

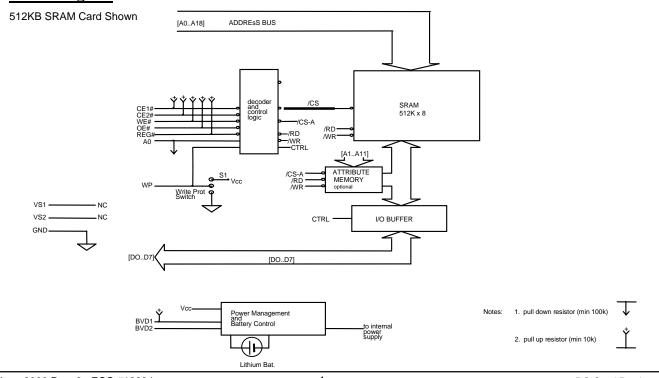
SRAM Memory Card 128 kB through512 kB

General Description

The WEDC **SEA** SRAM Series memory cards offer a high performance nonvolatile storage solution for code and data storage, disk caching, and write intensive mobile and embedded applications.

Packaged in PCMCIA type I housing the WEDC SRAM SEA series is based on 1 or 4Mbit SRAM memories, providing densities from 128 Kbytes to 512 Kbytes.

The SEA series of SRAM memory cards requires a 5V power supply and operates at speeds to 150ns. The cards are based on advanced CMOS technology providing very low power and reliable data retention characteristics. WEDC's SRAM cards contain a rechargeable lithium battery and recharge circuitry, eliminating the need for replaceable batteries found in many SRAM cards.


WEDC's standard cards are shipped with WEDC's SRAM Logo. Cards are also available with blank housings (no Logo). The blank housings are available in both a recessed (for label) and flat housing. Please contact WEDC sales representative for further information on Custom artwork.

Features

- High Performance SRAM Memory Card
- Single 5 Volt Supply
- Fast Access Times: 150ns
- x8 Interface (subset of PCMCIA standard)
- Low Power CMOS technology provides very low power and reliable data retention characteristics

 operating current 80mA maximum
 standby current < 100µA typical
- Rechargeable Lithium battery with recharge circuitry - eliminates the need for replaceable batteries - standby current during recharge typically < 2mA
 - battery backup time
- 18 months typical typical based on 512kB (lower densities will have greater storage times)
- Unlimited write cycles, no endurance issues
- 2KB EEPROM attribute memory containing CIS (optional)
- Optional Hardware Write Protect Switch
- PC Card Standard Type I Form Factor

Block Diagram

PCMCIA Flash Memory Card

SEA Series

Pinout

Pin	Signal name	I/O	Function	Active	Pin	Signal name	I/O	Function
1	GND		Ground		35	GND		Ground
2	DQ3	I/O	Data bit 3		36	CD1#	0	Card Detect 1
3	DQ4	I/O	Data bit 4		37	NC	I/O	Data bit 11
4	DQ5	I/O	Data bit 5		38	NC	I/O	Data bit 12
5	DQ6	I/O	Data bit 6		39	NC	I/O	Data bit 13
6	DQ7	I/O	Data bit 7		40	NC	I/O	Data bit 14
7	CE1#	Ι	Card enable 1	LOW	41	NC	Ι	Data bit 15
8	A10	Ι	Address bit 10		42	NC	Ι	Card Enable 2
9	OE#	Ι	Output enable	LOW	43	VS1	0	Voltage Sense 1
10	A11	Ι	Address bit 11		44	N.C.		
11	A9	Ι	Address bit 9		45	N.C.		
12	A8	Ι	Address bit 8		46	A17	Ι	Address bit 17
13	A13	Ι	Address bit 13		47	A18	Ι	Address bit 18
14	A14	Ι	Address bit 14		48	N.C.	Ι	Address bit 19
15	WE#	Ι	Write Enable	LOW	49	N.C.	Ι	Address bit 20
16	N.C.				50	N.C.	Ι	Address bit 21
17	Vcc		Supply Voltage		51	Vcc		Supply Voltage
18	N.C.				52	N.C.		
19	A16	Ι	Address bit 16	128KB(2)	53	N.C.		Address bit 22
20	A15	Ι	Address bit 15		54	N.C.		Address bit 23
21	A12	Ι	Address bit 12		55	N.C.		Address bit 24
22	A7	Ι	Address bit 7		56	N.C.		Address bit 25
23	A6	Ι	Address bit 6		57	VS2	0	Voltage Sense 2
24	A5	Ι	Address bit 5		58	N.C.		
25	A4	Ι	Address bit 4		59	N.C.	0	Extended Bus Cycle
26	A3	Ι	Address bit 3		60	N.C.		
27	A2	Ι	Address bit 2		61	REG#	Ι	Attrib Mem Select
28	A1	Ι	Address bit 1		62	BVD2	0	Bat. Volt. Detect 2
29	A0	Ι	Address bit 0		63	BVD1	0	Bat. Volt. Detect 1
30	DQ0	I/O	Data bit 0		64	NC	I/O	Data bit 8
31	DQ1	I/O	Data bit 1		65	NC	I/O	Data bit 9
32	DQ2	I/O	Data bit 2		66	NC	0	Data bit 10
33	WP	0	Write Potect	HIGH	67	CD2#	0	Card Detect 2
34	GND		Ground		68	GND		Ground

Notes:

1. CD1# and CD2# are grounded internal to PC Card.

2. Shows density for which specified address bit is MSB.

Higher order address bits are no connects (ie 512KB A18 is MSB, A19 - A21 are NC). 3. BVD1 is an open drain output with a 10K ohm internal pull-up resistor. Active

LOW

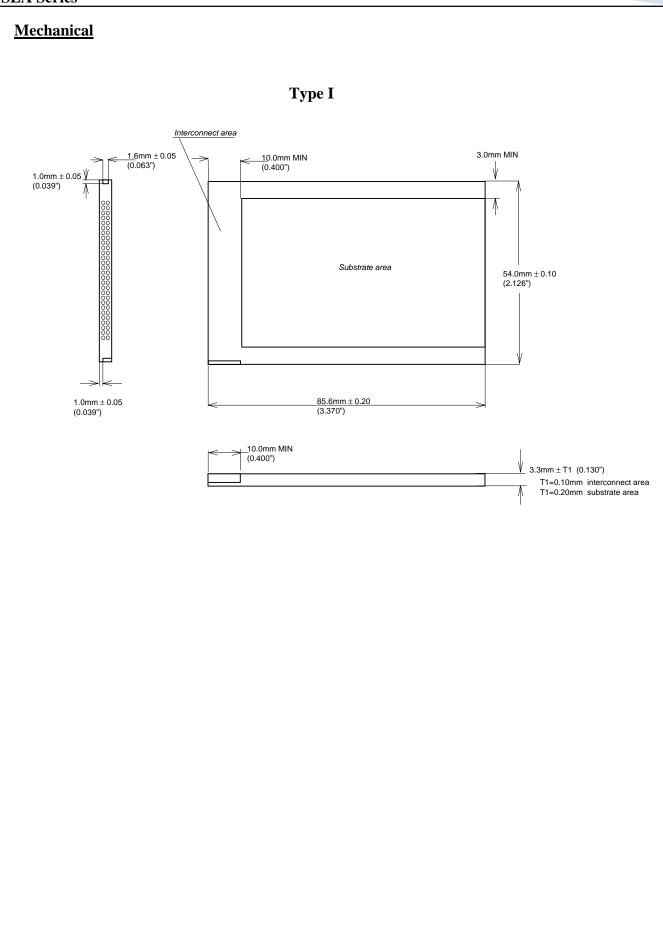
LOW N.C.

512KB(2)

N.C.

Low

Low


(3)

LOW

PCMCIA Flash Memory Card

SEA Series

Card Signal Description

Symbol	Туре	Name and Function
A0 - A25	INPUT	ADDRESS INPUTS: A0 through A25 enable direct addressing of up
		to 64MB of memory on the card. Signal A0 is not used in word access
		mode. A25 is the most significant bit. (address pins used are based on
		card density, see pinout for highest used address pin)
DQ0 - DQ7	INPUT/OUT	DATA INPUT/OUTPUT: DQ0 THROUGH DQ15 constitute the
DQ8 – DQ15	PUT	bi-directional databus. DQ0 - DQ7 constitute the lower (even) byte and
		DQ8 - DQ15 the upper (odd) byte. Upper byte is Not Connected on
		this card.
C E1 #, C E2 #	INPUT	CARD ENABLE 1 AND 2: CE1 # enables even byte accesses,
		CE2 # control signal in PCMCIA standard, to access high byte, - not
		used on this card
OE#	INPUT	OUTPUT ENABLE: Active low signal enabling read data from the
		memory card.
WE#	INPUT	WRITE ENABLE: Active low signal gating write data to the memory
		card.
RDY/BSY #	OUTPUT	READY/BUSY OUTPUT: Not used for SRAM cards
CD1 #, CD2 #	OUTPUT	CARD DETECT 1 and 2: Provide card insertion detection. These
		signals are connected to ground internally on the memory card. The
		host socket interface circuitry shall supply 10K-ohm or larger pull-up
		resistors on these signal pins.
WP	OUTPUT	WRITE PROTECT: Follows hardware Write Protect Switch. When
		Switch is placed in on position, signal is pulled high (10K ohm). When
		switch is off signal is pulled low.
VPP1, VPP2	N.C.	PROGRAM/ERASE POWER SUPPLY: Not used for SRAM
		cards.
VCC		CARD POWER SUPPLY: 5.0V for all internal circuitry.
GND		GROUND: for all internal circuitry.
REG #	INPUT	ATTRIBUTE MEMORY SELECT : only used with cards built with
		optional attribute memory.
RST	INPUT	RESET: Not used for SRAM cards
WAIT #	OUTPUT	WAIT: This signal is pulled high internally for compatibility. No wait
		states are generated.
BVD1, BVD2	OUTPUT	BATTERY VOLTAGE DETECT: Provides status of Battery
		voltage.
		BVD2 = BVD1 = Voh (battery voltage is guaranteed to retain data)
		BVD2 = Vol, BVD1 = Voh (data is valid, battery recharge required)
		BVD2 = BVD1 = Vol (data may no longer be valid, battery requires
		extended recharge)
VS1, VS2	OUTPUT	VOLTAGE SENSE: Notifies the host socket of the card's VCC
		requirements. VS1 and VS2 are open to indicate a 5V, 16 bit card has
		been inserted.
RFU		RESERVED FOR FUTURE USE
N.C.		NO INTERNAL CONNECTION TO CARD: pin may be driven
		or left floating

FUNCTIONAL TRUTH TABLE

READ function						Commor	n Memory	Α	ttribute M	emory
Function Mode	/CE2	/CE1	/OE	/WE	/REG	D15-D8	D7-D0	/REG	D15-D8	D7-D0
Standby Mode	Х	Н	Х	Х	Х	High-Z	High-Z	Х	High-Z	High-Z
Byte Access (8 bits)	Х	L	L	Н	Н	High-Z	Data Out	L	High-Z	Data Out
WRITE function										
Standby Mode	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х
Byte Access (8 bits)	Х	L	Н	L	Н	Х	Data In	L	Х	Data In

Absolute Maximum Ratings (2)

) (' u
0°C to +60 °C	+
-40°C to +85 °C	1
	(2
0°C to +60 °C	p p
-40°C to +85 °C	s
-0.5V to VCC+0.5V (1)	th
-0.5V to +7.0V	th
	-40°C to +85 °C 0°C to +60 °C -40°C to +85 °C -0.5V to VCC+0.5V (1)

Notes:

 During transitions, inputs may undershoot to -2.0V or overshoot to VCC +2.0V for periods less than 20ns.

(2) Stress greater than those listed under "Absolute Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Characteristics ⁽¹⁾

CMOS Test Conditions: VIL = VSS ± 0.2V, VIH = VCC ± 0.2V

Sym	Parameter	Density	Notes	Min	Typ ⁽³⁾	Max	Units	Test Conditions
ICC	VCC Active Current	128KB	1		40	80	mA	VCC = 5.25V
		512KB			40	80		tcycle = 150ns
ICCS	VCC Standby Current	All	2,4	< 0.1	< 1	10	mA	VCC = 5.25V
								Control Signals = VCC
ILI	Input Leakage Current	All	5,6			±20	μA	VCC = VCCMAX
								Vin =VCC or VSS
ILO	Output Leakage Current	All	6			±20	μA	VCC = VCCMAX
								Vout =VCC or VSS
VIL	Input Low Voltage	All	6	0		0.8	V	
VIH	Input High Voltage	All	6	3.85		VCC	V	
						+0.5		
VOL	Output Low Voltage	All	6			0.4	V	IOL = 3.2mA
VOH	Output High Voltage	All	6	VCC-		VCC	V	IOH = -2.0mA
				0.4				

Notes:

1. All currents are for x8 mode and are RMS values unless otherwise specified.

2. Control Signals: CE1#, CE2#, OE#, WE#, REG#.

3. Typical: VCC = 5V, T = +25C.

4. ICCS includes battery recharge current. Value depends on battery discharge level. ICCS min is specified for fully charged battery. ICCS typical value is specified for battery discharge to 2.7V. ICCS max is specified for a fully discharged battery (0V). Battery will recharge to 1.5V in 20 sec.

5. Values are the same for byte and word wide modes for all card densities.

 Exceptions: Leakage currents on CE1#, CE2#, OE#, REG# and WE# will be < 500 μA when VIN = GND due to internal pull-up resistors.

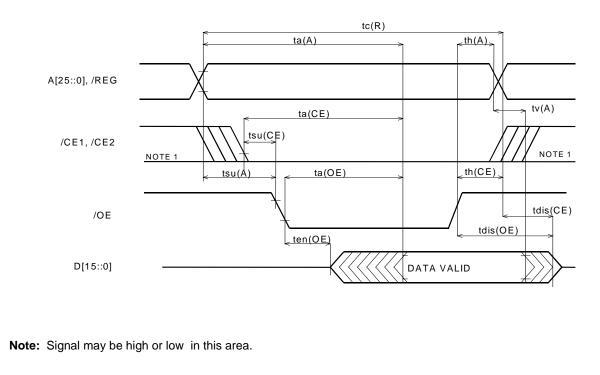
Battery Characteristics

Parameter	Density	Notes	Type I	Units	Conditions
Battery Life	All	(1)	10	years	Normal operation, T=25C
	128KB	(2)	24		T=25C
Dottom	512KB		18	months	Battery backup time is a calculated
Battery Backup Time					value and is not guaranteed. This
Баскир тіше				(typical)	should not be used to schedule
					battery recharging.

Notes:

1. Battery Life refers to functional lifetime of battery.

2. Battery backup time is density and temperature dependent.

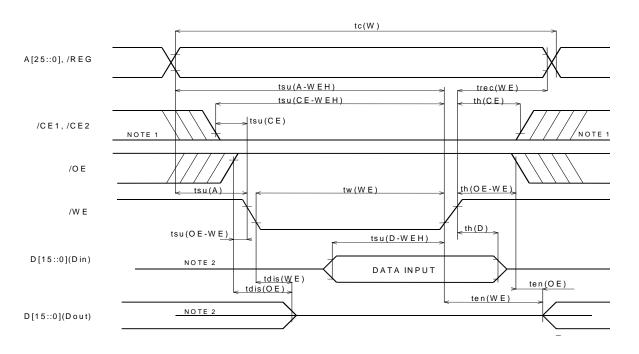

AC Characteristics

Read Timing Parameters

		150ns		
SYM (PCMCIA)	Parameter	Min	Max	Unit
t _{RC}	Read Cycle Time	150		ns
t _a (A)	Address Access Time		150	ns
t _a (CE)	Card Enable Access Time		150	ns
t _a (OE)	Output Enable Access Time		75	ns
t _{su} (A)	Address Setup Time	20		ns
t _{su} (CE)	Card Enable Setup Time	0		ns
t _h (A)	Address Hold Time	20		ns
t _h (CE)	Card Enable Hold Time	20		ns
t _v (A)	Output Hold from Address Change	0		ns
t _{dis} (CE)	Output Disable Time from CE#		75	ns
t _{dis} (OE)	Output Disable Time from OE#		75	ns
t _{dis} (CE)	Output Enable Time from CE#	5		ns
t _{dis} (CE)	Output Enable Time from OE#	5		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Read Timing Diagram



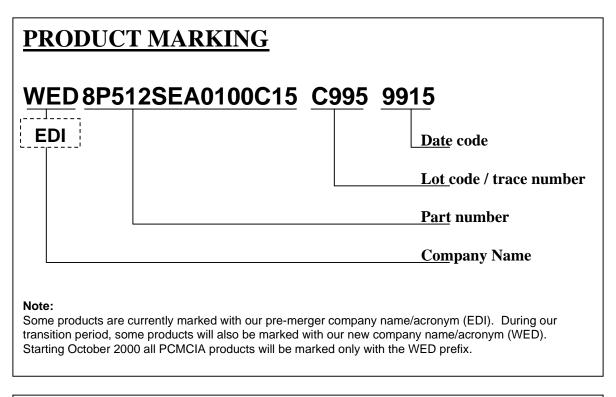
Write Timing Parameters

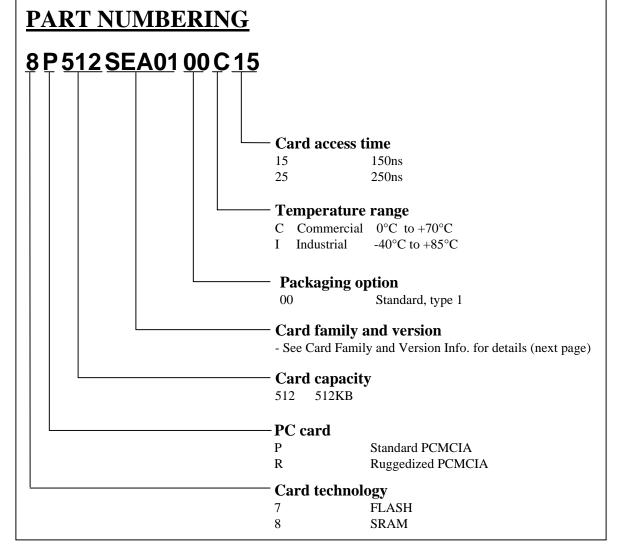
		150ns		
SYM (PCMCIA)	Parameter	Min	Max	Unit
t _c W	Write Cycle Time	150		ns
t _w (WE)	Write Pulse Width	80		ns
t _{su} (A)	Address Setup Time	20		ns
t _{su} (A-WEH)	Address Setup Time for WE#	100		ns
t _{su} (CE-WEH)	Card Enable Setup Time for WE#	100		ns
t _{su} (D-WEH)	Data Setup Time for WE#	50		ns
t _h (D)	Data Hold Time	20		ns
t _{rec} (WE)	Write Recover Time	20		ns
t _{dis} (WE)	Output Disable Time from WE#		75	ns
t _{dis} (OE)	Output Disable Time from OE#		75	ns
t _{en} (WE)	Output Enable Time from WE#	5		ns
t _{dis} (OE)	Output Enable Time from OE#	5		ns
t _{su} (OE-WE)	Output Enable Setup from WE#	10		ns
t _h (OE-WE)	Output Enable Hold from WE#	10		ns
t _{su} (CE)	Card Enable Setup Time from OE#	0		ns
t _h (CE)	Card Enable Hold Time	20		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Write Timing Diagram

Notes:


1. Signal may be high or low in this area.


2. When the data I/O pins are in the output state, no signals shall be applied to the data pins (D15 - D0) by the host system.

PCMCIA Flash Memory Card

SEA Series

Ordering Information

8P XXX SEA YY SS T ZZ

where

XXX:	128	128KB
	512	512KB
YY:	01	no attribute memory, no Write Protect Switch
	02	with attribute memory, no Write Protect Switch
	03	with Write Protect Switch, no attribute memory
	04	with attribute memory, with Write Protect Switch
SS:	00	WEDC SRAM Logo Type I
	01	Blank Housing, Type I
	02	Blank Housing, Type I Recessed
T:	С	Commercial
	Ι	Industrial
ZZ:	15	150ns

REVISION HISTORY						
Date of revision	Version	Description				
1-Jun-98	-001	Initial release				
27-May-99	-002	Company/Logo change				
1-Jun-00	-003	Added page 8, Page Header Change				

White Electronic Designs Corporation	
One Research Drive, Westborough, MA 01581, USA	
tel: (508) 366 5151	
fax: (508) 836 4850	
www.whiteedc.com	WHITE ELECTRONIC DESIGNS