
SCBS706F - AUGUST 1997 - REVISED OCTOBER 2003

- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} and Power-Up 3-State Support Hot Insertion

SN54LVTH652 . . . JT OR W PACKAGE SN74LVTH652 . . . DB, DGV, DW, NS, OR PW PACKAGE (TOP VIEW)

- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

NC - No internal connection

description/ordering information

These bus transceivers and registers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

ORDERING INFORMATION

TA	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	0010 014	Tube	SN74LVTH652DW	IV/THOSO	
	SOIC – DW	Tape and reel	SN74LVTH652DWR	LVTH652	
	SOP - NS	Tape and reel	SN74LVTH652NSR	LVTH652	
-40°C to 85°C	SSOP – DB	Tape and reel	SN74LVTH652DBR	LXH652	
	TOCOD DW	Tube	SN74LVTH652PW	LVIICEO	
	TSSOP – PW	Tape and reel	SN74LVTH652PWR	LXH652	
	TVSOP - DGV	Tape and reel	SN74LVTH652DGVR	LXH652	
	CDIP – JT	Tube	SNJ54LVTH652JT	SNJ54LVTH652JT	
–55°C to 125°C	CFP – W	Tube	SNJ54LVTH652W	SNJ54LVTH652W	
	LCCC - FK Tube		SNJ54LVTH652FK	SNJ54LVTH652FK	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCBS706F - AUGUST 1997 - REVISED OCTOBER 2003

description/ordering information (continued)

The 'LVTH652 devices consist of bus-transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.

Output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between real-time and stored data. A low input selects real-time data and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'LVTH652 devices.

Data on the A or B data bus, or both, can be stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input; therefore, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

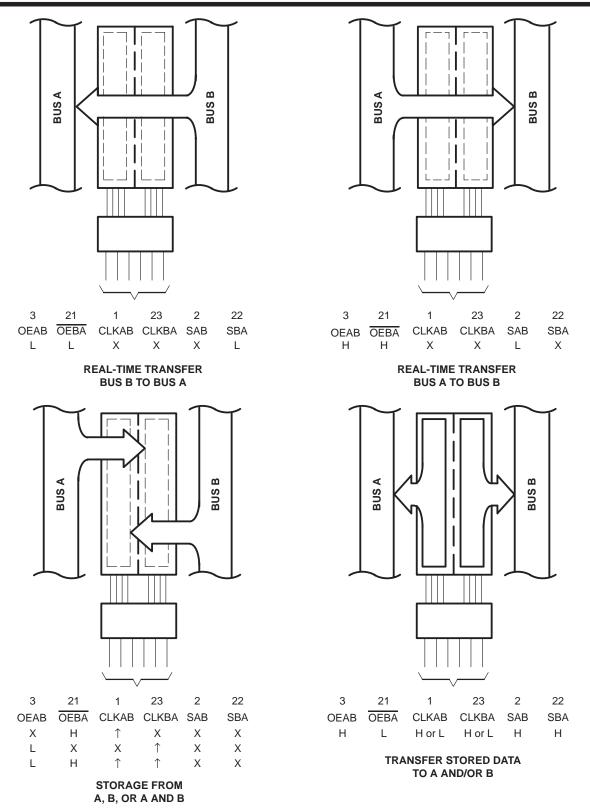
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

FUNCTION TABLE

	INPUTS					DATA	A 1/0†	ODERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	OPERATION OR FUNCTION
L	Н	H or L	H or L	Χ	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
Х	Н	1	H or L	Χ	Х	Input	Unspecified [‡]	Store A, hold B
Н	Н	\uparrow	\uparrow	X [‡]	X	Input	Output	Store A in both registers
L	Х	H or L	1	Χ	Х	Unspecified [‡]	Input	Hold A, store B
L	L	\uparrow	\uparrow	Χ	X [‡]	Output	Input	Store B in both registers
L	L	Χ	Х	Χ	L	Output	Input	Real-time B data to A bus
L	L	Χ	H or L	Χ	Н	Output	Input	Stored B data to A bus
Н	Н	Χ	Х	L	Х	Input	Output	Real-time A data to B bus
Н	Н	H or L	Χ	Н	Χ	Input	Output	Stored A data to B bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus


[†] The data-output functions can be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

[‡] Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered to load both registers.

SCBS706F - AUGUST 1997 - REVISED OCTOBER 2003

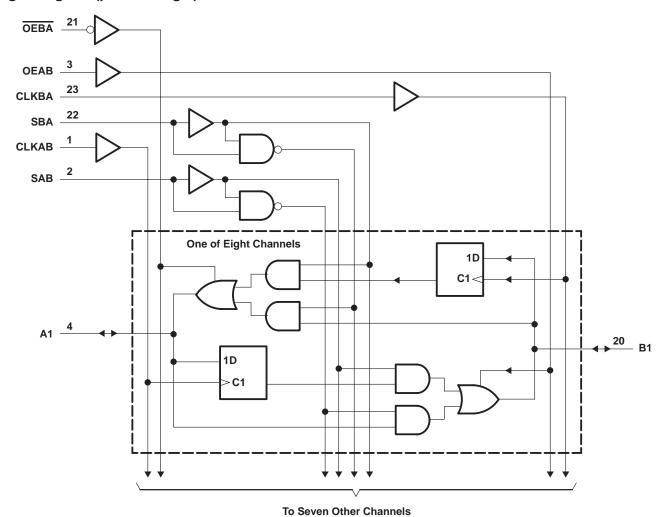

Pin numbers shown are for the DB, DGV, DW, JT, NS, PW, and W packages.

Figure 1. Bus-Management Functions

SCBS706F - AUGUST 1997 - REVISED OCTOBER 2003

logic diagram (positive logic)

Pin numbers shown are for the DB, DGV, DW, JT, NS, PW, and W packages.

SCBS706F - AUGUST 1997 - REVISED OCTOBER 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		
Input voltage range, V _I (see Note 1)		
Voltage range applied to any output in the high-	impedance	
or power-off state, V _O (see Note 1)		
Voltage range applied to any output in the high	state, V _O (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Current into any output in the low state, Io: SN	54LVTH652	96 mA
SN	74LVTH652)	128 mA
Current into any output in the high state, IO (see	Note 2): SN54LVTH652	8 mA
	SN74LVTH652	64 mA
Input clamp current, I _{IK} (V _I < 0)		
Output clamp current, I _{OK} (V _O < 0)		
Package thermal impedance, θ_{JA} (see Note 3):	DB package	63°C/W
•••	DGV package	86°C/W
	DW package	46°C/W
	NS package	65°C/W
	PW package	88°C/W
Storage temperature range, T _{stg}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			SN54LV	TH652	SN74LV	/TH652	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2	Z	2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage		4	5.5		5.5	V
ІОН	High-level output current		6	-24		-32	mA
loL	Low-level output current		30	48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	30	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS706F - AUGUST 1997 - REVISED OCTOBER 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEGT CONDITIONS			54LVTH	652	SN	74LVTH6	652	LINUT	
PAF	RAMETER	TEST CO	ONDITIONS				TYP†	MAX	UNIT		
VIK		V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	VCC-0	.2		V _{CC} -0	.2			
Vari		V _{CC} = 2.7 V,	$I_{OH} = -8 \text{ mA}$	2.4			2.4			v	
VOH		V 2 V	$I_{OH} = -24 \text{ mA}$	2						V	
		VCC = 3 V	$I_{OH} = -32 \text{ mA}$				2				
		V 27V	$I_{OL} = 100 \mu\text{A}$			0.2			0.2		
		V _{CC} = 2.7 V	$I_{OL} = 24 \text{ mA}$			0.5			0.5		
1			$I_{OL} = 16 \text{ mA}$			0.4			0.4	V	
VOL		\\ 2\\	$I_{OL} = 32 \text{ mA}$			0.5			0.5	V	
		VCC = 3 V	$I_{OL} = 48 \text{ mA}$			0.55					
			$I_{OL} = 64 \text{ mA}$			2			0.55	1	
	Control innuts	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND		, A	±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V		77	10			10		
lį		V _{CC} = 3.6 V	V _I = 5.5 V		1	20			20	μА	
A or B ports‡	A or B ports‡		VI = VCC		2	1			1		
			V _I = 0	2	5	-5			-5		
I _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V	9					±100	μΑ	
		V 2.V	V _I = 0.8 V	75			75				
l _l (hold)	A or B ports	VCC = 3 V	V _I = 2 V	-75			-75			μА	
		V _{CC} = 3.6 √§	$V_{I} = 0 \text{ to } 3.6 \text{ V}$						±500		
lozpu		$V_{CC} = 0$ to 1.5 V, $V_{O} = 0$ OE/OE = don't care	0.5 to 3 V,			±100*			±100	μΑ	
IOZPD		$V_{CC} = 1.5 \text{ V to } 0, V_{O} = 0$ OE/OE = don't care	0.5 to 3 V,			±100*			±100	μА	
Icc			Outputs high			0.19			0.19		
		$V_{CC} = 3.6 \text{ V}, I_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$	Outputs low			5			5	mA	
		1 A = ACC 01 Q14D	Outputs disabled			0.19			0.19		
ΔICC¶		V _{CC} = 3 V to 3.6 V, One Other inputs at V _{CC} or 0			_	0.2		_	0.2	mA	
Ci		V _I = 3 V or 0			4			4		pF	
Cio		V _O = 3 V or 0			9			9		pF	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡]Unused terminals at V_{CC} or GND

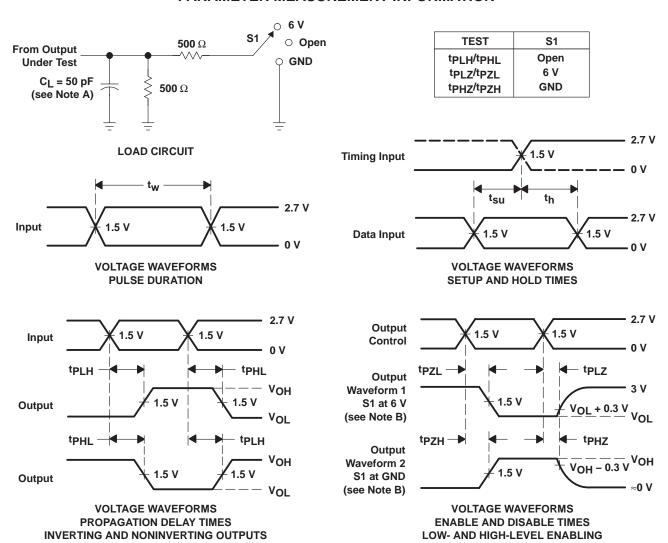
[§] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.

SCBS706F - AUGUST 1997 - REVISED OCTOBER 2003

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

				SN54L\	/TH652		SN74LVTH652				
			V _{CC} =	3.3 V 3 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	VCC =	2.7 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	clock Clock frequency			150		150		150		150	MHz
t _W	Pulse duration, CLK high or low		3.3		3.3		3.3		3.3		ns
	Setup time,	Data high	1.3	200	1.6		1.2		1.5		
tsu	A or B before CLKAB↑ or CLKBA↑	Data low	1.9	6,64	2.6		1.6		2.2		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑		1.2		1.2		0.8		0.8		ns


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 2)

		SN54LVTH652			SN74LVTH652							
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	TYP [†]	MAX	MIN	MAX	
f _{max}			150		150		150			150		MHz
t _{PLH}	CLKBA or	A or B	1.7	5		5.9	1.8	3.1	4.7		5.6	2.0
^t PHL	CLKAB	AOIB	1.7	5		5.9	1.8	3.1	4.7		5.6	ns
t _{PLH}	A or D	D or A	1.2	3.7		4.3	1.3	2.3	3.5		4.1	2.0
t _{PHL}	A or B	B or A	1.2	3.7	M;	4.3	1.3	2.4	3.5		4.1	ns
^t PLH	SBA or SAB‡	A D	1.4	5.2	1/4:	6.3	1.5	3.1	4.9		6	
t _{PHL}	SBA OF SAB+	A or B	1.4	5.2	140	6.3	1.5	3.4	4.9		6	ns
^t PZH	OEBA	٨	1	5.4	,	6.7	1.1	2.9	5.2		6.5	
t _{PZL}	OEBA	Α	1	5.4		6.7	1.1	3.1	5.2		6.5	ns
^t PHZ	OEBA	^	2.2	5.9		6.5	2.3	3.5	5.5		6.1	2.0
t _{PLZ}	OEBA	A		5.9		6.3	2.3	3.7	5.5		5.9	ns
^t PZH	OFAR	В	1.2	4.9		5.9	1.3	3	4.7		5.7	20
^t PZL	OEAB	В	1.2	4.9		5.9	1.3	3.3	4.7		5.7	ns
^t PHZ	OEAB	В	1.4	5.8		7	1.5	3.6	5.6		6.7 ns	
t _{PLZ}	UEAB	В	1.4	5.9		6.6	1.5	3.7	5.6		6.3	115

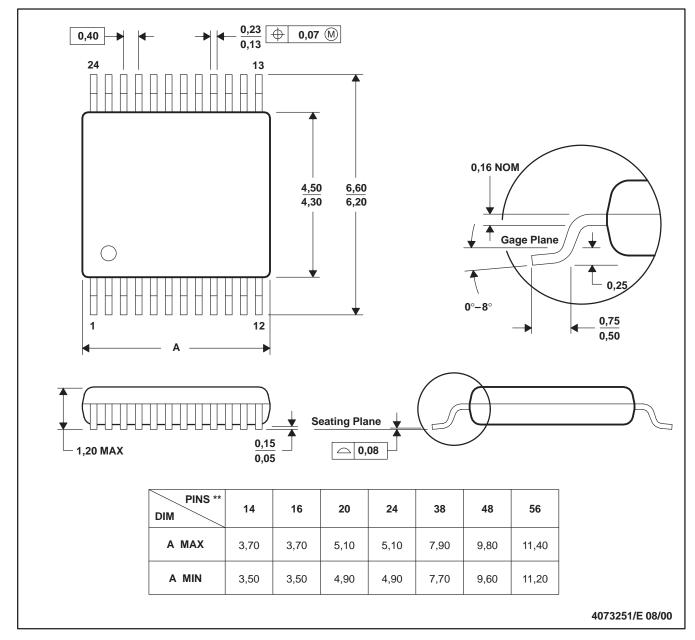
[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡]These parameters are measured with the internal output state of the storage register opposite that of the bus input.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \,\Omega$, $t_f \leq 2.5 \,$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.


Figure 2. Load Circuit and Voltage Waveforms

DGV (R-PDSO-G**)

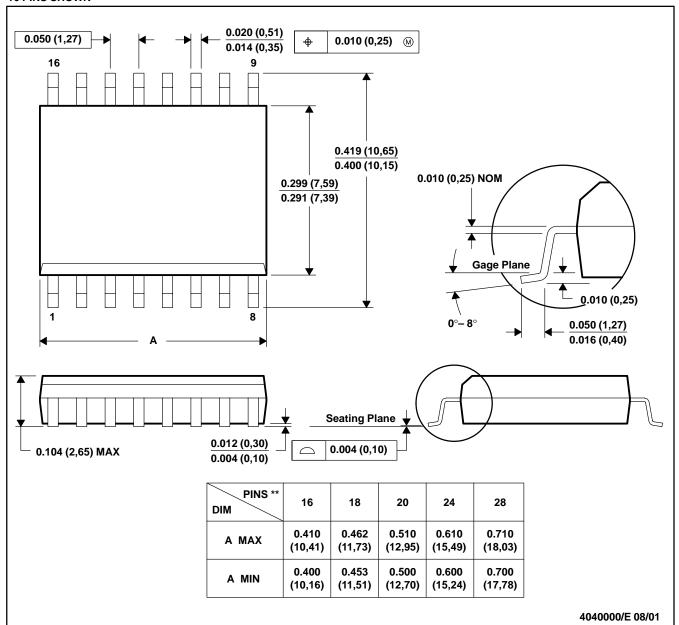
24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.


D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DW (R-PDSO-G**)

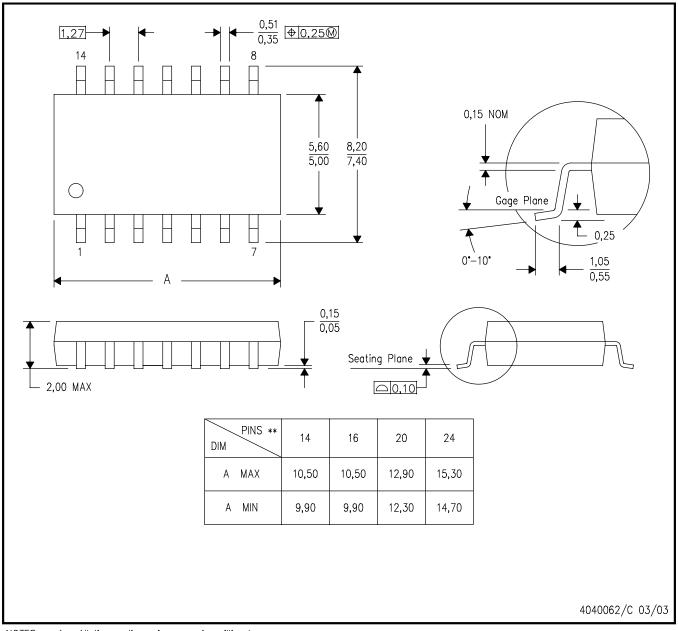
PLASTIC SMALL-OUTLINE PACKAGE

16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-013

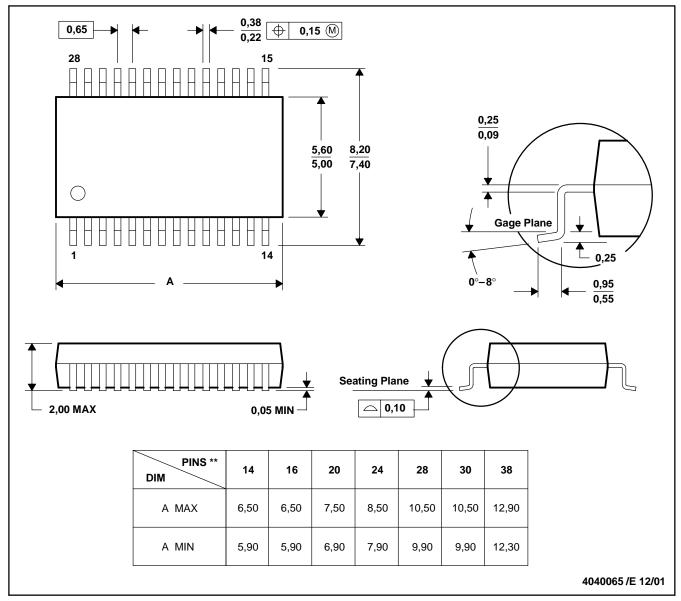
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated