Table 6: DC Parameters (Packaged Parts) | Symbol | Parameters | Min ⁽²⁾ | Typ ⁽¹⁾ | Max ⁽²⁾ | Units | Conditions | |---------------------|-------------------------|--------------------|--------------------|--------------------|-------|-------------| | R _{ANA IN} | ANA IN Input Resistance | 2.3 | 3 | 5 | KΩ | | | A _{PRE 1} | Preamp Gain 1 | 21 | 24 | 26 | dB | AGC = 0.0 V | | A _{PRE2} | Preamp Gain 2 | | -15 | 5 | dB | AGC = 2.5 V | | A _{AUX} | AUX IN/SP+ Gain | | 0,98 | 1.0 | V/V | | | A _{ARP} | ANA IN to SP+/- Gain | 21 | 23 | 26 | dB | | | R _{AGC} | AGC Output Resistance | 2,5 | 5 | 9.5 | ΚΩ | | - **1.** Typical values @ $I_A = 25^{\circ}C$ and 5.0 V. - 2. All Min/Max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested. - **3.** V_{CCA} and V_{CCD} connected together. - 4. XCLK pin only. Table 7: AC Parameters (Packaged Parts) | Symbol | Characteris | stic | Min ⁽²⁾ | Typ ⁽¹⁾ | Max ⁽²⁾ | Units | Conditions | |-------------------|----------------------------|---|---|--------------------------------------|---|---------------------------------|---| | F _S | Sampling
Frequency | ISD2560
ISD2575
ISD2590
ISD25120 | | 8.0
6.4
5.3
4.0 | | KHz
KHz
KHz
KHz | (7)
(7)
(7)
(7) | | F _{CF} | Filter Pass Band | ISD2560
ISD2575
ISD2590
ISD25120 | | 3.4
2.7
2.3
1.7 | | KHz
KHz
KHz
KHz | 3 dB Roll-Off Point (3) (8)
3 dB Roll-Off Point (3) (8)
3 dB Roll-Off Point (3) (8)
3 dB Roll-Off Point (3) (8) | | T _{REC} | Record Duration | ISD2560
ISD2560
ISD2575
ISD2575
ISD2590
ISD25120 | 58.1
56.5
72.6
70.7
87.1
116.1 | 60.0
60.0
75.0
75.0
90.0 | 62.0
63.8
77.5
79.7
93.0
123.9 | sec
sec
sec
sec
sec | Commercial Operation ⁽⁷⁾ Industrial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ Industrial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ | | T _{PLAY} | Playback Duration | ISD2560
ISD2560
ISD2575
ISD2575
ISD2590
ISD25120 | 58.1
56.5
72.6
70.7
87.1
116.1 | 60.0
60.0
75.0
75.0
90.0 | 62.0
63.8
77.5
79.7
93.0
123.9 | sec
sec
sec
sec
sec | Commercial Operation Industrial Operation Commercial Operation Industrial Operation Commercial Operation Commercial Operation | | T _{CE} | CE Pulse Width | | | 100 | | nsec | | | T _{SET} | Control/Address Setup Time | | | 300 | | nsec | | | T _{HOLD} | Control/Address Hole | d Time | | 0 | | nsec | | Table 7: AC Parameters (Packaged Parts) | Symbol | Characteris | stic | Min ⁽²⁾ | Typ ⁽¹⁾ | Max ⁽²⁾ | Units | Conditions | |------------------|--------------------------|---|--|--------------------------------------|--|--|---| | T _{PUD} | Power-Up Delay | ISD2560
ISD2560
ISD2575
ISD2575
ISD2590
ISD25120 | 24.1
23.5
30.2
29.3
36.2
48.2 | 25.0
31.3
31.3
37.5
50.0 | 27.8
28.5
34.3
35.2
40.8
53.6 | msec
msec
msec
msec
msec
msec | Commercial Operation Industrial Operation Commercial Operation Industrial Operation Commercial Operation Commercial Operation | | T _{PDR} | PD Pulse Width
Record | ISD2560
ISD2575
ISD2590
ISD25120 | | 25
31.25
37.5
50.0 | | msec
msec
msec
msec | | | T _{PDP} | PD Pulse Width Play | ISD2560
ISD2575
ISD2590
ISD25120 | | 12.5
15.625
18.75
25.0 | | msec
msec
msec
msec | | | T _{PDS} | PD Pulse Width Static | : | | 100 | | nsec | (6) | | T _{PDH} | Power Down Hold | | | 0 | | nsec | | | T _{EOM} | EOM Pulse Width | ISD2560
ISD2575
ISD2590
ISD25120 | | 12.5
15.625
18.75
25.0 | | msec
msec
msec
msec | | | T _{OVF} | Overflow Pulse Width | | | 6,5 | | μsec | | | THD | Total Harmonic Disto | rtion | | 1 | 2 | % | @ 1 KHz | | P _{OUT} | Speaker Output Pow | er | | 12.2 | 50 | mW | $R_{EXT} = 16 \Omega^{(4)}$ | | V _{OUT} | Voltage Across Spec | ıker Pins | | | 2,5 | V р-р | $R_{\text{EXT}} = 600 \Omega$ | | V _{IN1} | MIC Input Voltage | | | | 20 | m۷ | Peak-to-Peak ⁽⁵⁾ | | V _{IN2} | ANA IN Input Voltage |) | | | 50 | m۷ | Peak-to-Peak | | V _{IN3} | Aux Input Voltage | | | | 1,25 | V | Peak-to-Peak; $R_{\text{EXT}}=16~\Omega$ | - **1.** Typical values @ $I_A = 25^{\circ}C$ and 5.0 V. - 2. All Min/Max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested. - 3. Low-frequency cutoff depends upon the value of external capacitors (see Pin Descriptions). - **4.** From AUX IN; if ANA IN is driven at 50 mV p-p, the $P_{OUT} = 12.2$ mW, typical. - **5.** With 5.1 K Ω series resistor at ANA IN. - **6.** T_{PDS} is required during a static condition, typically overflow. - 7. Sampling Frequency and playback Duration can vary as much as ±2.25 percent over the commercial temperature range and voltage range and ±5 percent over the industrial temperature and voltage range. For greater stability, an external clock can be utilized (see Pin Descriptions). - **8.** Filter specification applies to both the antialiasing filter and the smoothing filter. Therefore, from input to output, expect a 6 dB drop by nature of passing through both filters. 12 Voice Solutions in Silicon™ ## TYPICAL PARAMETER VARIATION WITH VOLTAGE AND TEMPERATURE (PACKAGED PARTS) Chart 3: 0- -40 Chart 1: Record Mode Operating Current Standby Current (I_{SB}) ■ 5.5 Volts ◆ 4.5 Volts Temperature (C) 25 70 85 **Chart 2: Total Harmonic Distortion** Table 8: Absolute Maximum Ratings (Die)⁽¹⁾ | Condition | Value | |--|---| | Junction temperature | 150°C | | Storage temperature range | -65°C to +150°C | | Voltage applied to any pad | $(V_{SS} - 0.3 \text{ V}) \text{ to}$
$(V_{CC} + 0.3 \text{ V})$ | | Voltage applied to any pad (Input current limited to ±20 mA) | $(V_{SS} - 1.0 \text{ V}) \text{ to}$
$(V_{CC} + 1.0 \text{ V})$ | | V _{CC} - V _{SS} | -0.3 V to +7.0 V | Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability. Functional operation is not implied at these conditions. **Table 9:** Operating Conditions (Die) | Condition | Value | |--|------------------| | Commercial operating temperature range | 0°C to +50°C | | Supply voltage (V _{CC}) ⁽¹⁾ | +4.5 V to +6.5 V | | Ground voltage (V _{SS}) ⁽²⁾ | 0 V | - 1. $V_{CC} = V_{CCA} = V_{CCD}$. - $2. \quad V_{SS} = V_{SSA} = V_{SSD}.$ **Table 10: DC Parameters** (Die) | Symbol | Parameters | Min ⁽²⁾ | Typ ⁽¹⁾ | Max ⁽²⁾ | Units | Conditions | |---------------------|--------------------------------------|-----------------------|-----------------------|--------------------|-------|--------------------------------------| | V _{IL} | Input Low Voltage | | | 0.8 | ٧ | | | V _{IH} | Input High Voltage | 2.0 | | | V | | | V_{OL} | Output Low Voltage | | | 0.4 | V | $I_{OL} = 4.0 \text{ mA}$ | | V _{OH} | Output High Voltage | V _{CC} - 0.4 | | | V | $I_{OH} = -10 \mu\text{A}$ | | V _{OH 1} | OVF Output High Voltage | 2.4 | | | V | $I_{OH} = -1.6 \text{ mA}$ | | V _{OH2} | EOM Output High Voltage | V _{CC} - 1,0 | V _{CC} - 0.8 | | V | $I_{OH} = -3.2 \text{ mA}$ | | l _{CC} | V _{CC} Current (Operating) | | 25 | 30 | mA | $R_{EXT} = \infty$ (3) | | I _{SB} | V _{CC} Current (Standby) | | 1 | 10 | μΑ | (2) | | I _{IL} | Input Leakage Current | | | ±1 | μΑ | | | I _{ILPD} | Input Current HIGH with Pull
Down | | | 130 | μΑ | Force V _{CC} ⁽⁴⁾ | | R _{EXT} | Output Load Impedance | 16 | | | Ω | Speaker Load | | R _{MIC} | Preamp In Input Resistance | 4 | 9 | 15 | ΚΩ | MIC and MIC REF Pads | | R _{AUX} | AUX INput Resistance | 5 | 11 | 20 | ΚΩ | | | R _{ANA IN} | ANA IN Input Resistance | 2,3 | 3 | 5 | ΚΩ | | | A _{PRE1} | Preamp Gain 1 | 21 | 24 | 26 | dB | AGC = 0.0 V | 14 Voice Solutions in Silicon[™] Table 10: DC Parameters (Die) | Symbol | Parameters | Min ⁽²⁾ | Typ ⁽¹⁾ | Max ⁽²⁾ | Units | Conditions | |-------------------|-----------------------|--------------------|--------------------|--------------------|-------|-------------| | A _{PRE2} | Preamp Gain 2 | | -15 | 5 | dB | AGC = 2.5 V | | A _{AUX} | AUX IN/SP+ Gain | | 0,98 | 1.0 | V/V | | | A _{ARP} | ANA IN to SP+/- Gain | 21 | 23 | 26 | dB | | | R _{AGC} | AGC Output Resistance | 2.5 | 5 | 9,5 | ΚΩ | | - **1.** Typical values @ $T_A = 25^{\circ}C$ and 5.0 V. - 2. All Min/Max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested. - **3.** V_{CCA} and V_{CCD} connected together. - 4. XCLK pad only. Table 11: AC Parameters (Die) | Symbol | Characteristic | | Min ⁽²⁾ | Typ ⁽¹⁾ | Max ⁽²⁾ | Units | Conditions | |-------------------|---------------------------|---|-------------------------------|-------------------------------|-------------------------------|------------------------------|---| | F _S | Sampling
Frequency | ISD2560
ISD2575
ISD2590
ISD25120 | | 8.0
6.4
5.3
4.0 | | KHz
KHz
KHz
KHz | (7)
(7)
(7)
(7) | | F _{CF} | Filter Pass Band | ISD2560
ISD2575
ISD2590
ISD25120 | | 3.4
2.7
2.3
1.7 | | KHz
KHz
KHz
KHz | 3 dB Roll-Off Point (3) (8)
3 dB Roll-Off Point (3) (8)
3 dB Roll-Off Point (3) (8)
3 dB Roll-Off Point (3) (8) | | T _{REC} | Record Duration | ISD2560
ISD2575
ISD2590
ISD25120 | 58.1
72.6
87.1
116.1 | 60.0
75.0
90.0
120.0 | 62.0
77.5
93.0
123.9 | sec
sec
sec
sec | Commercial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ | | T _{PLAY} | Playback Duration | ISD2560
ISD2575
ISD2590
ISD25120 | 58.1
72.6
87.1
116.1 | 60.0
75.0
90.0
120.0 | 62.0
77.5
93.0
123.9 | sec
sec
sec
sec | Commercial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ Commercial Operation ⁽⁷⁾ | | T _{CE} | CE Pulse Width | | | 100 | | nsec | | | T _{SET} | Control/Address Setu | up Time | | 300 | | nsec | | | T _{HOLD} | Control/Address Hold Time | | | 0 | | nsec | | | T _{PUD} | Power-Up Delay | ISD2560
ISD2575
ISD2590
ISD25120 | 24.1
30.2
36.2
48.2 | 25.0
31.3
37.5
50.0 | 27.8
34.3
40.8
53.6 | msec
msec
msec
msec | Commercial Operation
Commercial Operation
Commercial Operation
Commercial Operation | Table 11: AC Parameters (Die) | Symbol | Characteris | stic | Min ⁽²⁾ | Typ ⁽¹⁾ | Max ⁽²⁾ | Units | Conditions | |-------------------|--------------------------|---|--------------------|---------------------------------|--------------------|------------------------------|-----------------------------------| | T _{PDR} | PD Pulse Width
Record | SD2560
 SD2575
 SD2590
 SD25120 | | 25
31.25
37.5
50.0 | | msec
msec
msec
msec | | | T _{PDP} | PD Pulse Width Play | ISD2560
ISD2575
ISD2590
ISD25120 | | 12.5
15.625
18.75
25.0 | | msec
msec
msec
msec | | | T _{PDS} | PD Pulse Width Static | | | 100 | | nsec | (6) | | T _{PDH} | Power Down Hold | | | 0 | | nsec | | | T _{EOM} | EOM Pulse Width | ISD2560
ISD2575
ISD2590
ISD25120 | | 12.5
15.625
18.75
25.0 | | msec
msec
msec
msec | | | T _{OVF} | Overflow Pulse Width | | | 6,5 | | μsec | | | THD | Total Harmonic Disto | rtion | | 1 | 3 | % | @ 1 KHz | | P _{OUT} | Speaker Output Pow | er
er | | 12.2 | 50 | mW | $R_{EXT} = 16 \Omega^{(4)}$ | | V _{OUT} | Voltage Across Spea | ker Pins | | | 2.5 | V p-p | $R_{EXT} = 600 \Omega$ | | V _{IN 1} | MIC Input Voltage | | | | 20 | m۷ | Peak-to-Peak ⁽⁵⁾ | | V _{IN2} | ANA IN Input Voltage | , | | | 50 | m۷ | Peak-to-Peak | | V _{IN3} | Aux Input Voltage | | | | 1,25 | V | Peak-to-Peak; $R_{EXT}=16 \Omega$ | - **1.** Typical values @ $I_A = 25$ °C and 5.0 V. - 2. All Min/Max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested. - 3. Low-frequency cutoff depends upon the value of external capacitors (see Pin Descriptions). - **4.** From AUX IN; if ANA IN is driven at 50 mV p-p, the $P_{OUI} = 12.2$ mW, typical. - **5.** With 5.1 $K\Omega$ series resistor at ANA IN. - **6.** T_{PDS} is required during a static condition, typically overflow. - 7. Sampling Frequency and playback Duration can vary as much as ± 2.25 percent over the commercial temperature range and voltage range. For greater stability, an external clock can be utilized (see Pin Descriptions). - 8. Filter specification applies to the antialiasing filter and the smoothing filter. 16 Voice Solutions in Silicon™ ## TYPICAL PARAMETER VARIATION WITH VOLTAGE AND TEMPERATURE (DIE) Chart 5: Record Mode Operating Current (I_{CC}) **Chart 6:** Total Harmonic Distortion Figure 4: ISD2560/75/90/120 Application Example—Design Schematic **NOTE:** If desired, pin 18 (PDIP package) may be left unconnected (microphone preamplifier noise will be higher). In this case, pin 18 must not be tied to any other signal or voltage. Additional design example schematics are provided in the Application Notes in this book. **Table 12: Application Example—Basic Device Control** | Control Step | Function | Action | |--------------|---|---| | 1 | Power up chip and select record/playback mode | (1.) PD = LOW, (2.) P/\overline{R} = As desired | | 2 | Set message address for record/playback | Set addresses A0–A9 | | 3A | Begin playback | $P/\overline{R} = HIGH$, $\overline{CE} = Pulsed LOW$ | | 3B | Begin record | $P/R = LOW, \overline{CE} = LOW$ | | 4A
4B | End playback
End record | Automatic
PD or $\overline{\text{CE}} = \text{HIGH}$ | 18 Voice Solutions in Silicon[™] **Table 13: Application Example—Passive Component Functions** | Part | Function | Comments | |------------|--|--| | R1 | Microphone power supply decoupling | Reduces power supply noise | | R2 | Release time constant | Sets release time for AGC | | R3, R5 | Microphone biasing resistors | Provides biasing for microphone operation | | R4 | Series limiting resistor | Reduces level to prevent distortion at higher supply voltages. | | R6 | Series limiting resistor | Reduces level to high supply voltages | | C1, C5 | Microphone DC-blocking capacitor
Low-frequency cutoff | Decouples microphone bias from chip, Provides single-
pole low-frequency cutoff and common mode noise
rejection. | | C2 | Attack/Release time constant | Sets attack/release time for AGC | | C3 | Low-frequency cutoff capacitor | Provides additional pole for low-frequency cutoff | | C4 | Microphone power supply decoupling | Reduces power supply noise | | C6, C7, C8 | Power supply capacitors | Filter and bypass of power supply | ## **EXPLANATION** In this simplified block diagram of a microcontroller application, the Push-Button mode and message cueing are used. The microcontroller is a 16-pin version with enough port pins for buttons, an LED, and the ISD2500 series device. The software can be written to use three buttons: one each for play and record, and one for message selection. Because the microcontroller is interpreting the buttons and commanding the ISD2500 device, software can be written for any functions desired in a particular application. **NOTE** ISD does not recommend connecting address lines directly to a microprocessor bus. Address lines should be externally latched. D₁ RUN • RECORD Q PLAY o MSG# MC68HC705K1A ISD2560/75/90/120 OSC1 OSC2 $V_{\rm CCD}$ PB1 16 A1 V_{CCA} R₁ TBD RESET PAO Α2 IRQ PA1 АЗ V_{SSD} PA2 V_{SSA} U₁ PA3 Α5 SP+ V_{DD} PA4 Α6 15 U₂ PA5 SP-Α7 11 AUX IN Α8 PA6 V_{SS} 20 10 ANA IN Α9 PA7 CE ANA OUT 24 PD P/R MIC REF 17 EOM MIC 22 OVF 26 **XCLK** AGC Figure 5: ISD2560/75/90/120 Application Example—Microcontroller/ISD2500 Interface Figure 6: ISD2500 Application Example—Push-Button **NOTE:** Please refer to Application Information. 20 Voice Solutions in Silicon™