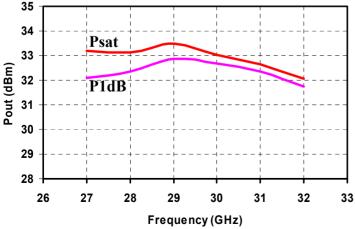


27 - 32 GHz 2W Balanced Power Amplifier


TGA4513-EPU

Preliminary Measured Data

Bias Conditions: Vd = 6 V, Id = 840 mA

Key Features

- 27 32 GHz Bandwidth
- > 32 dBm P1dB
- 33 dBm Psat
- 20 dB Nominal Gain
- IMR3 is 37 dBc @ 18 dBm SCL
- 14 dB Nominal Return Loss
- Bias: 6 V, 840 mA
- 0.25 um 3MI mmW pHEMT Technology
- Chip Dimensions: 2.8 x 2.2 x 0.1 mm (0.110 x 0.087 x 0.004) in

Primary Applications

- Point to Point Radio
- Point to Multi Point Radio
- LMDS
- Satellite Ground Terminal

TGA4513-EPU

TABLE I MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
V ⁺	Positive Supply Voltage	6 V	<u>2/</u>
V	Negative Supply Voltage Range	-5 TO 0 V	
I ⁺	Positive Supply Current	1.86 A	<u>2</u> / <u>3</u> /
$ I_{G} $	Gate Supply Current	70 mA	<u>3</u> /
P_{IN}	Input Continuous Wave Power	22 dBm	
P_{D}	Power Dissipation	TBD	<u>2</u> / <u>4</u> /
T _{CH}	Operating Channel Temperature	150 ⁰ C	<u>5</u> / <u>6</u> /
T_M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- $\underline{2}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D .
- 3/ Total current for the entire MMIC.
- 4/ When operated at this bias condition with a base plate temperature of TBD, the median life is reduced from TBD to TBD hrs.
- 5/ Operating channel temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that the channel (junction) temperatures be maintained at the lowest possible levels.
- 6/ These ratings apply to each individual FET.

Advance Product Information

Jan 27, 2003

TGA4513-EPU

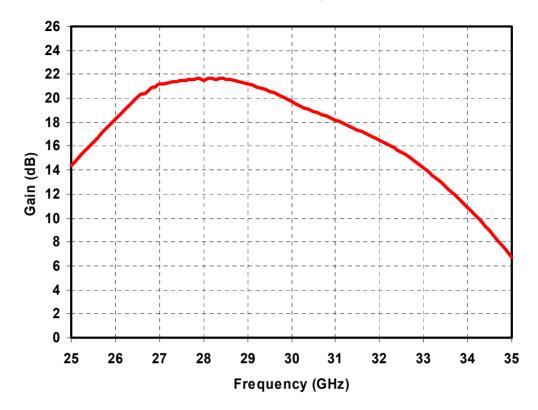
TABLE II DC PROBE TESTS

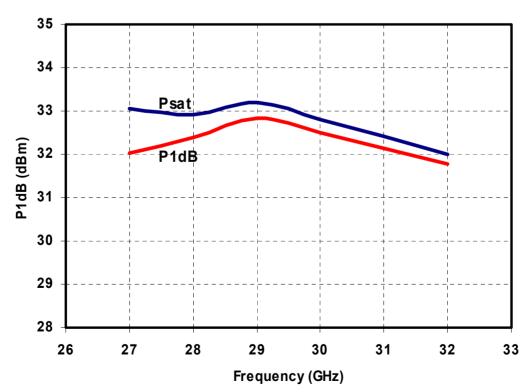
 $(T_A = 25 \, ^{\circ}C \, Nominal)$

SYMBOL	PARAMETER	MINIMUM	MAXIMUM	VALUE
I _{DSS1}	Saturated Drain Current	60	282	V
G _{M1}	Transconductance	132	318	mS
V _{BVGS1}	Breakdown Voltage gate-source	-30	-8	V
V_{BVGD1}	Breakdown Voltage gate-drain	-30	-11	V
V _{P1,8}	Pinch-off Voltage	-1.5	-0.5	V

Q1 is 600 um FET

TABLE III ELECTRICAL CHARACTERISTICS

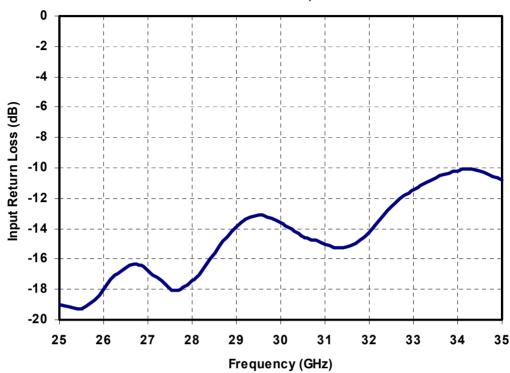

(Ta = 25 °C, Nominal)

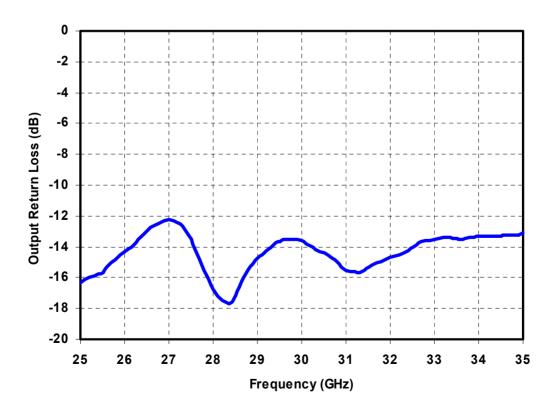

PARAMETER	TYPICAL	UNITS
Drain Operating	6	V
Quiescent Current	840	mA
Small Signal Gain, S21	20	dB
Input Return Loss, S11	14	dB
Output Return Loss, S22	14	dB
Reverse Isolation, S12	-40	dB
Output Power @ 1 dB Compression Gain, P1dB	> 32	dBm
Power @ saturated, Psat	33	dBm
IMR3 @ 18 dBm SCL	37	dBc

TGA4513-EPU

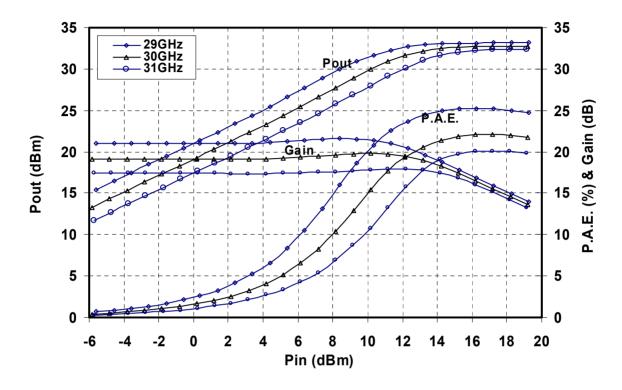
Preliminary Measured Data

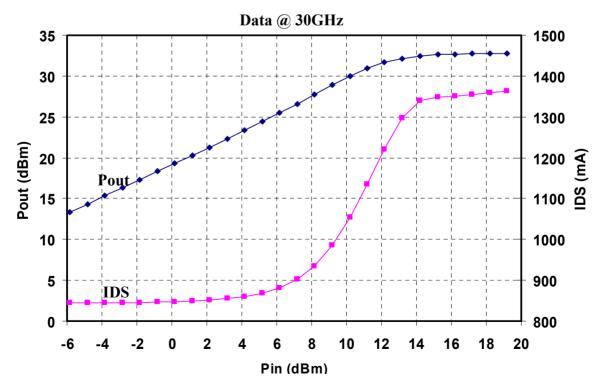
Bias Conditions: Vd = 6 V, Id = 840 mA




TGA4513-EPU

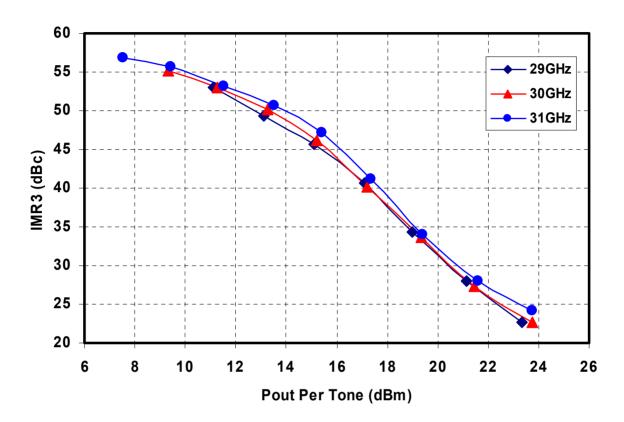
Preliminary Measured Data





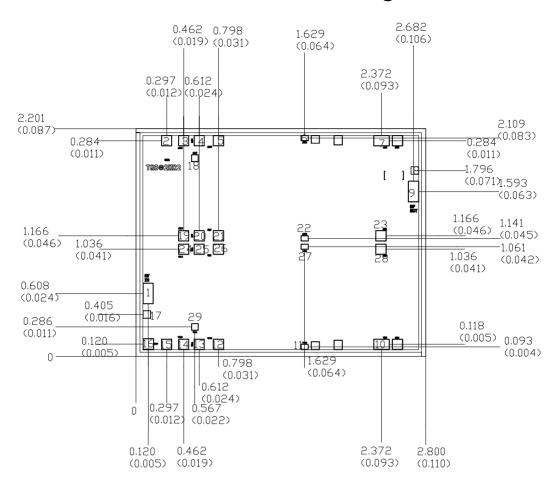
Preliminary Measured Data

Bias Conditions: Vd = 6 V, Id = 840 mA



TGA4513-EPU

Preliminary Measured Data


Bias Conditions: Vd = 6 V, Id = 840 mA, $\Delta f = 10 MHz$

TGA4513-EPU

Mechanical Drawing

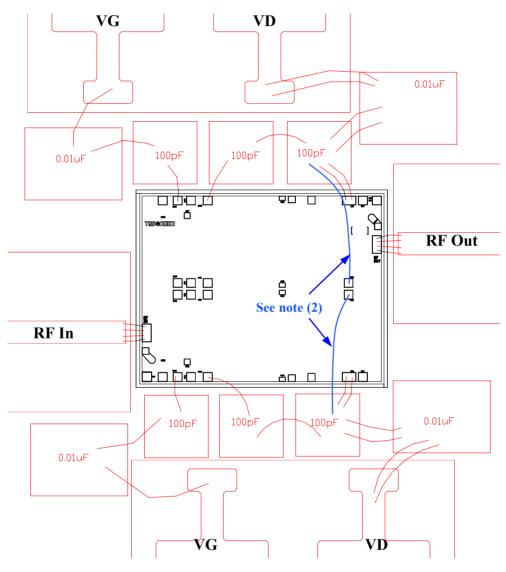
Units: millimeters (inches) Thickness: 0.100 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002)

GND is back side of MMIC

Bond pad #1 Bond pad #2, 15, 16 Bond pad #3, 14, 19, 24 Bond pad #4, 13, 20, 25	N/C VG2 VD1	0.100 × 0.200 0.100 × 0.100 0.100 × 0.100 0.100 × 0.100	(0.004 × 0.008) (0.004 × 0.004) (0.004 × 0.004) (0.004 × 0.004)
Bond pad # 5, 12, 21, 26	VD2	0.100×0.100	(0.004×0.004)
Bond pad # 6, 11, 22, 27	VG3	0.070×0.050	(0.003×0.002)
Bond pad # 7, 10	∨D3	0.150×0.100	(0.006×0.004)
Bond pad # 8, 17	N/C	0.075×0.075	(0.003×0.003)
Bond pad # 9	RF Out	0.100×0.200	(0.004×0.008)
Bond pad # 18, 29	VG1	0.065×0.065	(0.003×0.003)
Bond pad # 23, 28	VD3	0.100×0.100	(0.004×0.004)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.



Advance Product Information

Jan 27, 2003

TGA4513-EPU

Chip Assembly Diagram⁽¹⁾

Note

- (1): 1 µF(minimum) bypass capacitors are required on both drain and gate power supplies.
- (2): An alternative configuration is to NOT use these two bondwires. When using the alternative biasing scheme, the maximum positive supply current is reduced to 1.3A.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

TGA4513-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.