

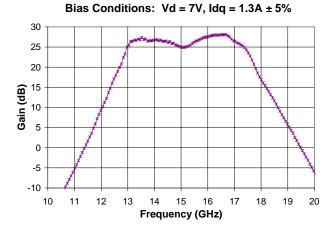
Advance Product Information September 5, 2003

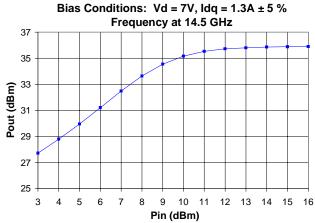
13 - 15 GHz 4W Power Amplifier

TGA8659-EPU-FL

Ceramic Flange Mounted Package

Fixtured Measured Performance


Key Features


- 0.5 um pHEMT Technology
- >25 dB Nominal Gain
- >36 dBm Nominal Psat
- Bias 7V @ 1.3A ldq
- Package Dimensions: 8.4 x 17.8 x 3.0 mm³

 $(0.3 \times 0.7 \times 0.1 \text{ in}^3)$

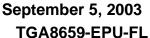
Primary Applications

- Ku-Band VSAT Transmit
- Point-to-Point Radio

Advance Product Information

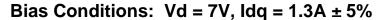
September 5, 2003 TGA8659-EPU-FL

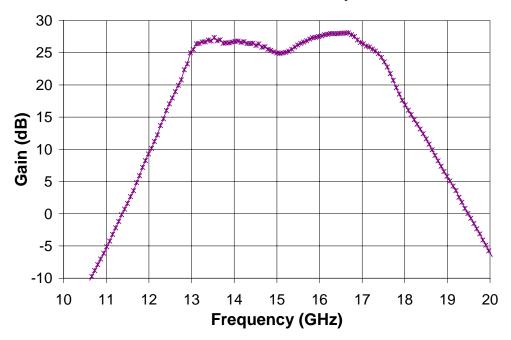
TABLE I MAXIMUM RATINGS 1/

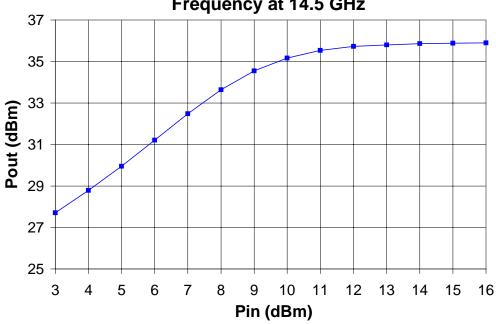

Symbol	Parameter	Value	Notes
V^{+}	Positive Supply Voltage	8V	
I^+	Positive Supply Current (Quiescent)	1.7 A	<u>2</u> /
P_{D}	Power Dissipation	TBD	
P_{IN}	Input Continuous Wave Power	24 dBm	
T_{CH}	Operating Channel Temperature	150 °C	<u>3</u> /, 4/
T_{M}	Mounting Temperature (30 seconds)	320 °C	
T_{STG}	Storage Temperature	-65 °C to 150 °C	

- $\underline{1}$ / These values represent the maximum operable values of this device
- 2/ Total current for the entire MMIC
- 3/ These ratings apply to each individual FET
- 4/ Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.

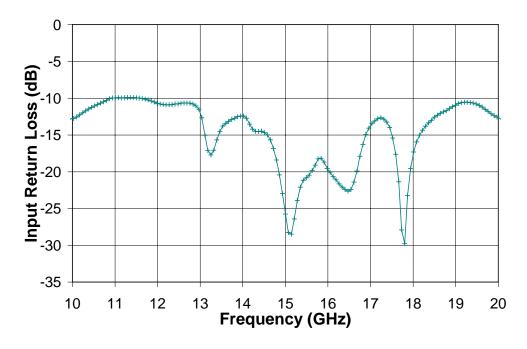
TABLE II ELECTRICAL CHARACTERISTICS


 $(\mathrm{Ta} = 25^{\mathrm{o}}\mathrm{C} \pm 5^{\mathrm{o}}\mathrm{C})$


Parameter	Units	Typical
Drain Operating Voltage	V	7
Quiescent Current	Α	1.3
Small Signal Gain	dB	25
Gain Flatness (Freq = 13.5 - 15 GHz)	dB/100MHz	0.1
Input Return Loss (Linear Small Signal)	dB	10
Output Return Loss (Linear Small Signal)	dB	10
Reverse Isolation	dB	> 50
CW Output Power @Psat at 14.5GHz	dBm	36
TOI at 14.5 GHz with Pout/tone of 28 dBm	dBm	41
Power Added Efficiency@Psat	%	30
P1dB temperature coeff. TC (-40 to +70 °C)	dB/deg C	0.01



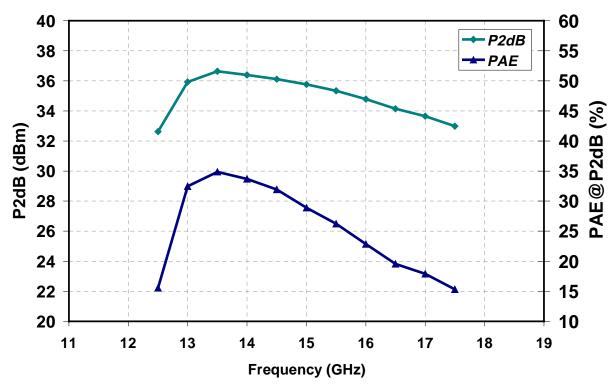
Measured Fixtured Data

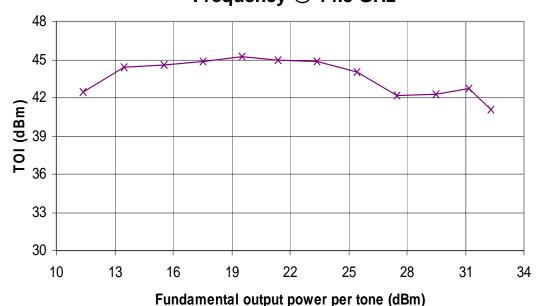

Bias Conditions: Vd = 7V, $Idq = 1.3A \pm 5 \%$ Frequency at 14.5 GHz

September 5, 2003 TGA8659-EPU-FL

Measured Fixtured Data

Bias Conditions: Vd = 7V, $Idq = 1.3A \pm 5\%$

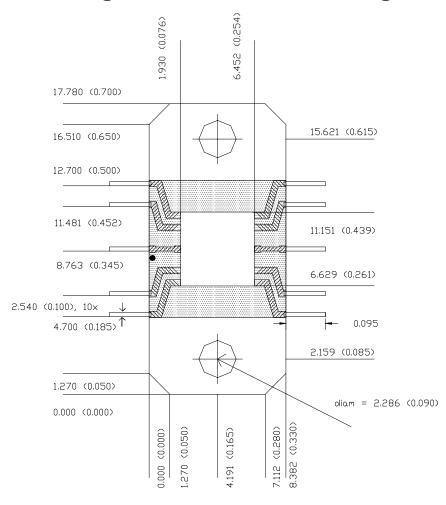


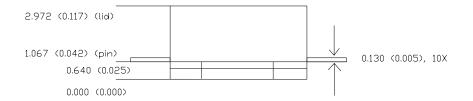


Measured Fixtured Data

Bias Conditions: Vd = 7V, $Idq = 1.3A \pm 5\%$

Bias Conditions: Vd = 6V, $Idq = 1.3A \pm 5\%$ Frequency @ 14.5 GHz

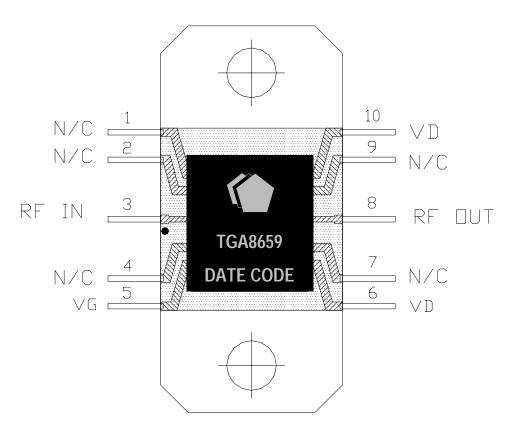




Advance Product Information September 5, 2003

TGA8659-EPU-FL

Packaged Dimensional Drawing


Units: millimeters (inches)
Package size tolerance: +/- 0.051 (0.002)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information

September 5, 2003 TGA8659-EPU-FL

Bias Procedure

- 1) Make sure no RF power is applied to the device before continuing.
- 2) Pinch off device by setting V_{G} to -1.5 V.
- 3) Raise V_D to 7.0V while monitoring drain current.
- 4) Raise V_G until drain current reaches 1.3 A. V_G should be between -0.6V and -0.3V.
- 5) Apply RF power.

Ordering Information

Part	Package Style
TGA8659-FL	Flange, leads bolted down

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.