

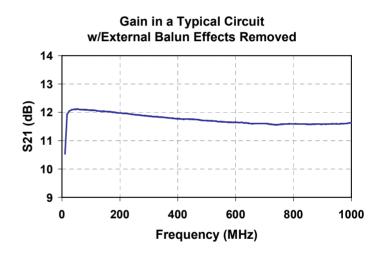
CATV Ultra-Linear Power Amp

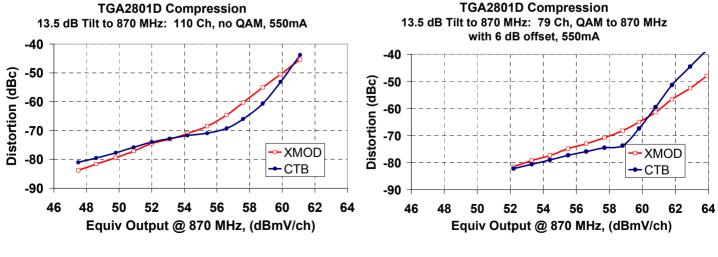
Top View

Bottom View

Description

The TriQuint TGA2801D-EPU is an ultra-linear, packaged power amplifier which operates from 40MHz to 1000MHz. The amplifier is available in a standard 16 lead SOIC package. The amplifier provides a flat gain along with ultra-low distortion. It also provides a high output power with a low DC power consumption. This amplifier is ideally suited for use in CATV distribution systems or other applications requiring high output powers and extremely low distortion. Demonstration Boards are available.


Primary Applications


- HFC Nodes
- CATV Line Amplifiers
- Head End Equipment

TGA2801D-EPU-SG

Key Features and Performance

- High Power Compression (P1dB 31.5 dBm typ.)
- Low Cost Surface Mount Package
- Flat Gain
- Ultra-Low Distortion (55dBm IP3 typ.)
- Wide Bandwidth (40MHz 1GHz)
- Low DC Power Consumption
- Single Supply Bias (+12V)
- Unconditionally Stable
- Proven GaAs Technology

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

)

Maximum Ratings 1/

Symbol	Parameter	Min	Max	Units	Notes
V _{DD}	Bias Supply Voltage	0	15	V	
I _{DD}	Bias Supply Current		615	mA	<u>2</u> /
P _{IN}	RF Input Power		70	dBmV	
T _{ASSY}	Assembly Temperature (30 seconds max)		300	°C	
T _{STG}	Storage Temperature	-65	150	°C	
T _{CASE}	Package Operating Temperature (Heat Slug)	-40	100	°C	

<u>1</u>/ These values reflect maximum operable values for this device. Operating above the recommended values may directly affect MTTF.

2/ Total Current

DC Specifications

Symbol	Parameter	Тур	Unit
V_{DD}	Bias Supply Voltage	12	V
I _{DD}	Bias Supply Current	485	mA
V_{G1}	Gate 1 Voltage (Pin 7)	0.68	V
V_{G2}	Gate 2 Voltage (Pin 2)	4.15	V
V _{out1}	RF Output 1 Voltage (Pin 14)	V _{DD}	V
V _{out2}	RF Output 2 Voltage (Pin 11)	V_{DD}	V

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

RF Specifications

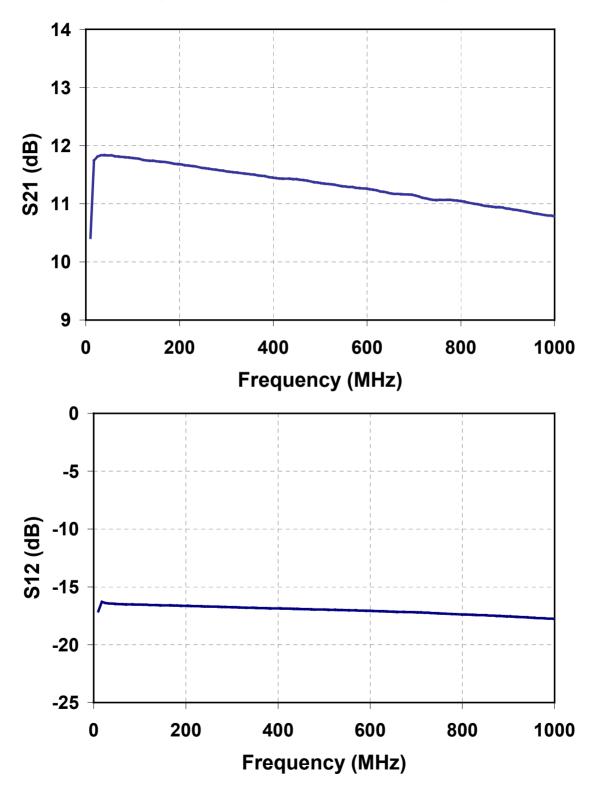
 T_A =25°C, V_{DD} =12V

Symbol	Parameter	Min	Тур	Max	Units
BW	Bandwidth	40		870	MHz
S ₂₁	Gain <u>1</u> /		12.0		dB
GF	Gain Flatness <u>1</u> /		±0.3		dB
NF	Noise Figure		2.75		dB
P _{1dB}	1dB Gain Compression @ 1GHz		31.5		dBm
IP ₃	Two-Tone, Third-Order Intercept (625 & 700MHz)		55		dBm
СТВ	Composite Triple Beat Distortion 2/		-80		dBc
CSO	Composite Second Order Distortion 2/		-72		dBc
XMOD	Cross Modulation 2/		-73		dBc
IRL	Input Return Loss <u>1</u> / <u>3</u> /		22		dB
ORL	Output Return Loss <u>1</u> / <u>3</u> /		22		dB
I _D	Drain Current <u>4</u> /		485	550	mA

1/ Measured performance of chip alone. Balun effects have been removed.

2/ 112-Channel flat, +44dBmV/channel output

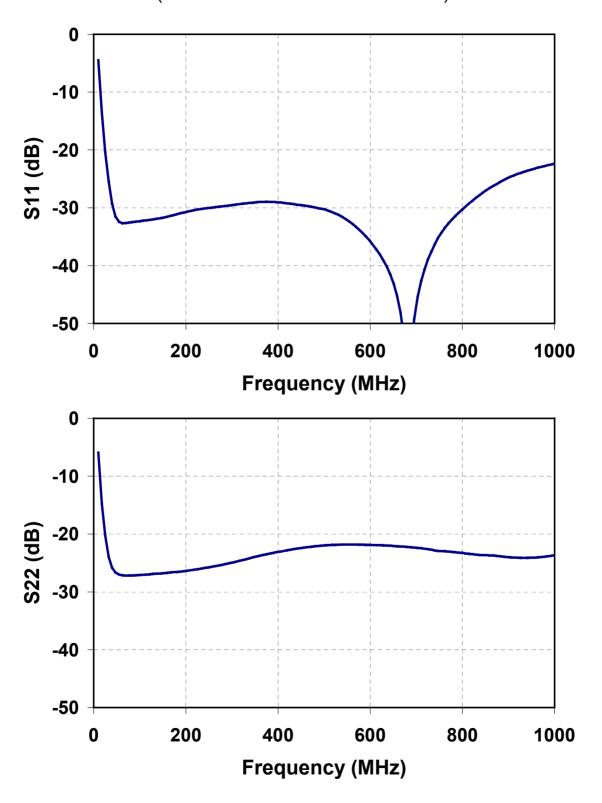
<u>3/</u> Using application circuit on last page


4/ Increasing drain current will improve linearity of device

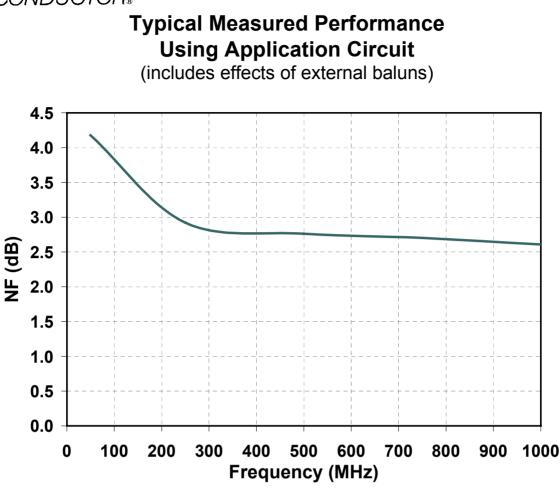
Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

Typical Measured S-Parameters Using Application Circuit

(includes effects of external baluns)

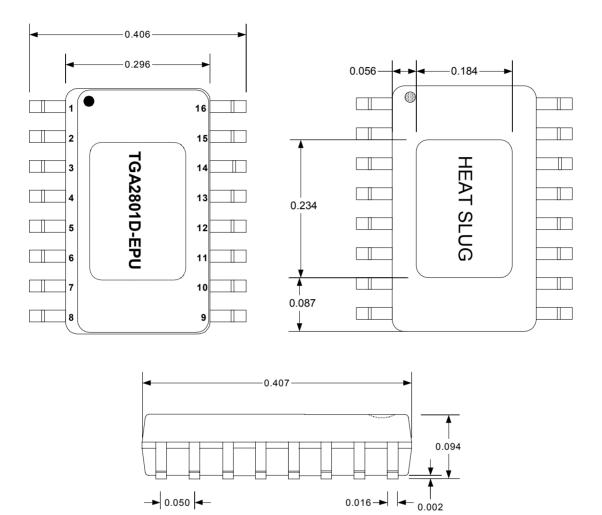


Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.


Typical Measured S-Parameters Using Application Circuit

(includes effects of external baluns)

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

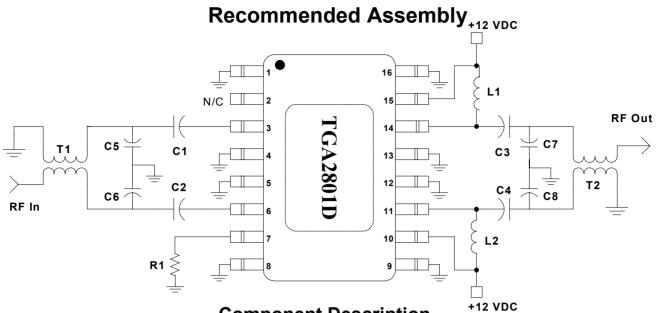


Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

Mechanical Specifications

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

Pinout



Pin Description

Pin	Description
1	GND
2	Gate 2: Open Circuit on PC Board
3	RF Input 1
4	GND
5	GND
6	RF Input 2
7	Gate 1: Current Adjust R ₁ = open circuit
8	GND
9	GND
10	V _{DD}
11	RF Output 2
12	GND
13	GND
14	RF Output 1
15	V _{DD}
16	GND

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

Component Description

+12	VDC
-----	-----

9

Ref	Description
C1	0.01µF Capacitor
C2	0.01µF Capacitor
C3	300pF Capacitor
C4	300pF Capacitor
C5	1.0pF Capacitor
C6	1.0pF Capacitor
C7	1.0pF Capacitor
C8	1.0pF Capacitor
L1	390nH Inductor
L2	390nH Inductor
R1	Current Adjust <u>2</u> / R ₁ = open circuit
T1	Balun <u>1</u> /
T2	Balun <u>1</u> /

1/ Balun performance impacts amplifier return losses and gain. Best performance can be achieved by winding 34 or 36 gauge bifilar wire around a small binocular core made from low-loss magnetic material. Suitable wire may be obtained from MWS Wire Industries. Core vendors include Ferronics, Fairrite, TDK, and Micrometals.

Alternatively, off-the-shelf baluns can be purchased from a number of vendors including Mini-Circuits (ADTL1-18-75), M/A-COM (ETC1-1-13), and Pulse Engineering (CX2071).

<u>2</u>/ Current can be adjusted by either changing the resistor value or forcing a voltage on pin 7.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.