A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES276D – JUNE 1999 – REVISED AUGUST 2002

description/ordering information (continued)

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down ($V_{CC} = 0 V$). The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.


-	NCTION	
INP	JTS	OUTPUT
OE	Α	Y
L	Н	L
L	L	Н

Ζ

Х

н

logic diagram (positive logic)

SN74LVCZ16240A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES276D - JUNE 1999 - REVISED AUGUST 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V_{O}	
(see Notes 1 and 2)	$\dots -0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	70°C/W
DGV package	
DL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage			3.6	V
VIH	High-level input voltage	V_{CC} = 2.7 V to 3.6 V	2		V
VIL	Low-level input voltage	V_{CC} = 2.7 V to 3.6 V		0.8	V
VI	Input voltage		0	5.5	V
Ve	Output veltage	High or low state	0	VCC	V
Vo	Ouput voitage	3-state	0	5.5	v
lou	High lovel output ourrent	$V_{CC} = 2.7 V$		-12	mA
ЮН	High-level output current V _{CC} = 3 V		-24	ША	
		$V_{CC} = 2.7 V$		12	mA
IOL	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Low-level output current Input transition rise or fall rate	V _{CC} = 3 V		24	ША
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		150		μs/V
Т _А	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVCZ16240A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES276D - JUNE 1999 - REVISED AUGUST 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

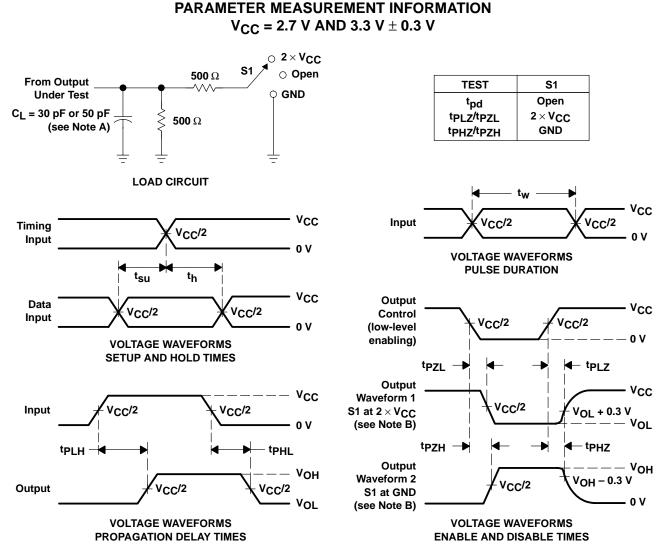
PARAMETER	TEST CONDITIO	NS	Vcc	MIN	TYP†	MAX	UNIT	
	I _{OH} = -100 μA		2.7 V to 3.6 V	V _{CC} -0.2				
VOH	10 - 10 10		2.7 V	2.2			v	
	I _{OH} = –12 mA		3 V	2.4			v	
	I _{OH} = -24 mA		3 V	2.2				
	I _{OL} = 100 μA		2.7 V to 3.6 V			0.2		
VOL	I _{OL} = 12 mA		2.7 V			0.4	V	
	I _{OL} = 24 mA		3 V			0.55		
lj	V _I = 0 to 5.5 V		3.6 V			±5	μA	
l _{off}	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±5	μA	
I _{OZ}	$V_{O} = 0$ to 5.5 V		3.6 V			±5	μA	
IOZPU	$V_{O} = 0.5 V$ to 2.5 V,	OE = don't care	0 to 1.5 V			±5	μA	
IOZPD	$V_{O} = 0.5 V$ to 2.5 V,	OE = don't care	1.5 V to 0			±5	μA	
	$V_I = V_{CC}$ or GND					100	•	
ICC	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\ddagger}$	IO = 0	3.6 V			100	μA	
ΔICC	One input at V _{CC} – 0.6 V, Other input	s at V _{CC} or GND	2.7 V to 3.6 V			100	μA	
Ci	$V_{I} = V_{CC} \text{ or } GND$		3.3 V		4.5		pF	
Co	$V_{O} = V_{CC}$ or GND		3.3 V		6		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	V _{CC} = 2.7 V		= ۷ _{CC} ± 0.3	3.3 V 3 V	UNIT
	(INPUT) (OUTPUT)	MIN	MAX	MIN	MAX		
^t pd	А	Y	1	4.5	1	4.2	ns
t _{en}	OE	Y	1.5	5	1.5	4.7	ns
^t dis	OE	Y	1.5	6.2	1.5	5.9	ns


switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.7 V		= V _{CC} ± 0.3	3.3 V 3 V	UNIT
		MIN	MAX	MIN	MAX		
^t pd	А	Y	1	4.4	1	4.1	ns
t _{en}	OE	Y	1	4.8	1	4.5	ns
^t dis	OE	Y	1.4	5.9	1.4	5.6	ns

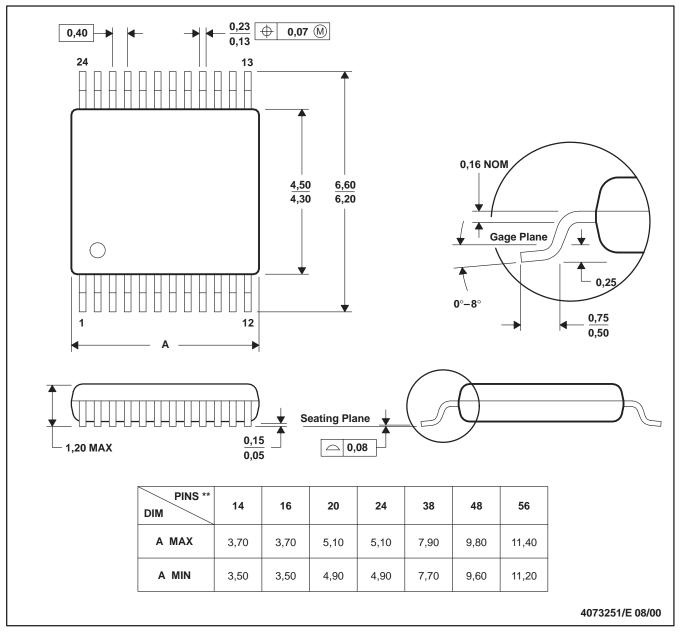
operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 3.3 V TYP	UNIT
Crad	Power dissinction conscitance per huffer/driver	Outputs enabled	f = 10 MHz	31	ρF
C _{pd} Power dissipation capacitance per buffer/driver	Outputs disabled		3.5	рг	

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.

 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

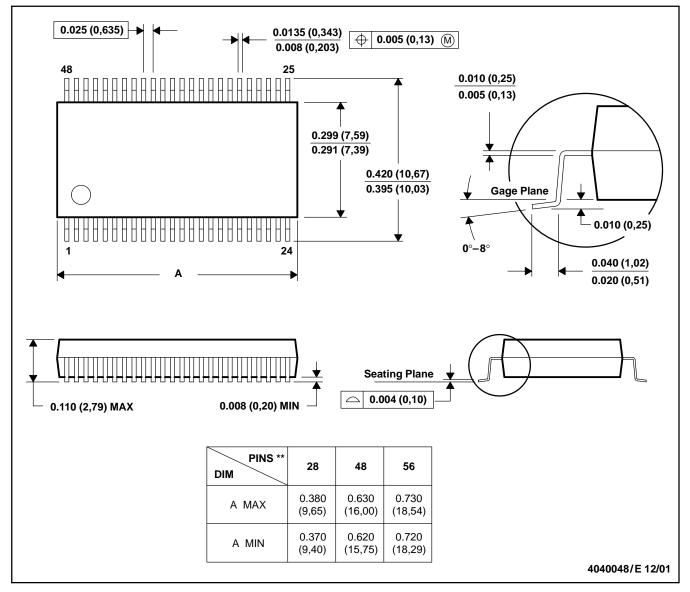
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins - MO-153

14/16/20/56 Pins – MO-194



MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

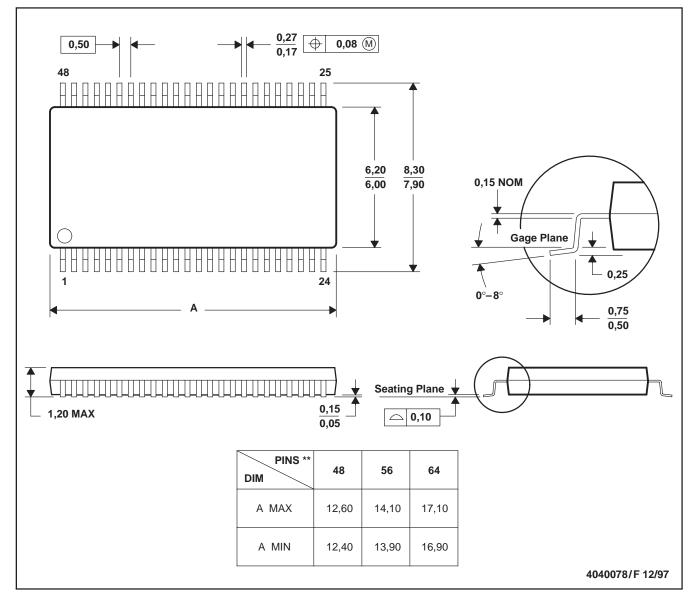
DL (R-PDSO-G**) 48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated