MXT3010

Reference Manual

Version 4.1

Order Number: 100108-05

October 1999
Copyright (c) 1999 by Maker Communications, Inc. All rights reserved.

Printed in the United States of America.

Theinformation in this document is believed to be correct, however, the
information can change without notice. Maker Communications, Inc. disclaims
any responsibility for any consequences resulting from the use of the information
contained in this document.

The hardware, software, and the related documentation is provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1) (ii) of The Rightsin
Technical Data and Computer Program Product clause at DFARS 252.227-7013
or subparagraphs (c)(1) and (2) of the Commercial Computer Software-
Restricted Rights at 48 CFR 52.227-19, as applicable.

Contractor/manufacturer is:
Maker Communications, Inc.
73 Mount Wayte Avenue, Framingham, MA 01702

CellMaker and BridgeM aker are registered trademarks of Maker
Communications, Inc. AccessM aker, High-Intensity Communications Processor,
High-Intensity Communications Processing, PortMaker, Octave, and SimMaker
are trademarks of Maker Communications, Inc.

All other trademarks are owned by their respective companies.

This manual supercedes and obsol etes the following Maker Communications
publications:

100108-03 - MXT3010 Reference Manual, dated June 1999
100108-04 - MXT3010 Reference Manual, dated October 1999

CONTENTS

Preface xxi

Section 1

CHAPTER 1

CHAPTER 2

MXT3010 Reference Manual

Maker Products xxi

Using thismanual xxiii

Contacting Maker Support Services xxiv

Changes Installed in This Version of the Manual xxv

Subsystems 1

Introduction 3

MXT3010 features 4
MXT3010 subsystems 5
What information isinthismanual 6

The SWAN Processor 9

The SWAN advantage 10
SWAN's instructions and address spaces 10

Instruction execution 13
Instruction space organization 14
Instruction cache 15

SWAN processor instruction classes 18

Arithmetic Logic Unit (ALU) instructions 19
Branch instructions 19

Registers 21
Flag registers 24
HEC generation and check circuit 25

CHAPTER 3 The Cell Scheduling System 27

How the Cell Scheduling System works 28
Data transmission - servicing and scheduling 31
Servicing 31
Scheduling 32
Pacing the transmission rate of cells 37
Programming the Cell Scheduling System 38

Guaranteeing the availability of alocation in the
Connection ID table 41

The PUSHC/POPC instruction buffer 42
POPC, PUSHC, POPF, and PUSHF instruction operation 42
POPC and PUSHC timing 42

POPF and PUSHF timing 42
Connection ID table and Scoreboard addressing 43

Initializing the Scoreboard 45
Selecting a Scoreboard size 45
Supporting multiple Scoreboard sections 46

CHAPTER 4 The Fast Memory Interface 47
SWAN processor accesses to Fast Memory 48
Loading 48
Soring 50

Cell Scheduling System accessesto Fast Memory 51
SWAN executable fetches from Fast Memory 51

Fast Memory configurations 52
Memory sizes supported 52
RAM selection and configuration 53

iv MXT3010 Reference Manual

Mode O operation 53
Mode 1 operation 54
Bus contention avoidance 55

Fast Memory sequence diagrams 56

CHAPTER 5 The Cell Buffer RAM 59

Internal cell storage in the Cell Buffer RAM 60
Cell Buffer RAM memory construction 64
Cell Buffer RAM access 67

CHAPTER 6 The UTOPIA port 69
UTOPIA port interface overview 70
Features 70

Operating modes 71

UTOPIA cell formats 74
Receive cell flow 77

UTOPIA receiver counters 78
Transmit cell flow 82

UTOPIA transmitter counters 84

The TXBUSY counter 84

The TXFULL counter 86

CRC10 generation and checking support 87
Multi-PHY support 88
Receive Header Reduction hardware 91
UTOPIA port configuration summary 93
UTOPIA port sequence diagrams 94

CHAPTER 7 The Portl and Port2 Interfaces 97

Port interface overview 98

The Port DMA command queues 100
Port1 and Port2 DMA command queues 100
Testing DMA Controller queues with the ESShits 101

Port Controller features 103
The Cyclical Redundancy Check 32 generator for Portl 103
Cyclical Redundancy Check operation acceleration 104
Slent transfers 105

MXT3010 Reference Manual

CHAPTER 8

Section 2

Post-increment option on rla operations 107
Data alignment 107
Byte manipulations on Portl 108
Post-DMA Operation Directives (PODs) 109
Burst and non-burst operation (Port2) 109
Port Operations 110
Portl basic protocol 110
The Portl control state machine 113
Communication register 1/O transfers 133
Port2 basic protocol 137
The Port2 control state machine 142
Port2 DMA non-bur st-mode read transfers 150
Port2 DMA non-bur st-mode write transfers = 154
Additional Portl and Port2 Design Information 156
Arbitrating accessto Portl 156
Smplified Port2 interfaces 157
Bus driving, turnaround, and bus parking 158
Data Alignment 159
Transfer complete 161
Byte Count zero 161
External DMA cycle abort (PLABORT_) 163
Endian-ness 164
Port1 and Port2 Reference Designs 169
P1MemMaker 169
P2MemMaker 172

Communications 177

The COMMIN/COMMOUT register 178
Interchip communications 180

Register and Instruction Reference 183

Registers 183

Instructions 185
Instruction description notations 188

MXT3010 Reference Manual

CHAPTER 9 Registers 189

Register types 189
Softwareregisters 189
Hardwareregisters 190
Soecifying registersin SVAN instructions 190
Initializing software and hardware registers 191
R32 General Purpose- 0000 193
R33 General Purpose- FFFF 194
R34 General Purpose- FFOO 195
R35 General Purpose- 0040 196
R36-write Bit Bucket register 197
R37-R39 General Purposeregisters 198
R40-R41 Host Communication registers 199
R42-read Externa State Signals (ESS) register 200
R42-write Mode Configuration register 201
R43-read Fast Memory Bit Swap register (R42w[8]=0) 203
R43-read Special Featuresregister (R42w[8]=1) 204
R43-write UTOPIA Control FIFO register 205
R44-R47 CRC32PRX and CRC32PRY registers 207
R48-R51 Local Addressregisters(rla) 208

R52 Alternate Byte Count/ID register 209

R53 Instruction Base Addressregister 210
R54-R55 Programmable Interval Timer registers 211
R56 Fast Memory Dataregister 212

R57-read Sparse Event/ICSregister 213
R57-write Sparse Event/ICS register (Set/Clear) 214

R58 Fast Memory Shadow register 215
R59 Branch register 216
R60 The Cell Scheduling System (CSS) Configuration
register 217
R61-read Scheduled Addressregister 218
R62 The UTOPIA Configuration register 219
R63 The System register 221
CHAPTER 10 Arithmetic Logic Unit Instructions 223

Addressing modes 223

MXT3010 Reference Manual Vii

CHAPTER 11

viii

Triadic register 223
Immediate 224

Overflow flag 225

Instruction options 226
Modulo arithmetic 226
Automatic memory updates 228
ALU branching 228

ADD
ADDI
AND
ANDI
CMP
CMPI
CMPP
CMPPI

FLS
LIMD
MAX
MAXI
MIN
MINI
OR
ORI
SFT
SFTA
SFTAI
SFTC
SFTCI

Add Registers 234

Add Register and Immediate 235

And Registers 236

And Register and Immediate 237
Compare Two Registers 238

Compare Register and Immediate 239
Compare Two Registerswith Previous 240

Compare Register and Immediate with
Previous 241

Find Last Set 242

Load Immediate 243

Maximum of Two Registers 244
Maximum of Register and Immediate 245
Minimum of Two Registers 246
Minimum of Register and Immediate 247
Or Registers 248

Or Register and Immediate 249

Shift Signed Amount 250

Shift Right Arithmetic 251

Shift Right Arithmetic Immediate 252
Shift Left Circular 253

Shift Circular Immediate 254

SFTRI/SFTLI Shift Right or Left Immediate 255

SUB

SUBI
XOR
XORI

Subtract Registers 256

Subtract Register and Immediate 257
XOR Registers 258

XOR Register and Immediate 259

Branch Instructions 261

General Branch instruction information 262

MXT3010 Reference Manual

CHAPTER 12

CHAPTER 13

MXT3010 Reference Manual

Introduction 262
Target address 262
Condition code (ESSField) 263
Thelogical state identifier (SBit) 264
Committed slot instructions 264
The Conditional operator (C-bit) 265
Subroutinelinking 268
Counter system operation 269
BF Branch Fast Memory Shadow
Register 270
BFL Branch Fast Memory Shadow
Register and Link 271
Bl Branch Immediate 272
BIL Branch Immediateand Link 273
BR Branch Register 274
BRL Branch Register and Link 275

Cell Scheduling Instructions 277

Cell Scheduling System target address 277
POPC Service Schedule 278

POPF POPFast 279

PUSHC Schedule 280

PUSHF PushFast 281

Direct Memory Access Instructions 283

General DMA instruction information 284

Introduction 284

Op codesfor DMA instructions 284

The RLA increment bit (i-bit) 285

The Byte Count instruction field option (BC) 286

The Control instruction field option 287
DMAI1R Direct Memory Operation - Portl Read 289
DMAI1W Direct Memory Operation - Portl Write 290
DMAZ2R Direct Memory Operation - Port2 Read 291

DMA2W Direct Memory Operation - Port2 Write 292

CHAPTER 14 Load and Sore Fast Memory
Instructions 293

General information for Load and Store Fast Memory
instructions 294
Introduction 294
Transfer size (the#HW field) 295
Fast Memory address (thersa and rsb fields) 296
Address masking (the Z-bit) 296
Destination register (therd field) 299
Linking (the LNK bit) 299
Instructions for accelerating CRC operations 305
Alternate address (the adr field) 306
Hardware register (reg field) 307
Least significant bits (the Isbsfield) 307
LMFM Load Multiple from Fast Memory 308
SHFM Store Halfword to Fast Memory 311

SRH Store Register Halfword 312

CHAPTER 15 Load and Sore Internal RAM
Instructions 313

General information for Load and Store internal RAM
instructions 314
Introduction 314
Register load address (rlafield) 314
Theindex field (IDX) 315

Byte swap support 319
The Swap field 319

LD Load Register 321
LDD Load Double Register 322
ST StoreRegister 323
STD Store Double Register 324

CHAPTER 16 Swan Instruction Reference Examples 325

Add and Subtract examples 326
Branch examples 328
Load and Store Fast Memory examples 331

X MXT3010 Reference Manual

Load and Store Internal RAM examples 332
Logical examples 334

Shift examples 335

Miscellaneous examples 338

Section 3 Sgnal Descriptions and Electrical
Characteristics 341

CHAPTER 17 Timing 343

MXT3010EP timing - general information 343
Definition of switching levels 343
Input clock details 344

MXT3010EP Fast Memory interfacetiming 345
MXT3010EP UTOPIA interfacetiming 348
MXT3010EP Portl timing 352

MXT3010EP Port2 timing 356

MXT3010EP miscellaneous control signal timing 359
MXT3010EP Reset timing 360

MXT3010EP Fast Memory interface operation 364
MXT3010EP JTAG operation 365

CHAPTER 18 Pin Information 367

MXT3010EP pinout 368
MXT3010EP signal descriptions 369
MXT3010EP JTAG/PLL pin termination 377

MXT3010EP pinlisting 378
I/O pad reference 381

CHAPTER 19 Electrical Parameters 383

MXT3010EP maximum ratings and operating conditions 384
DC electrical characteristics 385
AC electrical characteristics 385

MXT3010EP power sequencing 386

MXT3010 Reference Manual Xi

Overview 386
Damageto I/O pad metal 387
1/0O pad latch-up 389
MXT3010EP PLL considerations 390
Overview 390
VAA decoupling 391
General decoupling 392
Reference clock jitter 393
Circuit design goals 394

CHAPTER 20 Mechanical and Thermal Information 395
MXT3010EP mechanical/thermal information 396

APPENDIX A Acronyms 399

APPENDIX B Device Initialization 401

Initializing the MXT3010EP 402

Downloading firmware 402
How the system determines the boot path 402
How the application uses the output pins 403
How the code set is structured 404
How to boot 405
Limitations on the size of boot code 407

Initializing the Mode Configuration register 408
Restrictions on starting addresses 409

APPENDIX C Quick Reference 411

Hardware register summary 412
ALU ingtruction field summary 413
Shift amount summary 414

Branch instruction field summary 416
DMA ingtruction field summary 417
Instruction summary 418

Xii MXT3010 Reference Manual

List of Figures

FIGURE 1. MXT3010 and surrounding system devices 5
FIGURE 2. SWAN processor address spaces and access instructions 11
FIGURE 3. SWAN instruction space 14

FIGURE 4. Formation of the page offset and theinstructiontag 16
FIGURE 5. Target addressformat in Fast Memory 20

FIGURE 6. Pipeline feedback 22

FIGURE 7. Connection ID entries 30

FIGURE 8. Servicing and scheduling 34

FIGURE 9. Scoreboard operation 38

FIGURE 10. Connection ID table address generation 44

FIGURE 11. Scoreboard address generation 44

FIGURE 12. Load Fast Memory instruction 48

FIGURE 13. Store Fast Memory instruction 50

FIGURE 14. Fast Memory SRAM options 52

FIGURE 15. Mode 0 design example 54

FIGURE 16. Mode 1 design example 55

FIGURE 17. Fast Memory read operations - single bank 56
FIGURE 18. Fast Memory write operations - singlebank 57
FIGURE 19. Fast Memory reads and writes - back-to-back and dual bank 57
FIGURE 20. Cell Buffer RAM organization 61

FIGURE 21. Cell fieldsdefined 62

FIGURE 22. Receive cell organization: 52-byte and 56-byte cells 63
FIGURE 23. Gather method accesses 66

FIGURE 24. Cell Buffer RAM access 67

FIGURE 25. The UTOPIA port: 8/8 and 16-bit modes 72

FIGURE 26. Clock phasesfor RX/TX CLK = 1/2 Internal Clock 73
FIGURE 27. Clock phasesfor RX/TX CLK = 1/4 Internal Clock 73
FIGURE 28. UTOPIA 8-bit and 16-hit cell formats 74

FIGURE 29. HEC-enabled 52-byte mode 75

FIGURE 30. HEC-disabled 52-byte mode 75

FIGURE 31. HEC-enabled 56-byte mode 76

FIGURE 32. HEC-disabled 56-byte mode 76

FIGURE 33. The RXBUSY counter 79

FIGURE 34. The RXFULL counter 81

FIGURE 35. The TXBUSY counter 84

MXT3010 Reference Manual xiii

Xiv

FIGURE 36.
FIGURE 37.
FIGURE 38.
FIGURE 39.
FIGURE 40.
FIGURE 41.
FIGURE 42.
FIGURE 43.
FIGURE 44.
FIGURE 45.
FIGURE 46.
FIGURE 47.
FIGURE 48.
FIGURE 49.
FIGURE 50.
FIGURE 51.
FIGURE 52.
FIGURE 53.
FIGURE 54.
FIGURE 55.
FIGURE 56.
FIGURE 57.
FIGURE 58.
FIGURE 59.
FIGURE 60.
FIGURE 61.
FIGURE 62.
FIGURE 63.
FIGURE 64.

FIGURE 65.

FIGURE 66
FIGURE 67
FIGURE 68

FIGURE 69.

FIGURE 70
FIGURE 71
FIGURE 72

The TXFULL counter 85

Level 2 PHY configurations 89

Mixed Level 1 and Level 2 PHY configuration 90

UTOPIA Port receivetiming - single PHY, 8-bit mode 94
UTOPIA Port transmit timing - single PHY, 8-bit mode 95
UTOPIA Port receive full timing - single PHY, 8-bit mode 95
UTOPIA Port transmit full timing - single PHY, 8-bit mode 95
DMA command queues for the MXT3010EP 100

Diagram of Portl DMA instruction bits 111

Portl DMA Read transfer with aWait state 119

Portl DMA Read transfer without a Wait state 122

Portl DMA Writetransfer with aWait state 127

Portl DMA Write transfer without a Wait state 130
Cut-and-Paste Version of Portl Read 131

Cut-and-Paste Version of Portl Write 132

COMMIN write followed by COMMOUT read 134

Diagram of Port2 burst DMA instruction bits 137

Diagram of Port2 non-burst DMA instruction bits 139

Port2 DMA burst-mode Read transfer with aWait state 144
Port2 DMA burst-mode Read transfer without a Wait state 145
Port2 DMA burst-mode write transfer with a Wait state 148
Port2 DMA burst-mode write transfer without a Wait state 149
Port2 DMA non-burst-mode Read transfer. 151

Port2 DMA non-burst-mode Write transfer. 155

System example for Portl bus. 156

DMA Read transfer with standard END_signal 161

DMA Read transfer with Early END 162

DMA Read transfer terminated by PIABORT_ 163

Most Significant Byte is the Lowest Address (“Big-endian”) 164
Least Significant Byte is the Lowest Address (“Little-endian”) 164

. Hardware Byte-swapping Circuit 165
. Word Access 166

. 16-bit xxx0 Access 167

16-bit xxx2 Access 167

. Byte Access 168

. The Portl MemMaker FPGA 171

. Data Path Connections - Shared Memory to PCI 172

MXT3010 Reference Manual

FIGURE 73.
FIGURE 74.
FIGURE 75.
FIGURE 76.
FIGURE 77.
FIGURE 78.
FIGURE 79.
FIGURE 80.
FIGURE 81.
FIGURE 82.
FIGURE 83.
FIGURE 84.
FIGURE 85.
FIGURE 86.
FIGURE 87.
FIGURE 88.
FIGURE 89.
FIGURE 90.
FIGURE 91.
FIGURE 92.
FIGURE 93.
FIGURE 94.
FIGURE 95.
FIGURE 96.
FIGURE 97.
FIGURE 98.
FIGURE 99.

Data Path Connections - Shared Memory to MXT3010 172
The Port2 MemMaker FPGA 174

Data Path Connections - Shared Memory to PCI 174
Data Path Connections - Shared Memory to MXT3010 175
Timing of CIN_BUSY and COUT_RDY 180
Triadic register operation 224

Triadic instruction format 224

Immediate 10-bit instruction format 225

Immediate 6-bit instruction format 225

Branch instruction format (simplified) 262

Target address format in Fast Memory 262

DMA instruction format (simplified) 284

Control field format) 287

Z-bit usage example 298

Simplified Channel Descriptors 300

Channel Descriptor for LMFM and UM example 302
XOR operation between IDX andrla 316

Gather method accesses 318

Switching level voltages 343

Input clock waveform (pin FN) 344

Timing for Fast Memory reads 347

Timing for Fast Memory writes 347

FN and half-speed RX_CLK/TX_CLK 348

FN and quarter-speed RX_CLK/TX_CLK 348
UTOPIA port receivetiming 350

UTOPIA port transmit timing 351

Portl read timing 354

FIGURE 100.Port1 writetiming 354

FIGURE 101.COMMIN register write, COMMOUT register read timing 355
FIGURE 102.Port2 read timing 358

FIGURE 103.Port2 writetiming 358

FIGURE 104.Timing of CIN_BUSY and COUT_RDY 359

FIGURE 105.MXT3010EP reset timing 361

FIGURE 106.Reset trailing edge timing 362

FIGURE 107.Reset timing circuit

363

FIGURE 108.M X T3010EP package/pin diagram 368
FIGURE 109.Generating aquiet VAA 392

MXT3010 Reference Manual

FIGURE 110.MXT3010EP decoupling capacitor location 393
FIGURE 111.MXT3010EP package/pin diagram - top view 396
FIGURE 112.MXT3010EP package/pin diagram - sideview 397

MXT3010 Reference Manual

Tablel

Table2

Table3

Table4

Table5

Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40

List of Tables

SWAN processor instruction classes 18

Methods of specifying the branch target field 21

Hardware registers requiring one instruction delay 23

Hardware registers requiring two instruction delays 24

Scoreboard sectioning control 29

Connection 1D table address bits 44

Scoreboard address bits 44

Comparison of Mode 0 and Mode 1 operation 53

UTOPIA Configuration control of the Cell Buffer RAM 60

Cell field functions 62

UTOPIA port data bus width selection 71

UTOPIA port Tx and Rx pin utilization in 16-bit mode 71

Cell length and HEC control 72

UTOPIA port clock selection 73

Bit assignments for multi-PHY operation 88

Receive Header Reduction control 91

Receive Header Reduction enable bit 92

UTOPIA configuration information 93

Characteristics of Portl and Port2 98

ESS Bits for DMA Controller status 102

Example of DMA Controller status hit utilization 102
Specification of the CRCX/CRCY instruction field option 103
Valid and invalid first, mid-cell, and last transfers. 108

Port 1 DMA instruction bit mapping 111

Signalsto control Portl transfers 112

State table for the Portl DMA burst read state machine 118

State table for the Portl DMA burst write state machine 126

State table for Portl communication 1/O state machine 133

Port2 burst DMA instruction bit mapping 137

Another view of Port2 burst DMA instruction bit mapping 138
Port2 non-burst DMA instruction bit mapping 139

Another view of Port2 non-burst DMA instruction bit mapping 140
Signalsto control Port2 transfers 141

State table for the Port2 DM A burst-mode read state machine 143
State table for the Port2 DMA burst write state machine 147

State table for the Port2 DMA non-burst-mode read state machine 150
State table for the Port2 DM A non-burst-mode write state machine 154
Comparison of Big-endian and Little-endian Read Operations 165
Accesses With Hardware and Software Swaps, 32-bit 166
Accesses With Hardware and Software Swaps, 32-bit and 16-bit 168

MXT3010 Reference Manual xvii

Table 41
Table 42
Table 43
Table44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Table51
Table 52

Table 53
Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60
Table 61
Table 62
Table 63
Table 64
Table 65
Table 66
Table 67
Table 68
Table 69
Table 70
Table 71
Table 72
Table 73
Table 74
Table 75
Table 76
Table 77
Table 78
Table 79
Table 80
Table 81
Table 82

Xviii

Accesses With Hardware and Software Swaps, 32-bit, 16-bit, and 8-bit 168
Definitions of CIN_BUSY and COUT_RDY 178

ICSl pins 180

ICSO pins 181

Hardware registers 184

Alphabetical list of instructions 186

Abbreviations used in SWAN instructions 188

Field abbreviations 190

Hardware registers 191

Signal utilization for 1-PHY and 2-PHY modes 220

Modulo arithmetic options 227

ALU Branch Conditions for al instructions except Compare and Min/Max in-
structions 230

ALU Branch Conditions for Compare and Min/Max instructions 230
Methods of specifying the Branch target field 263

External State Signals register (R42) bits 264

Use of the S-bit 264

Use of the Conditional and Nullify operators 266

Example - conditional branch, condition satisfied 266

Example - conditional branch, condition not met 267

Example - unconditional branch 267

Example - conditional operator, conditional branch, condition satisfied 267
Example - conditional operator, conditional branch, condition not satisfied 268
Example - Branch with link, and return 269

The CSO field 269

Op codes for DMA instructions 284

Use of Bit 26 285

Timing chart for accessing rla after aDMA 286

Use of the BC field 286

Use of the Control byte 288

Load Fast Memory instruction format 294

Store Fast Memory instruction format 294

Use of the rsaand rsb fields 296

Use of the Z-bit 296

Limits on #HW when linking to rd 300

Memory alignment requirements 304

Use of the adr field 306

Use of the reg field 307

Restrictions on access to rd registers after LMFM 309

Load internal RAM instruction format 314

Storeinternal RAM instruction format 314

Use of therlafield 315

Byte-swapping Load instructions 320

MXT3010 Reference Manual

Table 83
Table 84
Table 85
Table 86
Table 87
Table 88
Table 89
Table 90
Table91
Table 92
Table 93
Table 94
Table 95
Table 96
Table 97
Table 98
Table 99
Table 100
Table 101
Table 102
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
Table 110
Table 111
Table 112
Table 113
Table 114
Table 115
Table 116
Table 117
Table 118
Table 119
Table 120
Table 121
Table 122
Table 123
Table 124
Table 125

Byte-swapping Store instructions 320
Input clock timing parameters 344
Fast Memory timing for the Maker MXT3010EP 346
UTOPIA timing for Maker MXT3010EP 349
Delay of UTOPIA clocks relative to MXT3010EP internal clock (CLK) 350
Port1 timing table 353
Port2 timing table 357
Miscellaneous control signal timing 359
MXT3010EP reset timing 361
MXT3010EP RESET _timing parameters 362
MXT3010EP Port1 signal descriptions 370
MXT3010EP Port2 signal descriptions 371
UTOPIA port signal description 372
MXT3010EP Fast Memory controller signal description 373
MXT3010EP inter-chip and communication registers signal description 374
M X T3010EP miscellaneous clock, control, and test signal descriptions 375
Power and ground pin descriptions 376
MXT3010EP pin terminations 377
MXT3010EP pin listing 378
1/O pad types 381
Absolute maximum ratings (VSS = 0V) 384
Recommended operating conditions 384
DC Electrical characteristics 385
MXT3010EP package summary 397
Selecting boot mode with ISCO_A and ICSO_B 403
User code set’s four fields 404
Bootstrap starting addresses for Fast Memory mode 1 409
Hardware registers 412
MODx fields 413
abc fields 413
AE field 413
UM field 413
Shift amount chart for SFT, SFTLI, and SFTRI 414
Shift amount chart for SFTC and SFTCI 414
Shift amount chart for SFTA 415
Shift amount chart for SFTAI 415
The CSO field 416
The ESS field (condition codes) 416
The S-bit field 416
The C-bit field 416
Use of the I-bit 417
Use of the BC field 417
Use of the Control byte 417

MXT3010 Reference Manual Xix

Table 126 Instruction summary 418

XX MXT3010 Reference Manual

Preface

Maker Products

Integrated
Circuits

Software
Solutions

Maker Communications delivers awide range of ATM solutions
based on the M X T 3010 cell processing engine and the M XT 3020
circuit interface coprocessor. The MXT3010 is a high-perfor-
mance programmabl e cell processor engine specifically designed
tohandle ATM cell manipulation and transmission at dataratesup
t0 622 Mb/s. The MXT3020isan ATM circuit interface coproces-
sor for the MXT3010 cell processor. It provides flexible inter-
working between TimeDivision Multiplexed (TDM) linksand the
ATM network.

The MXT3010 and M XT3020 are complemented with a series of
software applications that provide standard cell processing func-
tionality. CellMaker®-155 and CellMaker®-622 execute on an
MXT3010 and provide ATM Adaptation Layer 5 (AAL5) Seg-
mentation and Reassembly (SAR) at data rates of 155 Mb/s and
622 Mb/s, respectively. AccessMaker™executes on an
MXT3010 with up to four attached M XT3020 coprocessors. It

MXT3010 Reference Manual \ersion 4.1 XXi

Development
Tools

xxii

provides cell processing functions for both packet and circuit
interworking to support multiple services concurrently includ-
ing AAL1, AALS5, IMA, and cell relay.

Maker Communications offersafull suite of development tools
for the MXT3010 Cell Processor including Verilog models of
the chips, the WASM assembler, CellMaker Simulator (CSIM),
and Graphical CellMaker Simulator (GCSIM). CSIM isa Ver-
ilog-based simulator that provides atightly controlled and fully
observable environment to execute and debug both processor
applications and external host programs before running them on
the target hardware. Maker aso provides two development
boards. CSIM is complemented with agraphical post processor,
GCSIM. TheM XT 3016 isa32-bit, PCI bus-based devel opment
board used to test 622Mb/s applications. The M XT3025 isa 32-
bit, PCI bus-based evaluation board used to test OC-3 ATM
(MXT3010) and T1 (MXT3020) applications.

Version 4.1 MXT3010 Reference Manual

Using this manual

Using this manual

This section provides information on the conventions used
within this manual.

Typographical This document uses the following typographical conventions
conventions when describing features of the hardware and software, user-
machine interactions, and variables.

Commands appear in mixed case, for example
Write_Channel_Map.

Instruction mnemonics appear in uppercase, for example the
SUBBI instruction.

User input appearsinbol d nonospace font.
System output and code examples appear in nonospace font.
Variables, such as user-definable names, appear initalics.

Instruction syntax ~ All the instructions use the following syntax:

MXT3010 Reference Manual

Required values appear between (parentheses).
Optional values appear between [square brackets].
Optional descriptions appear in lowercase.

Literal descriptions appear in UPPERCASE.
Numbers are denoted by pound signs, #.

A string of options from which you can only choose one appear
asfollows: [optionl | option2 | option3]

A string of options from which you can choose one or al the
options appear as follows: [optionl] [option2] [option3]

Bits which should be written as zeroes and ignored on reads
appear as Reserved

Version 4.1 xxiii

Terminology Common acronyms and abbreviations are defined in “Acro-
nyms” on page 399 and not in the text. In addition, this manual
uses the following term as defined:

Packets refer to Local Area Network (LAN) information and
frames refer to circuit information.

Contacting Maker Support Services

Maker Communications, Inc. has the following forums for com-
municating ideas, questions, and reporting problems:

» Sales and customer support 508-628-0622

* Product support support@maker.com
» Product inquires info@maker.com

» Facsimile 508-628-0256

* Web www.maker.com

xxiv Version 4.1 MXT3010 Reference Manual

Changes Installed in This Veersion of the Manual

Changes Installed in This Version of the Manual

Change Bars Ch

ange bars are provided to indicate revisions made since the

previous publication of the manual.

Changes 1

MXT3010 Reference Manual

Additional text has been added to “Register access rules” on
page 22, and to the paragraph before that, concerning the
use of LD and LDD between accesses to rla registers. Cross
references to this warning have been added to “Avoiding
stale rla values” on page 315, to “LD Load Register” on
page 321, to “LDD Load Double Register” on page 322, and
to all hardware register descriptions in CHAPTER 9 "Regis-
ters" on page 189.

Figure 95, “FN and half-speed RX_CLK/TX_CLK,” on
page 348 and Figure 96, “FN and quarter-speed RX_CLK/
TX_CLK,” on page 348 have been added to show the rela-
tionship of UTOPIA clocks to FN.

Figure 22, “Receive cell organization: 52-byte and 56-byte
cells,” on page 63 has been modified to correctly identify
User Header bytes 2 and 3 in the 56-byte cell format.

The description of “LIMD Load Immediate” on page 243
has been corrected to indicate that the immediate is loaded
into registerd, not registersa.

Table 47, “Abbreviations used in SWAN instructions,” on
page 188 has been modified to generalize the definition of
usi.

The caption of Figure 89 on page 316 has been corrected to
indicate that it applies to XOR rather than OR.

A typographic error (“3020” vs “3010") in the description of
out-of-bag floor life in “MXT3010EP mechanical/thermal
information” on page 396 has been corrected.

The note that explains the enabling/disabling of “R54-R55
Programmable Interval Timer registers” on page 211 has
been changed.

Version 4.1 XXV

XxXvi

Version 4.1

MXT3010 Reference Manual

Sctionl Subsystens

This section is composed of eight chapters. It provides an over-
view of the MXT3010 ATM cdll processing engine and its major
functional subsystems.

MXT3010 Reference Manual Version 4.1 1

Version 4.1 MXT3010 Reference Manual

cuarter1 INtroduction

The MXT3010 is Maker Communication’s innovative, program-
mable ATM cell processing engine. The MXT3010 is built around
Maker Communication’s SWAN processor and specifically
designed for use in high-speed ATM cell-processing applications.
The MXT3010 delivers throughput at hard-wired speeds while
maintaining all of the benefits of programmable approaches.

MXT3010 Reference Manual Version 4.1 3

Introduction

MXT3010 features

MXT3010-based systems areinsul ated against changesin ATM
standards because firmware modifications can accommodate
these changes. The MXT3010 can:

Scale across both performance and application ranges.
Run at speeds ranging from 1.5 Mb/s up to 622 Mb/s.

Handle the ATM Forum'’s Traffic Management 4.0 Avail-
able Bit Rate (ABR) service specification.

Operate as a self-contained device managing concurrent
Constant Bit Rate (CBR), Variable Bit Rate (VBR), and
ABR connections, which frees host processing resources
for other tasks.

Support rate-based and Quantum Flow Control-based ABR
services with algorithmic implementation of traffic shap-

ing.

Perform in ATM layer processing applications.

The MXT3010 has a high speed glueless interface to Fast Mem-
ory (SRAM) for storage of instructions and control structures,
two high-performance data interfaces, and a UTOPIA Level 2
compliant interface.

The MXT3010 device, packaged in a 240-pin plastic quad flat
package, is available in three speed grades, 100 MHz, 80 MHz
and 66 MHz. Full electrical and mechanical details are provided
in Section 3 of this manual.

Figure 1 shows the MXT3010’s internal subsystems and their
relationship to devices found in a typical ATM application.

Version 4.1 MXT3010 Reference Manual

MXT3010 subsystems

FIGURE 1.MXT 3010 and surrounding system devices

116-bit 32-bit

Application | « bus) bus -
specific MU""PUVPOSj Main Memory
devices : DMA (Port2 High
 — () Cell Buffer| 9 Message
u / RAM Performance
PHY or utoriA | DMA (Port1) buffers & other
switch fabric Port information
‘ Instruction Cache
! ¥ Fast Memory
Fast Memor
™ Controller Y 4P |nsiructions &
P Host | Nter-chipl | P SWAN data structures
rocessor i i rocessor
Signaling Cell Scheduling|
MXT3010 System I

MXT3010 subsystems

While the SWAN processor isthe heart of the MXT3010, the
device aso uses a series of subsystems or hardware agents cre-
ated to handle ATM-specific tasks. Not only do these sub-
systems off-load many time-critical functions from the SWAN
processor, but they also operate simultaneously with the SWAN
processor and with each other, achieving a high degree of paral-
lelism. The subsystems include:

» The Cell Scheduling System (CSS), a hardware-based traf-
fic-shaping subsystem that allows concurrent shaping of
dissimilar traffic types.

» The Fast Memory port that provides low latency access to
external Channel Descriptors, program code, traffic shap-
ing memory, and the look up tables used for Available Cell
Rate calculations.

* The Cell Buffer RAM that buffers cells in both the transmit
and receive directions.

MXT3010 Reference Manual Version 4.1 5

Introduction

How the
subsystems work
together

» The UTOPIA port that provides connection to an ATM net-
work via a UTOPIA Level 2 Multi-PHY interface.

e The Portl and Port2 interfaces: Portl is a high performance
32-bit DMA host system interface and Port2 is a general
purpose 16-bit DMA interface.

The Cell Scheduling System, the Fast Memory port, the Cell
Buffer RAM, and the port interfaces utilize “dispatched”
instructions that operate outside of the CPU such that the SWAN
processor does not stall while the instruction is being executed.
Not only do dispatched instructions not interfere with the
SWAN, but those associated with different subsystems do not
interfere with each other, thus permitting simultaneous opera-
tion of several dispatched instructions within independent sub-
systems.

Although the Cell Scheduling System relies on the SWAN pro-
cessor for direction on required traffic patterns, the CSS man-
ages the traffic-shaping functions of the ATM task. This CSS
function provides all of the benefits of algorithmic traffic shap-
ing without decreasing overall performance.

What information is in this manual

This reference manual includes three sections: “Subsystems”,
“Register and Instruction Reference,” and “Signal Descriptions
and Electrical Characteristics.” Also included are Appendix A
“Acronyms,” Appendix B “Device Initialization,” and Appen-
dix C “Quick Reference.”

Version 4.1 MXT3010 Reference Manual

What information isin this manual

The “Subsystems” section includes information on:

The SWAN processor

The Cell Scheduling System
The Fast Memory port

The Cell Buffer RAM

The UTOPIA port

The Portl and Port2 interfaces

Interchip communications

The “Register and Instruction Reference” section describes the
software and hardware registers within the SWAN processor,
and includes bit assignments and functions for all of the hard-
ware registers. The “Register and Instruction Reference” section
also describes instructions in functional groups and provides an
alphabetical list of instructions within each group.

The “Signal Descriptions and Electrical Characteristics” section
includes information on:

MXT3010 Reference Manual

Timing information

Pin out and pin listing
Signal descriptions
Electrical parameters
PLL details

Thermal characteristics

Mechanical information

Version 4.1 7

Introduction

8 Version 4.1 MXT3010 Reference Manual

charter2 1he SIWAN Processor

ISata Multi-purpose I
Stream | pMA (Port2) High Data
Cell Buffer RAM Performance Stream
Cell UTOPIA | DMA (Port1)
Stream Port
Instruction Cache I
Control
Fast Memor
) “» Controllery I hg;rr;(')\/rly
_p| Inter-chip SWAN™ Processor
4— . . i
Signalling Cell Scheduli
. ell Scheduling
System

The SWAN processor is used in network protocol processing
applications. This chapter describes how the SWAN processor
functions and provides functional descriptions of Arithmetic
Logic Unit (ALU) and Branch instructions of the SWAN proces-
Sor.

MXT3010 Reference Manual Version 4.1 9

The SWAN Processor

The SWAN advantage

10

The SWAN processor was designed using Reduced Instruction
Set Computer (RISC) and Complex Instruction Set Computer
(CISC) design techniques. By combining the high pipeline
speeds of a RISC processor with the instruction set power of a
CISC processor, the SWAN processor attainsthe level of perfor-
mance required to process a 622 Mb/s ATM cell stream.

SWAN’s instructions and address spaces

In addition to utilizing an advanced RISC/CISC design, the
SWAN processor employs highly efficient instructions and
address spaces optimized for ATM applications.

Instruction features

e The ALU instructions include a memory update feature that
can write the results of an ALU operation back into a mem-
ory location linked to the destination register.

e The ALU instructions include an integral branching capa-
bility that can perform a branch within the ALU instruction
cycle if the results of the ALU operation meet selected cri-
teria.

« The ALU instructions can perform modulo arithmetic oper-
ations, selectable from 1 bit to 16 bits (full ALU width).

< The Branch instructions can test the status of more than a
dozen internal hardware points and two external pins.

e Branch instructions and ALU branching facilities can be
programmed to eliminate the performance penalties nor-
mally exacted by branch failures in pipeline architectures.

« The Cell Scheduling System provides a powerful set of cell
scheduling instructions.

Version 4.1 MXT3010 Reference Manual

The SWAN advantage

» DMA operations are dispatched with a single instruction,
and those for Portl include flexible CRC capabilities.

» Load and Store instructions include indexing and byte-
swapping capability.

Address spaces

The architecture of the SWAN processor, a big-endian design,
provides several independent address spaces. The processor
accesses each space with instructions specifically designed for
optimal performance. Figure 2 shows these address spaces and
the instructions which access them. The circled numbers in the
figure correspond to the explanatory paragraphs which follow.

FIGURE 2. SWAN processor address spaces and accessinstructions

Application —QMAZMH -
specific |l Por2 ® DMA1W Main Memory
devices
DMA2R Cell Bulffer Portl Ll Message
RAM | - buffers & other
PHY or UTOPIA DMALR inf i
switch fabric Port information
LD
\—f Instruction Cache ‘
ST Y ! Instruction Fetches| Fast Memory
LMFEM Fast Mem Cntl
- swan™ | Instructions &
Host Inter-chip Processor [pusn T > data structures
Processor Signalling [Regiter ie] - Cell Scheduling >)
Register file
<~ System |@—
‘—PC& @Scoreboard
LD/ST

1. Instruction Space - 128K Words

The SWAN processor executes instructions stored in Fast
Memory. Fast Memory instructions are prefetched and
optionally cached in a direct mapped on-chip cache to
accelerate execution. A 17-bit Program Counter (allowing
up to 128K instructions) identifies the current instruction.

MXT3010 Reference Manual Version 4.1 1

The SWAN Processor

12

The processor executes instructionsin afour stage instruc-
tion pipeline. The four stages -- Fetch, Decode, Execute
and Store -- utilize scoreboarding and feedback to ensure
proper operation, minimize stalls, and safeguard against
illegal instruction sequences. The Decode stage of the pipe-
line is the current Program Counter value.

. Control Memory Space - 1IMByte (includes instruction

space)

Fast Memory also provides alow latency store for control
structures such as descriptors for the applications objects

(VC descriptors, packet descriptors). The SWAN register

set istightly coupled to this control memory space through
special purpose instructions -- Load Multiple from Fast
Memory (LMFM) and Store Halfword to Fast Memory
(SHFM). See “Load and Store Fast Memory Instructions”
on page 293.

A powerful extension to ALU operations, linking, dynami-
cally associates Fast Memory with the register set. These
instructions virtually eliminate the context switching over-
head that limits the performance of off-the-shelf processors
in ATM systems. See “Automatic memory updates” on
page 228.

. On-Chip Cell Buffer RAM - 1Kbytes

The Cell Buffer RAM on the MXT3010 provides the
SWAN processor with low latency access to cells in the
ATM data flow and to control information from the host. A
flexible Load/Store instruction paradigm provides an effi-
cient memory-register manipulation mechanism. In addi-
tion to byte swapping, the extended load/store operations
include an indexing method to facilitate control structure
parsing. See “Load and Store Internal RAM Instructions”
on page 313. This multi-port RAM is accessible to the
UTOPIA, Portl and Port2 DMA engine as well as the

Version 4.1 MXT3010 Reference Manual

The SWAN advantage

SWAN. Sinceit istruly multi-ported, it provides very low
latency accessto all arbiters. See “Direct Memory Access
Instructions” on page 283.

4. On-Chip Cell Scheduling System Scoreboard RAM -
2Kbytes

The Cell Scheduling System uses an on-chip RAM to
accelerate cell scheduling operations. When not used by the
CSS, this RAM is accessible to the SWAN processor
through the Load/Store instructions and may be used as
general purpose memory. See “The Cell Scheduling Sys-
tem” on page 27.

Instruction execution

All SWAN instructions, excemispatched instructions, execute

in a single clock cycle. Dispatched instructions include Load
Multiple Fast Memory (LMFM), the cell scheduling instruc-
tions (PUSHC, POPC), the DMA instructions (DMA1, DMA2),
and the load and store double instructions (LDD, STD). Dis-
patched instructions require more than one cycle to complete,
but their execution occurs outside of the CPU such that the pro-
cessor can accomplish other tasks while dispatched instructions
execute.

Since the input clock is doubled in frequency by an on-chip

PLL, the SWAN processor executes instructions at twice the fre-
guency of the input clock. Like other high performance RISC
processors, the SWAN utilizes a multi-stage pipeline. Delayed
branching techniques ensure that Branch instructions also oper-
ate at an effective rate of one instruction per cycle by preventing
pipeline delays.

MXT3010 Reference Manual Version 4.1 13

The SWAN Processor

14

Instruction space organization

The SWAN supports an instruction space of 128K 32-bit

instructions, which must be 4-byte aligned. The instruction
space spans 32 Segments of 4K instructions each. Figure 3
shows the SWAN instruction space.

FIGURE 3.SWAN instruction space

Segment O

Page 0, Tag=0

Page 1, Tag=1

Segment 1

Page 2, Tag = 2

Page 3, Tag =3

Segment 7

Page 14, Tag = 14

Page 15, Tag = 15

Segment 8

Page 16, Tag=0

Page 17, Tag = 1

Segment 30

Page 60, Tag = 12

Page 61, Tag = 13

Segment 31

Page 62, Tag = 14

Page 63, Tag = 15

Notes: 1.

2K
4K

8K

28K

32K

36K

120K

124K

128K

The tag numbers wrap every 32K instructions

2. Pagesizeisdefined by the instruction cache size. Therefore,
the MXT3010 EP has sixty-four 2K pages.

Segments are defined by the branching range of the instruction
set. Since the Branch instruction hasa 12 bit instruction address
range, it may jump anywhere within a4K segment. See “Target

field” on page 20.

Version 4.1

MXT3010 Reference Manual

The SWAN advantage

Instruction cache

Theinternal Instruction Cacheis 2048 instructions. Thecacheis
adirect-mapped cache, with each 32-bit entry having an inde-
pendent 4-bit tag. There are no separate valid bits for the cache
entries. At device initiaization time, all of the cache tags are

written to OxF. After the micro-boot routine downloadsthe firm-
ware, the SWAN processor jumps to the specified starting

address. The address must not map onto a cache tag of OxF, as

these fetches would cause incorrect cache hits. For simplicity’s
sake, consider the code space of 32K instructions as an execut-
able space of 30K instructions and with a top 2K of instructions
inaccessible for execution.

Cache organization and mapping

The line size of the MXT3010 cache (i.e. the amount of cache
replaced on a cache miss) is 1 instruction. Each entry in the
cache is therefore a single instruction. Each entry or instruction
in the cache is 'tagged' with a 4 bit value that represents the
cache page. As shown in Figure 3 on page 14, each 4K instruc-
tion segment contains two 2K cache pages.

The NC (No-Cache) bit in the Instruction Base Address register
(R53) disables the cache. If this bit is set (one), the SWAN
fetches all instructions from Fast Memory, and these instruc-
tions are not stored in the on-chip cache. Since the Fast Memory
interface runs at 1/2 of the processor speed, it delivers an
instruction every other cycle. Therefore, while running out of
Fast Memory, the SWAN will stall, at a minimum, every other
cycle.

While NC is clear (zero), the cache is enabled. When the SWAN
fetches an instruction, the tag of the cache entry at the page off-
set of the instruction is compared with the tag of the instruction
address. Figure 4 details the formation of the page offset and the
instruction tag.

MXT3010 Reference Manual Version 4.1 15

The SWAN Processor

FIGURE 4.Formation of the page offset and theinstruction tag

Tag (4 bits) Instruction (32 bits)
0
Cache
2047
4-bit tag Page offset
Program
counter

la|3|2|1|of11|w0]9]8]7]6]5]4]3]2]1]0]

(17-bits)

Segment ID Instruction offset

Note: The Instruction Offset is aword offset, as opposed to a byte offset.
The byte instruction addressin Fast Memory will be ((Segment_ID
<< 14)+ (Instruction Offset << 2))

If the instruction tag matches the corresponding cache tag, a
cache hit has been achieved and the cache returnstheinstruction
within asingle cycle. The processor continues execution with-
out stalling. However, if thetag does not match, acache misshas
occurred and theinstruction must befetched from Fast Memory.
Thiswill causeaprocessor stal asit awaitstheinstruction. Once
Fast Memory returnstheinstruction, it isstored in the cache and
thetag isupdated. Because the cachelinesizeisasingleinstruc-
tion, only asingleinstruction isreplaced in the cache on acache
miss. Subsegquent cache misses may replace other instructionsin
the cache. With an empty cache, such as when exiting the boot-
strap, every instruction must be fetched from Fast Memory.
Therefore, every other cycle will be astall as the cacheis cold
filled.

The firmware designer controls which segments are cacheable.
The NC hit in the Instruction Base Address register (R53) con-
trols the cache and is typically modified by firmware when a
code path jumps off the current segment. The firmware must
ensure that for each cache tag value (0x0-0OxE), only asingle

16 Version 4.1 MXT3010 Reference Manual

The SWAN advantage

cache page is made cacheable. Otherwise, stale cache entries
prevent proper operation. The SWAN's bootstrap program pre-
loads atag of OxF into all cache entries at initiaization. It isrec-
ommended that no cacheable code be placed at alocation with a
tag of OxF.

Using the Cache

Codethat isalwaysexecuted, referred to asthe 'fast path’, should
be placed in cacheable space, preferably within a single cache
page. Infrequently executed code (slow path) and performance
insensitive code (for example, initialization code) should be
located in non-cacheabl e segments. Maker’s development tools
provide code |ocation features.

Many applications do not require more than 2K instructions. In
this case, the application may belocated on asingle cache page.
The entire page will be mapped into cache. Obvioudly, thiswill
provide an optimal level of performance. However, it isnot a
requirement, as a program can easily jump to a new segment
using the following instruction sequence:

LI MD R53 new- segnent
Bl offset_in_new segnent n

Instruction prefetch

The SWAN architecture is highly pipelined. The hardware may
prefetch instructions from Fast Memory in anticipation of exe-
cution. These prefetches may be cached. However, changesin
program flow (branches) may prevent the instructions from
being executed. This behavior is expected and does not cause
improper operation. Prefetches are mentioned here to alert the
user that fetches from Fast Memory do not correlate exactly to
the sequence of the Program Counter.

MXT3010 Reference Manual Version 4.1 17

The SWAN Processor

Observing cached program flow

When the processor is executing out of cache, it does not need
to access Fast Memory. However, if Fast Memory is not being
used, the M XT3010 presentsthe program counter addresson the
Fast Memory address lines. This helps to monitor code execu-
tion from cache.

SWAN processor instruction classes

18

The SWAN processor includes powerful 32-bit instructionsin

six functional areas or classes. Descriptions of each class of
instruction are divided into two sections — one which describes
the subsystem that uses that instruction and one which describes
the bit utilization and format for each instruction. These descrip-
tions appear in the chapters listed in Table 1.

TABLE 1. SWAN processor instruction classes

Functional Area Subsystem Description Instruction Description

Arithmetic Logic “The SWAN Proces- “Arithmetic Logic Unit
Unit Instructions sor” (this chapter) Instructions” on page 223

Branch Instructions “The SWAN Proces- “Branch Instructions” on
sor” (this chapter) page 261

Cell Scheduling “The Cell Scheduling “Cell Scheduling Instruc-
Instructions System” on page 27 tions” on page 277
Direct Memory “The Portl and Port2 “Direct Memory Access
Access Instructions Interfaces” on page 97 Instructions” on page 283
Load and Store Inter-“The Cell Buffer “Load and Store Internal
nal RAM Instruc- RAM” on page 59 RAM Instructions” on
tions page 313
Load and Store Fast “The Fast Memory “Load and Store Fast
Memory Instructions Interface” on page 47 Memory Instructions” on
page 293
Version 4.1 MXT3010 Reference Manual

SWAN processor instruction classes

Basic ALU
instructions

Basic Branch
instructions

Arithmetic Logic Unit (ALU) instructions

The SWAN processor instruction set includes a complete suite
of arithmetic, logical, and shifting instructionsimplemented ina
high performance ALU. Theformat of atypical ALU instruction
is shown below:

ADD (rsa, rsb) rd [MODXx][abc][AE][UM]

In the example shown, input datais stored in rsaand rsh, while
the result is delivered to register rd. The notations shown in
square brackets represent the special features that optimize the
SWAN ALU for ATM cell processing. These features, referred
to asinstruction field options (IFOs), include the modulo field
(MODx), the ALU branch condition field (abc), the always exe-
cute bit (AE), and the update memory feature (UM). For more
information see “Arithmetic Logic Unit Instructions” on
page 223.

Branch instructions

The SWAN processor includes two basic branch control mecha-
nisms:

» A suite of ALU instructions that includes conditional
branching capabilities. See “Arithmetic Logic Unit Instruc-
tions” on page 223.

» A suite of three basic branch instructions, each of which is
available with a return address linking version.

The format of a typical Branch instruction (Branch Fast Mem-
ory) is shown below:

BF [ESS#/(0|1)[/C]][cs0]N]

MXT3010 Reference Manual Version 4.1 19

The SWAN Processor

Target address

Target field

20

Branch instructions allow the programmer to specify condi-

tional branching decisions which will alter the instruction exe-
cution sequence. The branching decisions are based on the state

of the MXT3010 subsystems, asindicated in the External State
Signals (ESS) register. The point to be tested is specified by the
ESSfield (ESS#). If the branch isto be taken when the point
testedisal, the ESS# isfollowed by a/1. If the branchisto be
taken when the point tested isa0, the ESS# is followed by a/0.
Branch instructions can a so be used to manipulate the UTOPIA
port’s control counters via the counter system operation (cso)
field. The C and N options optimize the performance of Branch
instructions in special circumstances. Descriptions of these
options appear in “The Conditional operator (C-bit)” on

page 265. Complete information on Branch instructions appears
in “Branch Instructions” on page 261.

The brancharget addressis the address at which execution con-
tinues if the specified branch condition is satisfied. The full
branch target address within Fast Memory is formed from the
Segment ID in the Instruction Base Address register (R53) and
the branch target field. Figure 5 shows the format of the target
address.

FIGURE 5.Target addressformat in Fast Memory

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Segment 1D Branch Target Field ‘ 0 ‘ O‘

The brancharget fieldis a 12-bit field that specifies the absolute
word address within the current code segment (4096 words) at
which execution is to continue. The three basic branch instruc-
tions differ only in their method of specifying the branch target
address field. Table 2 summarizes the methods used.

Version 4.1 MXT3010 Reference Manual

Registers

TABLE 2. Methods of specifying the branch target field

Instruction Method of specifying the branch target field
Branch Immediate (BI) As bits[11:0] of the instruction

Branch Fast Memory As bits[11:0] of the Fast Memory Shadow
Shadow Register (BF) register (R58). (Note 1)

Branch Register (BR) As bits[11:0] of the Branch register (R59)

Note 1:The Fast Memory shadow register isloaded with the first halfword
returned from memory during a Fast Memory read operation that
specifies the LNK Instruction Field Option.

For acompl ete description of the three basic branch instructions
and the versions which include return address linking, see
“Branch Instructions” on page 261.

Registers

Register types

Pipeline feedback

The SWAN processor contains 64 software-visible registers of
two types, general-purpose and control/status. The general-pur-
pose registers are classifiedsafiware registers because their
usage and content is firmware dependent. The registers that con-
trol functions and provide status information are classified as
hardware registers.

The SWAN processor has 32 general-purpose software registers,
R0-R31, each 16-bits wide. The SWAN also has 32 control and
status hardware registers, R32-R63.

The SWAN processor includes two pipeline feedback features.
One of the feedback paths takes results from the execution stage
of the instruction pipeline and delivers those results to the
decode stage. A second feedback path takes results from the
storage stage of the pipeline and also delivers those results to the
decode stage. Figure 6 shows the general concept:

MXT3010 Reference Manual Version 4.1 21

The SWAN Processor

FIGURE 6.Pipdine feedback

Fetch Stage y Decode Stage " Storage

" " Stage
Cache :' Register |log— 0
. File "

a:‘

Storage Stage Feedback

ion Stage Feedb:

Other Logic ALU

. Execution Stage

Using the execution stage feedback facility, an ALU instruction
that modifiesaregister can be followed immediately by another
ALU instruction that accesses that same register. Using the stor-
age stage feedback facility, other instructions that modify areg-
ister can be followed, after an intervening instruction, by an
instruction that accesses the same register. Thisintervening
instruction must not be an LD or LDD to a hardware register.

Register access Do not perform aload (LD, LDD) to a hardware register imme-
rules diately between an instruction that accesses an rlaregister (R48-
R51, GA-GD) and an instruction that stores to that rla register.

The number of processor cycles which must intervene between
aninstruction that alters aregister and an instruction which uses
the data in the altered register depends upon two factors:

¢ The instruction used

When a POPC is issued, the destination register, rd, does not
contain the requested data until eight cycles after the POPC
instruction is decoded.

22 Version 4.1 MXT3010 Reference Manual

Registers

When aLoad (LD) instruction isissued, the destination reg-
ister, rd, does not contain the requested data until one cycle
after the LD instruction is decoded.

When a Load Double (LDD) instruction is issued, the sec-
ond destination register, rd + 1, does not contain the
requested data until two cycles after the LDD instruction is
decoded.

When aLoad Multiple Fast Memory (LMFM) instruction is
issued, the destination registers are updated after delays
described in “LMFM Load Multiple from Fast Memory” on
page 308.

» The register accessed

A write to a software register, RO-R31, can be immediately
followed by an instruction that uses the data in that register.

Writes to the following hardware registers should be fol-
lowed by at least one other instruction before the new infor-

mation in the register is used for load, store, or branch
instructions. This restriction does not apply to their use in
ALU or DMA instructions.:

TABLE 3. Hardwareregistersrequiring oneinstruction delay
Location Name Read/Write
R44-R47 CRCX/CRCY R/W

(when used a general purpose registers)
R48 rla Address register R/W
R49 rla Address register R/W
R50 rla Address register R/W
R51 rla Address register R/W
R57-write Sparse Event/ICS register Set/Clear
R58 Fast Memory Shadow register R/W
R59 Branch register R/W
MXT3010 Reference Manual Verson4.1 23

The SWAN Processor

Assigned Cellflag
register

Overflow flag
register

For more
information

24

Writes to the following hardware registers should be followed
by at least two other instructions before the new information in
the register is used:

TABLE 4. Hardwareregistersrequiring two instruction delays

Location Name Read/Write
R42-write Mode Configuration register Set/Clear
R43-read Fast Memory Bit Swap register R

R60 CSS Configuration register R/W

R62 UTOPIA Configuration register R/W

R63 System register R/W

Flag registers

Flag registersinclude the Assigned Cell Flag register and the
Overflow Flag register. These registers are interna state bits;
programs do nhot manipulate them directly, but can use the status
of the flags to modify program flow.

The Cdll Scheduling System mani pulatesthisregister at the con-
clusion of a POPC operation. The state of the Scoreboard bit tar-
geted by the POPC operation is copied into this register, which
is connected to ESS4 and can be tested by ALU Conditional
Branch instructions.

Add and Subtract instructions that cause arithmetic overflow set
thisregister. ALU Conditional Branch instructions test this reg-

Ister.

For a complete description of the registers within the SWAN
processor, please see “Registers” on page 189.

Version 4.1 MXT3010 Reference Manual

HEC generation and check circuit

HEC generation and check circuit

SWAN HEC
operation

The MXT3010 provides two HEC generation and checking
methods:

1. HEC generation and checking is provided in the UTOPIA
port. See “Receive cell flow” on page 77.

2. For applications which do not use the UTOPIA port, HEC
generation and checking is provided in the SWAN proces-
sor.

Bit 9 of the Mode Configuration Register (R42) enables HEC
generation mode in the SWAN processor and changes the defi-
nition of General Purpose register R33. In normal operation,
R33 is a read/write register and is initialized to OXFFFF. In HEC-
enabled mode, R33 is redefined to include the output from the
HEC generation circuitry and is therefore no longer available as
a simple read/write register or as a constant value.

Additionally, the HEC circuitry uses R32 as a source of data for
HEC generation. This register is read/write and is initialized to
0x0000. When not used for HEC purposes, R32 can continue to
function as a 16-bit read/write register.

The HEC generation logic takes in two 16-bit data values and
produces an 8-bit result. In normal ATM cell processing, the first
data value would be the first two bytes of the ATM cell header.
The second data value would be the second two bytes of the
ATM cell header, and the 8-bit result of that second operation
would be the HEC inserted (or checked) for the current cell.

The HEC circuitry initializes its 8-bit seed value when new data
is written to R32. A subsequent write to R33 completes the input
of data to the HEC circuit. After appropriate pipeline delays, the
resultant HEC is available right justified in R33. The following
code segment illustrates this.

MXT3010 Reference Manual Version 4.1 25

The SWAN Processor

26

LI MD r32 #first_two_bytes

LI MD r 33 #second_t wo_bytes

NOP
NOP
NOP
CWP r33, X

;load first half of cell
header

;this also resets the
SEED val ue

;1 oad second hal f of
cel |l header

; execut e stage
;store stage
; HEC processing

iHEC is returned in | ow
byte R33

The HEC result can be used directly in atransmitted cell, or

compared to the fifth byte in areceived cell. The NOP instruc-
tions can be replaced with useful operations, but the HEC result
in R33isnot valid until the fourth instruction after datais writ-

ten to R33.

Version 4.1

MXT3010 Reference Manual

cuarters 1he Cdl Schedullng System

data Multi-purpose l
Stream .
DMA (Port2) High Data
Cell Buffer RAM Performance Stream
Cell utopia | DMA (Portl)
Stream Port
Instruction Cache I
1 H
Control
< Conroler [Memoy
Inter-chip SWAN™ Processor SRAM
Bl Signalling ™ Cell Scheduli
- ell Scheduling
System
The Cell Scheduling System (CSS) is a traffic-shaping system
that operates as a combination of algorithmic- and hardware-
assisted functions. The SWAN processor implementsthe algorith-
mic-assisted portion of the scheduling function, and the cell
scheduler performs the hardware-assisted portion. By implement-
MXT3010 Reference Manual Version 4.1

27

The Cell Scheduling System

ing traffic shaping as a combination of algorithmic- and hard-
ware-assisted functions, the programmer has complete control
over the traffic-shaping algorithms used.
This chapter includes the following information:

» How the Cell Scheduling System works

« Data transmission - servicing and scheduling

» Pacing the transmission rate of cells

* Programming the Cell Scheduling System

How the Cell Scheduling System works

The Cell Scheduling System works by dividing the ATM cell
payload capacity of the transmission link into periodic contain-
ers of cells. The boundary of the periodic containers relative to
the transmission convergence framing structure is arbitrary. To
schedule cell usage within the containers, the MXT3010 creates
a Scoreboard (schedule) on-chip and a Connection ID table in
Fast Memory. The Scoreboard can contain up to eight sections,
each of which represents an independent periodic container for
a separate physical link or priority level. Each location within a
periodic container corresponds to a single bit in the Scoreboard
section and a single entry in the corresponding Connection ID
table. Bits [13:12] of the Cell Scheduling System (CSS) Config-
uration register (R60) control the number of sections in the
Scoreboard.

28 Version 4.1 MXT3010 Reference Manual

How the Cell Scheduling System works

TABLE 5. Scoreboard sectioning control
Bits Name Description

1312 Sz Scoreboard Section Size
00 = 2,048 bitg/entries per section; up to 8 sections
01 = 4,096 bitg/entries per section; up to 4 sections
10 = 8,192 hits/entries per section; up to 2 sections
11 = 16,384 hits/entries per section; 1 section

To clarify the discussion which follows, it will be assumed that
the Scoreboard contains only a single section of 16,384 bits/
entries.

The Scoreboard and Connection ID table are maintained by the
SWAN processor working with a specialized control circuit
referred to asthe cell scheduler. The cell scheduler modifiesthe
Scoreboard and Connection 1D table in response to servicing
and cell scheduling requests issued by the SWAN processor.

Successive bits in the Scoreboard and locations in the Connec-
tion 1D table represent successive cell time slots on atransmis-
sionlink. If thetransmission link isnot fully loaded with traffic,
only some of the entriesin the table have avirtual circuit (VC)
assigned to them, asindicated by a bit set to one in the Score-
board. Others are labeled Available, asindicated by a Score-
board bit that is zero. Figure 7 shows an exampl e of Connection
ID table entries.

MXT3010 Reference Manual Version 4.1 29

The Cell Scheduling System

30

FIGURE 7.Connection ID entries

Connection ID 145

Available

AdA

Connection ID 47

[1]o[1]

Scoreboard

7// Note

The MXT3010 accommodates Scoreboards of
Connection ID Table 2,048 through 16,384 bits and Connection ID
tables of 2,048 through 16,384 16-bit halfwords.

During the cell-scheduling process, status bitsin the Scoreboard
table summarize the assigned or available status of each Con-
nection |D table entry. Since a bit in the Scoreboard represents
the status of a 16-bit entry in the Connection 1D table, the Score-
board is only 1/16th the size of the Connection ID table. This
compaction of table status accelerates the cell scheduler task of
searching for available time slots. The searching task is further
accelerated by a proprietary algorithm that guarantees to iden-
tify an available cdl-time slot from anywhere within the Score-
board and write the Connection ID into that slot within 121
processor cycles. High-speed searching is especially important
for high-speed ATM links and/or those links that carry alarge
number of V Cs, aslarger Connection ID tables are used in such
systems.

1. Under ideal conditions (Fast Memory write pipe empty), this number
could be aslow as 10, but it is highly likely that a write pipe entry will
need to be displaced, raising the number to 12.

Version 4.1 MXT3010 Reference Manual

Data transmission - servicing and scheduling

Data transmission - servicing and scheduling

The data transmission process consists of two major steps:

1. Servicing the Connection ID table to find entries represent-
ing assigned time slots that are scheduled for transmission
on an established virtual circuit.

2. Scheduling time slots for existing virtual circuits or estab-
lishing new V Cs by placing entries into Connection 1D
table locations that ensure the proper service quality for
that VC.

Servicing

The SWAN processor services the Connection ID table and
Scoreboard linearly and servicesthe V Csthat have reserved the
various locations. The SWAN processor determines which VC
reserved atime slot by examining the corresponding Connection
ID table entry. The SWAN processor reads the Connection ID
table entry by executing the POPC instruction. When POPC
executes, the cell scheduler returnsthe addressed Connection |ID
table entry, copiesthe value of the Scoreboard bit corresponding
to the entry into the Assigned Cell flag bit of the External State
Signalsregister (R42, bit 4), and clears the Scoreboard bit.

The processor maintains a pointer into the Connection 1D table
that representsthe current cell time slot. Inanormal application,
the processor increments this pointer each time it issues the
POPC instruction. Because the Scoreboard and Connection 1D
table represent periodic containers, the SWAN processor is
responsible for manipulating its Connection ID table pointer
modul o the container size. If multiple Scoreboards and Connec-
tion ID tables are used, the SWAN is responsible for manipulat-
ing multiple Connection ID table pointers, each modulo its
respective container size.

MXT3010 Reference Manual Version 4.1 31

The Cell Scheduling System

32

The POPC instruction is a dispatched instruction operating out-
side of the CPU such that the SWAN processor does not stall
while the cell scheduler executes the POPC instruction. The
SWAN processor can determine when the POPC operation is
complete by testing the state of bit 5 in the External States Sig-
nalsregister (R42). ESS5isset whileacell scheduling operation
isin progress. Alternatively, the SWAN processor can determine
when the POPC operation is complete by accessing the destina-
tion register, although this method can result in a processor stall.
Register scoreboarding guaranteesthat the processor will stall if
the processor tries to access the destination register (rd) before
the cell scheduler has written the POPC result to that register.
However, the instruction immediately following the POPC is
not register scoreboarded and should not access register rd.

When a POPC instruction has executed, and the Assigned Cell
Flag indicates that the selected time slot had an assigned Con-
nection 1D table entry, the program can read the destination reg-
ister of the POPC instruction to obtain a pointer to the Channel
Descriptor for the V C associated with that time slot. The Chan-
nel Descriptor contains the application-defined state informa-
tion needed to process the cell transmission event for the
associated VC. This data normally includes the pointer to the
datato be transmitted plusrate or flow control information used
in scheduling future activity for the VC.

If the Assigned Cell Flag indicates that the selected time slot is
unassigned, the program must employ measures to ensure that

an appropriate transmission rate is maintained. See “Pacing the
transmission rate of cells” on page 37.

Scheduling

The SWAN processor schedules a VC when adding a new con-
nection or when servicing an existing VC. The SWAN processor
initiates a scheduling operation by executing a PUSHC instruc-

Version 4.1 MXT3010 Reference Manual

Data transmission - servicing and scheduling

tion. PUSHC specifies a 16-bit Connection ID and atarget loca-
tion within the periodic container (Scoreboard). The cell
scheduler responds to PUSHC by scanning the Scoreboard |ook-
ing for the first available location at or after the targeted loca-
tion. If an availablelocation is not found by the timethe last bit
of the Scoreboard isreached, the cell scheduler loops back to the
beginning of the Scoreboard to continue the search. When the
cell scheduler finds an available location, it sets the bit in the
Scoreboard and writesthe Connection I D into the corresponding
Connection ID table entry. In general, the Connection ID identi-
fies the Fast Memory address of the Channel Descriptor for the
VC.

Like POPC, PUSHC is a dispatched instruction operating out-
side of the CPU such that the SWAN processor does not stall
while the cell scheduler executes the PUSHC instruction. The
SWAN processor determines when the PUSHC operation is
compl ete by testing the state of bit 5 in the External Signal Sta-
tusregister (R42). ESS5 is set while acell scheduling operation
isin progress. When the scheduling operation is complete, the
processor reads the scheduled address in the Cedll Scheduling
System Scheduled Address register (R61). This address differs
from the target address if the target address was previously
schedul ed.

Software cannot depend upon the state of register R61 until the
PUSH/PUSHF instruction is complete, as no register score-
boarding mechanism protects access to this register during
PUSH/PUSHF instruction operation.

For exampl e, Figure 8 showsthe SWAN processor servicing the

third location in the Connection 1D table and scheduling a new
time slot for Connection ID 47.

MXT3010 Reference Manual Version 4.1 33

The Cell Scheduling System

FIGURE 8. Servicing and scheduling

Connection ID 145
Available
Connection ID 47

Pointer in CPU representing current time slot

wJofafa] [[[| [1]o[1]
Scoreboard
Connection ID 123 |« Ideal next transmission time slot
Connection ID 321)) o
Available First available transmission time slot

nearest the ideal time slot

Connection ID Table

In the example shown in Figure 8, the requested | ocation was six
entries away from the entry being serviced. However, that loca
tion was assigned, and the nearest available |ocation was eight
entries away. The cell scheduler reserves the available location
and reports the location to the SWAN processor viathe Cell
Scheduling System Scheduled Address register (R61). This
report-back feature isimportant when creating controlled delay
connections, asit enables the program to determine whether the
chosen location meets the cell delay variation (CDV) require-
ments. If the CDV requirements are not met, the SWAN proces-
sor can make another scheduling attempt or otherwise
reschedule or regject the connection.

Calculating target time slots

The SWAN processor uses the Channel Descriptor information
to calculate, viaan algorithm, atarget time slot location for the
next transmission to serve the VC. A variety of methods can be
employed.

34 Version 4.1 MXT3010 Reference Manual

Data transmission - servicing and scheduling

Using GCRA to
calculate time
slots

MXT3010 Reference Manual

The scheduling of cells on aper-connection basisis completely
implementation dependent. For example, an implementation
can use the Generic Cell Rate Algorithm? as defined by Incre-
ment and Limit ((GCRA(I,L)) to schedule cellsonaVC. The
Increment represents the minimum inter-cell emission interval
for the VC.

The scheduling algorithm cal cul atestarget time slotsfor various
types of connection as follows:

» For an Available Bit Rate (ABR) connection, the inter-cell
emission interval is based on feedback from the network
(flow control information in the Channel Descriptor) and is
equal to 1/ACR. The implementation can calculate the
Increment for ABR connections in accordance with the
ATM Forum's rate-based ABR service specification, but
other methods can be used.

» For a Variable Bit Rate (VBR) connection, the target time
slot calculation can use an algorithm that allows burst
transmission of a specified number of cells (Maximum
Burst Size) at a peak cell rate (Peak Cell Rate), not to
exceed a sustained cell rate (Sustained Cell Rate) over

time. In this case, the Increment depends upon the above
three parameters.

For an Unspecified Bit Rate (UBR) connection, the target
time slot calculation is based on the information in the
Channel Descriptor without regard to flow control, but with
no effort at reliable transport.

For a CBR connection, the algorithm can schedule all the
required time slots in the Scoreboard when the connection
is initially established. The quantity and spacing of these
time slots depends on the bandwidth and Cell Delay Varia-
tion (CDV) requirements associated with the connection.
Therefore, when a target time slot calculation is created for

1. Consult ATM Forum’s Traffic Management 4.0 for GCRA information.

Version 4.1 35

The Cell Scheduling System

an established CBR connection, the target time slot is the
current time slot. Maintaining the currently assigned time
dlots ensures consistent CBR connection performance.

For CBR connections, theinter-cell emission interval is not
time varying and is equal to 1/Peak Cell Rate (PCR).

For VCswith dynamically allocated time dots, such asVBR
and ABR VCs, asingletime slot can exist on the Connection ID
Table/Scoreboard for each VC. V Csthat use permanent reserva
tion of bandwidth, such as CBR VCs, can have multiple time
dots.

All of the information required to calculate the inter-cell emis-
sion intervals can be stored in Fast Memory. Inter-cell emission
intervals can be stored asfractional integersto support high con-
nection rates. The program can store the inter-cell interval asa
fractional integer and maintain aremainder. The SWAN proces-
sor can then schedul e cellsusing theinteger portion of theresult,
saving the remainder for usein the next scheduling event on that
VC.

The SWAN processor can recover bandwidth lost due to cell
scheduling collisions by scheduling connections at the calcu-
lated Theoretical Arrival Time minus the Limit. A copy of the
scheduled time must be stored in the Channel Descriptor for
each V C scheduled in this fashion for proper operation of the
GCRA.

36 Version 4.1 MXT3010 Reference Manual

Pacing the transmission rate of cells

Pacing the transmission rate of cells

Back pressure
method

External clock
method

The MXT3010 can pace the transmission rate of cellsin either
of two ways.

» Back pressure through the UTOPIA port

» Use of an external clock

When the back pressure method is used, the Cell Scheduling
System is a self-pacing system—no external clock is required.
Back pressure from the transmission link through the UTOPIA
port limits the rate at which the SWAN processor can queue cells
for transmission. Therefore, the processor must maintain a con-
tinuously scheduled cell stream at the UTOPIA port. The pro-
cessor maintains this cell stream by issuing idle or unassigned
cells when no active VC is scheduled.

As indicated in “Servicing” on page 31, the SWAN processor
determines if a time slot is assigned or unassigned by testing the
state of the Assigned Cell flag bit of the ESS register following
a POPC instruction. If the Assigned Cell flag bit is 0, the time
slot is unassigned and an unassigned cell must be queued to
maintain the necessary back pressure. The queuing of unas-
signed cells guarantees that intel emission intervals on the
transmission link remain synchronous with the intervals pro-
grammed into the schedule.

When the external clock method is used, the Cell Scheduling
System is no longer a self-pacing system, as an externalclock
is required to indicate cell transmission opportunities. If there
are no cells to be sent, no cells are presented to the PHY. Only
user data cells are presented to the UTOPIA Port for transmis-
sion; no idle cells are sent.

1. Either of the Programmable Interval Timers (PITO or PIT1) can be used.
See “R54-R55 Programmable Interval Timer registers” on page 211.

MXT3010 Reference Manual Version 4.1 37

The Cell Scheduling System

Advantages of The back pressure method is preferable when transmitting cells

each method over an ATM transmission link, asthe ATM transmission link
must be kept full, and the transmission of idle cellsisrequired.
The external clock method is preferable when the MXT3010 is
connected to aswitch fabric, asit saves the switch the overhead
of dealing with idle cells.

Programming the Cell Scheduling System

The Cell Scheduling System examplein Figure 9 shows the
SWAN processor maintaining a pointer that represents the
present transmission time slot, such as the service address, in
R7. In this example R7= 02, the halfword address of the third
location in the Connection ID table.

FIGURE 9. Scoreboard operation

Connection ID 145
Available
Connection ID 47 |-&

Pointer in R7 representing current time slot

wJojafa[[| [[[2]o]1]
Scoreboard before POPC/PUSHC

Connection ID 123 = Ideal next transmission time slot
Connection ID 321)) o
Available le@—1 First available transmission time slot
nearest the ideal time slot
Jolafa[[[[[[o]o[1]
Connection ID Table Scoreboard after POPC
Slafafal [[[[folo]4]

Scoreboard after PUSHC

38 Version 4.1 MXT3010 Reference Manual

Programming the Cell Scheduling System

The following instructions represent typical cell scheduling
operation:

POPC R10 @r7 If the UTOPIA Port Transmit queue is not full, the
SWAN processor executes a POPC requesting that
the cell scheduler access the Connection ID table
entry that R7 references (location 02), and place that
Connection ID into R10. The cell scheduler copies
the Scoreboard bit associated with this Connection
ID table entry into the Assigned Cell Flag register,
then clears the Scoreboard bit (see “Scoreboard
after POPC” in Figure 9). Because the relevant
Scoreboard bit was set to 1 at the time that POPC
was executed, the Assigned Cell Flag register is set
to 1.

Bl $RDY ESS5/0 The SWAN processor first tests for completion of
the POPC instruction (bit 5 in the External Signals
State (ESS) register) using a Branch Immediate (BI)
instruction. The Bl instruction specifies a branch to
location $RDY if the point tested (ESS5) is a 0,
indicating the CSS scheduling operation is no
longer in progress.

$RDY Bl $SAC ESS4/1 The SWAN processor then tests the Assigned Cell
Flag register (bit 4 in the External Signals State
(ESS) register) using a Branch Immediate (BI)
instruction. The Bl instruction specifies a branch to
location $SAC if the point tested (ESS4) is a 1.

$SAC LMFM R16 @Rr10/ Since the time slot was assigned, the SWAN proces-
R10 16HW LNK sor uses the connection ID returned in R10 to

retrieve the Fast Memory-based Channel Descriptor
for the VC that reserved the time slot. The Load
Multiple Fast Memory (LMFM) instruction is used
to copy 16 halfwords beginning at the Fast Memory
Address specified in R10 into 16 SWAN registers
starting with register R16. To ensure that any
changes to the Fast Memory locations can be auto-
matically copied into the entries stored in R16-R31,
the Link (LNK) instruction field option is invoked.

MXT3010 Reference Manual Version 4.1 39

The Cell Scheduling System

The SWAN processor usestheinformation stored in the Channel
Descriptor to build or retrieve acell for the VC. In aSAR appli-
cation that uses dynamic scheduling as part of the service rou-
tine, the SWAN processor determines when to service the next
connection. The SWAN processor does this by executing a
scheduling algorithm using parameters stored in the Channel
Descriptor. The Channel Descriptor contains the parameters
necessary to determine the connection scheduling rate.

From theinformation in the Channel Descriptor, the SWAN pro-
cessor determines the next location within the Connection 1D
table that should be scheduled for this VC. Then the SWAN pro-
cessor places the result into a software register, for example
R22. The SWAN processor activates the connection by execut-
ing the PUSHC instruction. The PUSHC instruction requests
that the cell scheduler find an available time slot at or after the
target address specified in R22, assign the chosen time slot, and
write the Connection ID from register R10 into the Connection
ID table location corresponding to that time slot.

PUSHC R10 @=22

The cell scheduler trand atesthe target addressindicated by R22

into a Scoreboard bit position and searches the Scoreboard,

beginning at that bit position. In the example shown in Figure 9,

the cell scheduler discoversthat a previous connection reserved

the target location. Therefore, the cell scheduler examines the
Scoreboard until it finds an available location. Thislocation is

found two cell dots away from the target location. The cdll

scheduler reservesthelocation for the present connection by set-

ting the Scoreboard bit to 1 (see “Scoreboard after PUSHC” in
Figure 9) and by writing the Connection ID provided by the
SWAN processor in R10 into the selected location. When the
scheduling operation is complete, the cell scheduler reports the
scheduled address in the Cell Scheduling System Scheduled
Address register (R61). The SWAN processor can read this reg-
ister to determine whether the scheduled address meets the CDV
requirements for the service being provided.

40 Version 4.1 MXT3010 Reference Manual

Guaranteeing the availability of a location in the Connection ID table

The SWAN processor completes servicing the connection by
incrementing the service address contained in R7, modulo the
Connection ID table size. For example, the SWAN processor
canusethe Add Immediate (ADDI) instruction to add 0x0002 to
the address contained in R7 and place the result in R7. If the
Connection ID table size is 4096 entries, the ADDI instruction
caninclude 4096 asamodulo value, limiting the incrementation
process to the lowest order twelve bits. This limitation causes
the incrementation process to cycle through the table locations.

ADDI R7 0x0002 R7 MOD4096

Guaranteeing the availability of a location in the
Connection ID table

If the Scoreboard is full while the cell scheduler is servicing or
adding anew connection, the Cell Scheduling System returnsan
error by setting bit 15 in R60, the Cell Scheduling System Con-
figuration register. Constant checking for this error bit slows
down the effective operating rate of the device. Rather than
check the error bit setting, use either of these two methods to
ensure that alocation is available:

1. Add new connections or activate inactive connections only
when unassigned sl ots are encountered.

2. Maintain a count of the active V Cs on the scoreboard,
being careful to adjust for connections (such as pre-allo-
cated CBR connections) that consume more than oneslot in
the Scoreboard. Do not admit a new connection that
exceeds the capacity of the Scoreboard.

MXT3010 Reference Manual Version 4.1 41

The Cell Scheduling System

The PUSHC/POPC instruction buffer

The cell scheduler contains atwo-deep PUSHC/POPC instruc-
tion buffer. The SWAN processor can issue the following cell
scheduling instructions without entering a stall condition:

* A PUSHC or PUSHF followed by a PUSHC or PUSHF
e A PUSHC or PUSHF followed by a POPC or POPF
Execution of a cell scheduling instruction while the buffer is full

results in a SWAN processor stall until the first operation fin-
ishes.

POPC, PUSHC, POPF, and PUSHF instruction operation

42

POPC and PUSHC timing

The POPC operation completes in eight cycles from the instruc-
tion decode to loading of the rd register. The worst case PUSHC
time is 12 cycles from the instruction decode to the Fast Memory
write acknowledge from the write buffer. If the four-stage write
buffer is full at the time of the PUSHC operation, this cycle
count increases so that the buffer can be flushed of one entry,
and space for the new write information can be provided.

POPF and PUSHF timing

Both the POPF (Pop Fast) and PUSHF (Push Fast) instructions
manipulate the internal Scoreboards without accessing the Con-
nection ID table in Fast Memory. By eliminating unnecessary
accesses to Fast Memory, memory read/write latencies are
avoided.

Version 4.1 MXT3010 Reference Manual

POPC, PUSHC, POPF, and PUSHF instruction operation

In POPF, asin POPC, the Cell Scheduling System translatesthe
target address into a Scoreboard bit position. The Cell Schedul-
ing System copiesthe state of that bit into the Assigned Cell flag
(see below), and clears the bit location. However, POPF differs
from POPC in that the Cell Scheduling System does not access
the Fast Memory and does not provide a Connection ID in the
destination register. The POPF operation completesin five
cycles from the instruction decode.

In PUSHF, asin PUSHC, the Cell Scheduling System translates
the target address into a Scoreboard bit position. The Cell
Scheduling System searchesfor thefirst availablelocationinthe
Scoreboard at or after that bit position and sets the bit for that
|location to reserveit. However, PUSHF differsfrom PUSHC in
that the Cell Scheduling System does not write a new Connec-
tion ID into the Connection ID table location corresponding to
the reserved Scoreboard bit. Rather, the existing Connection ID
at that location is scheduled. The PUSHF operation completesin
12 cyclesfrom the instruction decode. Thisisthe same speed as
an optimum PUSHC that experiences no write buffer delays.
Unlike the PUSHC instruction, PUSHF will never experience
write buffer delays, asit does not perform a Fast Memory write.

When servicing a Scoreboard where time slot assignments
rarely vary, a combination of POPF and PUSHF can be used to
service and schedule connections without the overhead of Fast
Memory access.

Connection ID table and Scoreboard addressing

The Cell Scheduling System Configuration register specifies
bits(18:15) of the Connection | D table address. Bits (14:1) of the
Connection ID table address are provided by software in
bits(13:0) of the rsb register specified by POPC and PUSHC
instructions.

MXT3010 Reference Manual Version 4.1 43

The Cell Scheduling System

FIGURE 10.Connection 1D table address gener ation

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TABLE 6. Connection ID table address bits

Bits Source

[Q] Fixed as zero (0)

[14:1] Bits[13:0] of the rsb register in POPC or PUSHC instruction

[18:15] Bits [11:8] of “R60 The Cell Scheduling System (CSS) Config-
uration register” on page 217

The Connection | D table entry generatesthe Scoreboard address
corresponding to the specified Connection ID table entry asfol-
lows:

FIGURE 11.Scoreboar d address gener ation

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ‘ ‘

TABLE 7. Scoreboard address bits
Bits Source

18:11 Reserved. Write as zeros; ignore on reads
10:1 Bits [13:4] of the rsb register in POPC or PUSHC instruction
0 Fixed as zero (0)

Note:Bits [3:0] of the rsb register in POPC or PUSHC instruction select a
target bit within the 16-bit Scoreboard entry. (While the Cell Sched-
uling System searches the Scoreboard on the basis of 32-bit quanti-
ties, the SWAN processor addresses the Scoreboard on a 16-bit
basis.)

44 Version 4.1 MXT3010 Reference Manual

Initializing the Scoreboard

Initializing the Scoreboard

The SWAN processor clears the Scoreboard during its system
initialization routine. The SWAN processor initializesthe Score-
board by executing POPF instructionsto all of the locationsin
the Connection ID table. Oncethe SWAN processor has cleared
the Scoreboard, it can execute cell-scheduling instructions. For
those portions of the Scoreboard used for cell scheduling, the
program must perform all scheduling changes through the
PUSHC and POPC instructions to ensure that the MXT3010’s
internal mechanisms remain consistent. However, the SWAN
processor can read Connection ID table entries at any time with
the LMFM instruction, or read the Scoreboard using the LD
instruction, without affecting the internal mechanisms.

Selecting a Scoreboard size

The Cell Scheduling System Configuration register includesthe
desired Scoreboard si ze, rounded up to the nearest power of two.
The SWAN processor can mark certain locations as unavailable
to support Scoreboard sizes other than powers of two.

For example, assume the desired Schedule sizeis 2304 bits. The
program can execute a series of PUSHC operationsto select a
4096 bit schedule and to mark bits 2304 to 4095 as unavailable.
From that point on, the cell scheduler will not try to reserve
those locationsin responseto cell scheduling requests. Asapro-
gram executes POPinstructionsto the Scoreboard, it must return
to the beginning of the Scoreboard when it reaches location
2303. In other words, once the unwanted locations are reserved,
the program must not specify them asthetarget address of aPOP
operation. Also, the program must calculate the PUSHC target
addresses modulo 2304 instead of modul o 4096.

MXT3010 Reference Manual Version 4.1 45

The Cell Scheduling System

Supporting multiple Scoreboard sections

As indicated in Table 5, “Scoreboard sectioning control,” on
page 29, thd&1XT3010 supports multiple Connection ID tables/
Scoreboard sections. The device supports a maximum of:

» Eight 2K Connection ID tables/Scoreboard sections

» Four 4K Connection ID tables/Scoreboard sections

» Two 8K Connection ID tables/Scoreboard sections

* One 16K Connection ID table/Scoreboard section
If eight schedules are used, bits [13:11] of the rsb register in
POPC or PUSHC instruction select a schedule within the block

of eight. If four schedules are used, rsb bits [13:12] select a
schedule within the block of four, and so on.

PUSHC/POPC rsb register

address bit(s) Select(s) which schedule for
13 2 x 8K

13:12 4 x 4K

13:11 8 x 2K

46 Version 4.1 MXT3010 Reference Manual

cuarter4 1heFast Memory |nterface

dma Multi-purpose l
Stream .
DMA (Port2) High Data
Cell Buffer RAM Performance Stream
cell utoria) DMA (Portl)
Stream Port
Instruction Cache I
1 H
Control
Fast Memory €| Memory
] Controller
Inter-chip SWAN™ Processor SRAM
1% Sionaling [(| Cell Schedu
uling
System
The Fast Memory port providesthe SWAN processor and the Cell
Scheduling System with low latency accessto external Channel
Descriptors, program code, traffic shaping memory, and the look
up tables used for Available Bit Rate calculations. The Fast Mem-
MXT3010 Reference Manual

Version 4.1

47

The Fast Memory Interface

ory controller provides a glue-less interface to synchronous,
flow-through, burst-mode cache RAMs. The Samsung
KM718B90 and compatible parts are examples of suitable
RAMs.
This chapter describes:

* SWAN processor accesses to Fast Memory

e Cell Scheduling System accesses to Fast Memory

» SWAN executable fetches from Fast memory

« Fast Memory configuration

SWAN processor accesses to Fast Memory

The processor accesses Fast Memory with Load Multiple Fast
Memory (LMFM) and Store Halfword (SHFM) instructions. A
specialized Fast Memory access and update protocol in the Fast
Memory controller accelerates access to and update of Fast
Memory-based data structures.

Loading

The software tables and data structures stored in Fast Memory
are accessed by the SWAN processor through the LMFM (Load
Multiple Fast Memory) instruction. A simplified version of the
LMFM instruction is shown below.

FIGURE 12.Load Fast Memory instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op Code rd ‘LNK‘ 00 ‘Z‘ rsa #HHW rsb

48 Version 4.1 MXT3010 Reference Manual

SWAN processor accesses to Fast Memory

LMFM rd @rsalrsb #HW [LNK]

The SWAN processor usesthe#HW field to specify the number

of halfwords to be fetched and the rsa and rsb fields to specify

the Fast Memory byte address at which the transfer will begin.
Inresponseto the LMFM instruction, the Fast Memory interface
controller will write the halfwords returned from memory into

the SWAN's register file beginning with register rd and continu-
ing with rd+1, rd+2, etc. until the designated number of half-
words have been transferred. Thus, the LMFM instruction
allows the SWAN processor to transfer up to 16 halfwhirdsn

the Fast Memory into the register file in a single instruction.

Memory update If the LNK instruction field option is specified, the fast memory

protocol interface controller links the loaded registers to the locations in
Fast Memory from which their contents were read. ALU instruc-
tions which modify these registers can force the modifications to
be written back to Fast Memory by specifying the update mem-
ory (UM) option. Thus, the UM function allows the SWAN pro-
cessor to update the data structure in Fast Memory without
executing a dedicated Store instruction. In addition, use of the
LNK option causes the first halfword read from memory to be
read into the Fast Memory Shadow Register (R58), where it can
be used by BF/BFL instructions.

Once a linking relationship has been set up by an LMFM
instruction, subsequent LMFM instructions do not need to spec-
ify a linking option, as the links remain in place. When it is
desired that the links be changed, a new LMFM with linking
option enabled can change the links. An LMFM used to change
links does not have to specify a data transfer (#HW can be zero).

1. Sincethe number of halfwords that can be transferred range from 0 to 16
halfwords, there are 17 possible values for the #HW field. Therefore, the
#HW field is 5 bits wide.

MXT3010 Reference Manual Version 4.1 49

The Fast Memory Interface

Further
information

Additional information on the LNK option and memory updat-
ing, including restrictions, appears in “Linking (the LNK bit)”
on page 299 and following pages.

Further information about the LMFM instruction is provided in
“Load and Store Fast Memory Instructions” on page 293. Exam-
ples of LMFM instruction usage are provided in that chapter and
in “Swan Instruction Reference Examples” on page 325.

Storing

Fast Memory writes can be accomplished utilizing the memory
update function described above or by utilizing the Store Half-
word to Fast Memory (SHFM) instruction. A simplified version
of the SHFM instruction is shown below.

FIGURE 13.Sore Fast Memory instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code

000000000 rsa #HW rsb

SHFM @rsal/rsb

Execution of the SHFM instruction causes the Fast Memory
interface controller to write the halfword contained in the Fast
Memory Data register (R56) into the halfword addressed by the
byte address contained in registers rsa and rsb. A more powerful
store instruction, Store Register Halfword (SRH) is also avail-
able. The SRH instruction is especially useful for accelerating
CRC operations. See “Cyclical Redundancy Check operation

Version 4.1 MXT3010 Reference Manual

Cell Scheduling System accesses to Fast Memory

acceleration” on page 104 and “Instructions for accelerating
CRC operations” on page 305.

Further Further information about the SHFM and SRH instructions is

Information provided in “Load and Store Fast Memory Instructions” on
page 293. Examples of SHFM and SRH instruction usage are
provided in that chapter and in “Swan Instruction Reference
Examples” on page 325.

Cell Scheduling System accesses to Fast Memory

The Cell Scheduling System maintains one or more Connection
ID tables in Fast Memory. The Cell Scheduling System accesses
Fast Memory with PUSHC and POPC instructions issued by the

SWAN processor. PUSHC instructions cause a halfword write to

a Connection ID table, and POPC instructions cause a halfword
read to a Connection ID table.

Cell Scheduling System operations are a lower priority than
LMFM burst data reads. If a Cell Scheduling System operation
is in progress when a LMFM is issued, the Cell Scheduling Sys-
tem operation finishes but the LMFM is serviced before the next
Cell Scheduling System operation proceeds.

SWAN executable fetches from Fast Memory

The SWAN processor fetches all instructions from the Fast
Memory using 32-bit word read accesses. These accesses are
higher priority than any other access to the Fast Memory. If an
LMFM or Cell Scheduling System operation is in progress when
the SWAN processor makes a Fast Memory read request, the
LMFM or Cell Scheduling System operation finishes but the
read request is serviced before the next LMFM or Cell Schedul-
ing System operation proceeds.

MXT3010 Reference Manual Version 4.1 51

The Fast Memory Interface

Fast Memory configurations

52

This section describes these configuration features:
* Memory sizes supported
 RAM selection and configuration

» Mode 0 operation for chips with single or multiple Chip
Enable inputs

* Mode 1 operation for chips with multiple Chip Enable
inputs only, allowing 512K banks

* Bus contention avoidance

Memory sizes supported

The Fast Memory interface supports memory sizes from 128
Kbytes to 1 Mbyte in configurations of one or two banks. In all
configurations Fast Memory is 32 bits wide.

FIGURE 14.Fast Memory SRAM options

Y

CLK
CLK ClLK
CLK CLK
Control ——|
Address — | 64K x 16 64K x 16 64K x 16 64K x 16
Data (| 30K x 32
512K Bytes, 2 Banks 256K Bytes 128K Bytes
(1 MB with 128Kx16 RAMs) (512KB with 128Kx16RAMS)
MXT3010

Version 4.1 MXT3010 Reference Manual

Fast Memory configurations

RAM selection and configuration

The MXT3010 supports the following RAM configurations:

Memory Size RAM Banks Mode
128K Bytes 32Kx32 1 - 32Kx32 1 0
256K Bytes 64Kx32 2 — 64Kx16 1 0
512K Bytes 128Kx32 4 — 64Kx16 2 0
512K Bytes 128Kx32 2 — 128Kx16 1 1
1M Byte 256Kx32 4 — 128Kx16 2 1

Mode 0 operation

The MXT3010 providestwo operation modesfor the Fast Mem-
ory. Table 8 compares the two modes, which can be selected by
modifying target bit 4 in the Mode Configuration Register
(R42):

TABLE 8. Comparison of Mode 0 and Mode 1 operation

Attribute Mode 0 Mode 1

Types of access supported Byte or halfword Byte or halfword
Device Chip Enable configurations Single or multiple Multiple only

Maximum addressable memory 512 Kbytes 1 Mbyte

In Mode 0 the MXT3010 drives 16 address bits and four inde-
pendent byte enables to permit direct addressing of 64K 32-bit
wordsin each of two memory banks. Two chip select signalsand
two output enable signal s provide independent bank selection
and output drive enable signals for the two memory banks.
Addressbit FADRS[18] internally generatesthe select signal for
the active bank. Physical memory appears as two contiguous
64K x32 banks starting in address space at 0x00000, going to
OX7FFFF.

MXT3010 Reference Manual Version 4.1 53

The Fast Memory Interface

FIGURE 15.M ode 0 design example

FADRS[17:2]
FDAT3L0]

Control
MXT3010 ol 64K x 16 : 64K X 16
ngfl'g} 15-A0 Dgﬂ'g A15-A0
Tosp | D150 Toor | D15-D0
FoEo | O~ FoEL | oo
FWED | OF- FWED | OF-
FweL | oW FweL | oW
BWO_ BWO_
A[L7:2] 1@?}@ 16 Al17:2] Alg_%x 16
D[15:0] D[15:0]
D15-D0 D15-D0

FCS1
FOEL
FWE2
FWE3_

FCSO

cs_
OE_
BWI_
BWO

cs_
OE_
BWL_
BWO

FOEQ
FWE2
FWE3

Bank 0 0x00000-0x3FFFF Bank 1 0x40000-0x7FFFF

Mode 1 operation

In Mode 1 the MXT3010 drives 18 address bits and four inde-
pendent byte enables to directly address 256K 32-bit wordsin
each of two memory banks. Two output enable signals provide
independent output drive enable signals for the two memory
banks. No chip enable signals are used; address bit FADRS 19]
sel ects the active bank. Physical memory appears as two contig-
uous 128K x32 banks starting in address space at 0x00000 and
ending at OxFFFFF. One of the two banks is always enabled
since no independent chip enable signals are used.

In asingle bank configuration, Mode 1 can configure only 512
Kbytes of Fast Memory using 128Kx16 RAMSs. In this configu-
ration, physical memory appears as asingle 128K x32 bank in
address space from 0x00000 to Ox7FFFF.

The Connection ID table and the executable code space (as set

by the Segment ID fieldinthe Instruction Base Addressregister)
can only reside in the first 512K bytes of Fast Memory.

54 Version 4.1 MXT3010 Reference Manual

Fast Memory configurations

FIGURE 16.Mode 1 design example

FADRS[19:2]
FDAT3L0]
Control
MXT3010 A[18:2] Allg_%x 16 A[18:2] Allg_%xlﬁ
DRL6] A% biLg] A%
| DLs-00 =21 D15-00
o0l o7 A9l c;
FOED | o2 FOEL | o2
FWED | O-- FWED | o=
FweL | BWL FweL | BWL
BWO BWO
gl | ||| yul
D50 DI50]
iig] 1500 e D100
Vo0 ;. 9 5,
FOE0 | 02" FOEL | 2
FWE? FWE2
FWES gm— FWE3 gm—
OX00000-OX7FFFF 0XB0000-OXFFFFF

When operating in Mode 1, the Chip Select pins are used as Fast Memory Address lines 19 and 18.
FCS1_=FADRS[19]. FCS0_= FADRS[18]

Bus contention avoidance

The timing of the two output enable signals (FOE1 and
FOEQ) is skewed when the addresses of consecutive memory
accesses cross bank boundaries to prevent bus contention on
back-to-back read cycles. The MXT3010 guaranteesawi ndow?
between disabling one bank and enabling an aternate bank. This
allows both banks to be directly wired to the data bus without
external buffers or transceivers.

1. Please refer to “Timing” in Section 3 for further information.

MXT3010 Reference Manual Version 4.1 55

The Fast Memory Interface

Fast Memory sequence diagrams

This section shows sequence diagrams for the following Fast
Memory operations:

» Read operations, single bank (Figure 17 on page 56)
« Write operations, single bank (Figure 18 on page 57)
» Read and write operations, back-to-back operation and dual

bank (Figure 19 on page 57)

Set-up times, propagation times, and other timing information
for the Fast Memory interface are provided in “Timing” on
page 343.

FIGURE 17.Fast Memory read operations - single bank

FADRS[17:2] | X AO >O< Al >O< A2 X |

FDATout[31:0] hmh |moedance ' high |moedance
FDATIN[31:Q] X DO >O< D1 >O< D2 X
FOEOQ_ i low

/_\ [\ /_\ /_\ [
FWE[3:0]_ OxF .@...@

56 Version 4.1 MXT3010 Reference Manual

Fast Memory sequence diagrams

FIGURE 18.Fast Memory write operations - single bank

xxxx

S U U S W
rwesn 3 X Ko G X=X Do)

FIGURE 19.Fast Memory reads and writes - back-to-back and dual bank

Read Read Read Read Write Read ! Write

Bank 0 Bank 0 Bank 1 Bank 0 ! Bank 1 Bank 0 ! Bank 1
FADRS[17:2] AOX X A1 X X A2 X X A3 X X ><><A4><><A5><>< ><><A6

FDATout[31:0] . I . D6
AT Y o0 XX o XO—— X o)05)0)
e [SN S S
i S Y/ g . /s e WY
e T T TN
FCS0_ ;/ \;/ /:\ '/ /:\ /:\ \./ /:\ \
\

\
ch1_5\/5\\// /\\//\/\/
, WE6

FWE[3:0]_ d>ZF>O(OxF>O(OXFX:X 0xF>O< OxF)O(wm)O(OxF)O(OxF)Ot

MXT3010 Reference Manual Version 4.1 57

The Fast Memory Interface

58 Version 4.1 MXT3010 Reference Manual

The Cdl Buffer RAM

CHAPTER 5
data Multi-purpose l
Stream | pMA (Port2 i
() High Data
Cell Buffer RAM Performance Stream
Cell utopia | DMA (Portl)
Stream Port
Instruction Cache I
Control
Fast Memor
] i Controllery Rt l\g(;n;(')vrly
, Inter-chip SWAN™ Processor
’Signalling ™ Cell Scheduli
3 ell Scheduling
System

MXT3010 Reference Manual

The MXT3010'sinternal Cell Buffer RAM buffers cellsin both
the transmit and receive directions. The CPU and the DMA unit
can access the Cell Buffer RAM through memory access proto-
cols. Thischapter describesthe Cell Buffer RAM and the memory

access protocols.

Version 4.1

59

The Cdll Buffer RAM

Internal cell storage in the Cell Buffer RAM

To store cells, the Cell Buffer RAM is configured into anumber
of 64 byte blocks referred to as cell holders. During reception,

cells are written into cell holders as they are received from the
physical layer. During transmission, cells are built in cell hold-
ers before being transmitted to the physical layer.

At deviceinitialization, the Cell Buffer RAM is segmented into
sections for receive cell storage, transmit cell construction, and
general purpose scratch pad use. Asshownin Table 9, bits[6:1]
of the UTOPIA Configuration register(R62) control the seg-
mentation of the Cell Buffer RAM.

TABLE 9. UTOPIA Configuration control of the Cell Buffer RAM

Bits Description

3:1 Receive Cel Buffer Sizein the Cell Buffer RAM

000 UTOPIA Port Receiver in Reset Mode. All Rx outputs are
tristated. Thisincludes RXDATA (abidirectional signal), but
does not include RXCLK. All inputs are pulled to their inac-
tive states by the MXT3010.

001 Receiver Buffer Sizein the Cell Buffer RAM =2 cells

010 Receiver Buffer Sizein the Cell Buffer RAM =3 cells

110 Receiver Buffer Sizein the Cell Buffer RAM =7 cells

111 Receiver Buffer Sizein the Cell Buffer RAM = 8 cells

6:4 Transmit Cell Buffer Sizein the Cell Buffer RAM

000 UTOPIA Port Transmitter in Reset Mode. All Tx outputs are
tristated except TXCLK. All inputs are pulled to their inactive
states by the MXT3010.

001 Transmitter Buffer Sizein the Cell Buffer RAM =2 cells

010 Transmitter Buffer Size in the Cell Buffer RAM = 3 cells

110 Transmitter Buffer Sizein the Cell Buffer RAM =7 célls

111 Transmitter Buffer Sizein the Cell Buffer RAM =8 célls

Version 4.1 MXT3010 Reference Manual

Internal cell storagein the Cell Buffer RAM

The minimum allocation for receive cell holdersistwo, the
maximum is eight, and receiver cell holder addressing begins at
location 0x0000. The minimum allocation for transmit cell hold-
ersistwo, the maximum is eight, and transmit cell holder
addressing begins at location 0x0200. As an example, Figure 20
shows a Cell Buffer RAM organization with eight receive cell
holders, four transmit cell holders, and the remaining space
available as scratch pad space.

FIGURE 20.Cell Buffer RAM organization

0x0000 Rx Cell 64 bytes
0x0040 Rx Cell 64 bytes
0x0080 Rx Cell 64 bytes
0x00CO Rx Cell 64 bytes
0x0100 Rx Cell 64 bytes
0x0140 Rx Cell 64 bytes
0x0180 Rx Cell 64 bytes
0x01CO Rx Cell 64 bytes
0x0200 Tx Cell 64 bytes
0x0240 Tx Cell 64 bytes
0x0280 Tx Cell 64 bytes
0x02c0 Tx Cell 64 bytes
0x0300 64 bytes
0x0340 64 bytes
0x0380 64 bytes
0x03C0 64 bytes

MXT3010 Reference Manual Version 4.1 61

The Cdll Buffer RAM

Cell fields Independent of the specific cell format used, certain fields (if
provided) occupy certain positions. Figure 21 shows these
fields, and Table 10 summarizes their functions.

FIGURE 21.Cdll fields defined

4 bytes User Header | Present in proprietary 56-byte cells only

4 byte
1 byte

s | ATM Header | Presentin all cells

HEC Optionally present in cells

48 bytes SAR PDU Present in all cells

TABLE 10. Cédll fidld functions

Field

Function

User
Header

ATM
Header

HEC

SAR PDU

The User Header isafour-bytefield that can beinserted before
the ATM header, adding four bytes to the front of a cell.

The ATM Header isafour-byte field specified by relevant
ATM standards and consists of GFC, VPI, VCI, and PTI sub-
fields. It isgenerally present in all but afew proprietary
schemes. The VPl and VCI sub-fields are interpreted by
UTOPIA Receive Header Reduction hardware in the
MXT3010 to form the Channel Identifier for the cell. See
“Receive Header Reduction hardware” on page 91.

The Header Error Control (HEC) is a one-byte CRC accumu-
lated across the ATM Header. The MXT3010 can be config-
ured to transmit and receive cells with or without HEC.

The SAR PDU is a 48-byte field that is present in every cell.

Cell formats Theformat

of theinformation in the cell holdersisafunction of

the selection of 52-byte or 56-byte cell operation viabit 1 of the
“R42-write Mode Configuration register” on page 201.

Bit Bit State and Function

1 Cell
0
1

Length Control
52 byte cells
56 byte cells

62 Version 4.1 MXT3010 Reference Manual

Internal cell storagein the Cell Buffer RAM

Figure 22 compares the 52-byte and 56-byte cell formats.

FIGURE 22.Receive cell organization: 52-byte and 56-byte cells

0x0000
0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010

0x0034
0x0036
0x0038
0x003A
0x003C
0x003E

52-byte cell

56-hyte cell

Unused

User Header bytes 0, 1

Receive Cell Status Word

User Header bytes 2, 3

ATM Header bytes 0, 1

ATM Header bytes 0, 1

ATM Header bytes 2, 3

ATM Header bytes 2, 3

SAR PDU bytes 0, 1

SAR PDU bytes 0, 1

SAR PDU bytes 2, 3

SAR PDU bytes 2, 3

SAR PDU bytes 4, 5

SAR PDU hytes 4,5

SAR PDU bytes 6, 7

SAR PDU bytes 6, 7

SAR PDU bytes 7, 8

SAR PDU bytes 7, 8

SAR PDU bytes 44, 45

SAR PDU bytes 44, 45

SAR PDU bytes 46, 47

SAR PDU bytes 46, 47

Unused Receive Cell Status Word
Unused Unused
Unused Unused
Unused Unused

Figure 22 does not show the HEC byte, because the HEC byte
(if enabled) is never written to or read from the Cell Buffer
RAM. Rather, HEC generation/insertion on transmission and
HEC checking/removal on reception are performed at the
UTOPIA port!. Theresult of HEC verificationisavailableinthe

Receive Cell Status Word. See Figure 22 and “Receive cell
flow” on page 77.

Receive Cell
Status location

While the ATM Header bytes and the SAR PDU bytes are fixed
with respect to the cell holder in both the 52-byte and 56-byte

mode, the location of the Receive Cell Status Word does change.

1. The MXT3010 aso provides HEC generation and checking logic for

devices not using the UTOPIA port.

MXT3010 Reference Manual

Version 4.1

63

The Cdll Buffer RAM

In 52-byte mode, it precedesthe ATM Header field, whilein 56-

byte mode, the four-byte User Header precedes the ATM

Header, and the Receive Cell Status Word follows the last byte

of the SAR PDU. The placement of the Receive Cdl Status

Word beyond the last byte of the SAR PDU in 56-byte mode
conflicts with the concept of Cell Buffer RAM memory gather-

ing as described in “Gather method accesses” on page 65. Mem-
ory gathering is still a valid means of addressing the unused Cell
Buffer RAM space, however the presence of the Receive Cell
Status Word within each receive cell holder must be accommo-
dated.

Cell Buffer RAM memory construction

Selecting an
access method

As shown in Figure 20, “Cell Buffer RAM organization,” on

page 61, the Cell Buffer RAM is logically constructed as sixteen
64-byte cell holders. As shown in Figure 22, “Receive cell orga-
nization: 52-byte and 56-byte cells,” on page 63, a cell occupies
no more than the top 56 or 58 bytes of a cell holder. This leaves
approximately eight bytes of RAM at the bottom of each cell
holder location. This space is discontinuous and therefore diffi-
cult to use. So that the CPU can regain access to this unused
memory as a single linear space, the Cell Buffer RAM interface
supports both a linear access and a memory gathering protocol.

Both the CPU and the DMA controllers can access the Cell
Buffer RAM by using either linear or gather access methods.
The CPU uses register rla and the Index field (IDX) in the LD
(Load), LDD (Load Double), ST (Store), and STD (Store Dou-
ble) instructions to form an address in the Cell Buffer RAM. See
“Register load address (rla field)” on page 314 and “The index
field (IDX)" on page 315. DMA controllers use register rla in
the DMA1 or DMAZ2 instruction to form an address in the Cell
Buffer RAM. See “Direct Memory Access Instructions” on
page 283.

Version 4.1 MXT3010 Reference Manual

Cell Buffer RAM memory construction

Linear method
accesses

Gather method
accesses

Whether generated by a CPU instruction or aDMA controller,
Bit[10] of thelocal address sel ectsthe access method of the Cell
Buffer RAM.

Bit 10 Cell Buffer RAM method selected
0 Linear
1 Gather

In linear method accesses, the Cell Buffer RAM istreated as a
simple contiguous memory 1024 bytes in length. Bits[9:1] of
the target address select the 16-bit halfword within this space.

In gather method accesses, the last eight bytes of each 64-byte
section appear as a contiguous 128-byte block of memory. The
first 16-bit halfword of this block is at address 0x0400 of the
gather address method. The last 16-bit halfword is at address
0x047E. Thus, gather access recovers discontinuous regions of
Cell Buffer RAM memory into one continuous address space.
Thisisnot additional space, but rather a method of making use
of small pieces of existing space. Figure 23 illustrates this
addressing method.

MXT3010 Reference Manual Version 4.1 65

The Cdll Buffer RAM

FIGURE 23.Gather method accesses

0x0000 0x0400
0x0408
0x0410

Cell Store 0

0x0038 4
0x0040
Ox047E
0x0480

Cell Store 1

0x0078

0x0080 H
0x03B8 .
0x03C0

Cell Store 15

0x03F8
0x0400

Please note the restrictions on gather access in 56-byte mode

(see “Receive Cell Status location” on page 63). For additional
information, please see “Cell Buffer RAM accesses” on

page 317.

66 Version 4.1 MXT3010 Reference Manual

Cell Buffer RAM access

Cell Buffer RAM access

The MXT3010EP Cell Buffer RAM hasfiveindependent 16-bit
ports, each capable of moving data at the internal clock fre-
guency. The arrangement of data portsis shown in Figure 24.

FIGURE 24.Cédll Buffer RAM access

Portl Read <}: A

——1 Portl/CPU Write

UTOPIA TX/ g CellBuffer
Port2 Read RAM512x16 ¢ Y—— Port2/UTOPIA RX/
CPU Read <:: C CPU Write

Port C Port D/E
CPU rd addr CPU write addr

SWAN Processor
Load/Store Pipe

On a 100 MHz device, the three read ports can deliver data at a
total rate of 600 MB per second, and the two write ports can
accept atotal of 400 MB per second.

Making optimum use of this high performance design requires
some programming care, however. While Load and Store
instructions from the SWAN processor are guaranteed to be
ordered with respect to one another, ordering is not guaranteed
between Load/Store instructions and DMA operations to Portl
or Port 2. Consider the following example:

STD RO/ R1L @48
STD R2/ R3 @49
STD R4/ R5 @R50
DMALW rsa/ rsb R50

MXT3010 Reference Manual Version 4.1 67

The Cdll Buffer RAM

The Port1 write operation is not guaranteed to see the new val-
ues of R4/R5. Thisistrue because Store Double (STD) instruc-
tionsareretired in the Cell Buffer RAM at half the rate they can
beissued by the SWAN, and the SWAN does hot have adedicate
write pipeinto the Cell Buffer RAM.

To guarantee correct behavior, the program must do one of the
following:

1. Guaranteethat at least one of the write portsis always available to
ensure that the DMA from Port1 or Port2 can never fetch stale
data. The pipelining of the DMA operation guarantees that it will
not fetch data before it is flushed from the SWAN L oad/Store pipe
into Cell Buffer RAM.

2. Follow al stores by adummy read prior to issuing a DMA com-
mand. Theread ensuresthat all preceding writesareflushed inthe
pipe. Notethat sincethe Load Double (LD) is offloaded from the
hogt, it must be followed by an instruction that uses the destination
of the load to invoke the hardware register scoreboarding mecha-
nism.

3. Use successive writes to ensure that preceding writes are flushed
through the pipe into the Cell Buffer RAM.

Version 4.1 MXT3010 Reference Manual

cuarters 1THe UTOPIA port

Data
Stream

Cell
Stream

Multi-purpose l
DMA

Cell Buffer RAM

utoriA |
Port

High
Performance
DMA

Instruction Cache I

i

Inter-chip || SWAN™ Processor
Signalling

Data
Stream

Fast Memory

i Controller

il

Control
Memory
SRAM

- CeIIScheduImgl
System

MXT3010 Reference Manual

The UTOPIA port implementsthe ATM Forum’s UTOPIA Level
1 and Level 2 protocol for interfacing ATM Layer devices, such
asthe MXT3010, to PHY Layer devices, such as SONET framers.
The UTOPIA port supports the direct attachment of up to 16 sin-
gle PHY or multiple logical PHY devices. In addition, the UTO-
PIA port supports the direct attachment of aLevel 2-compliant

Version 4.1

69

The UTOPIA port

Multi-PHY device with up to 16 ports. In compliance with the
ATM Forum specification, the UTOPIA connection operates as
the Master device.

This chapter includes:

UTOPIA port interface overview
Receive cell flow

Transmit cell flow

The control byte and special operations
Multi-PHY support

Receive Header Reduction hardware

UTOPIA port configuration summary

UTOPIA port interface overview

70

Features

The UTOPIA port interface includes the following features:

Two modes of operation are supported, 8-bit bi-directional
mode and 16-bit unidirectional mode (either transmit or
receive).

The UTOPIA port supports up to 16 physical ports in 8-bit
bi-directional mode. The UTOPIA port complies with the
ATM Forum’s Level 2 Specification for Multi-PHY Opera-
tions.

Cell-level handshaking is supported. No wait states are
inserted, and no wait states are expected.

56-byte cell mode over the UTOPIA interface is supported
for applications where a field is prepended to an ATM cell.

HEC insertion and checking can be enabled.

Version 4.1 MXT3010 Reference Manual

UTOPIA port interface overview

Operating modes

The UTOPIA port can be configured to operate in bi-directional mode
with an 8-hit Receive (Rx) data path and an 8-bit Transmit (Tx) data
path, or in unidirectional mode as either a 16-bit Transmitter or a 16-bit
Receiver. The 16-bit mode supports 622 Mb/s data rates.

Selecting 8-bit or Bit [8] of the UTOPIA Configuration register (R62) controls the operat-
16-hit mode ing mode.

TABLE 11. UTOPIA port data buswidth selection

Bit Description
8 UTOPIA Port Data Bus Width

0 16 Bits Wide
1 8 Bits Wide

In 16-bit transmit mode, the TxData pins carry data [7:0]. The RxData
pins are configured as outputs and carry data[15:8]. In 16-bit receive
mode, the RxData pins carry data[7:0]. The TxData pins are configured
asinputs and carry data[15:8].

TABLE 12. UTOPIA port Tx and Rx pin utilization in 16-bit mode

Mode Tx Data Pins Rx Data Pins

16-bit transmit Data[7:0] Data (outputs) [15:8]

16-bit receive Data (inputs) [15:8] Data[7:0]
Resetting the Bits[6:4] of the UTOPIA Configuration register (R62) control the
transmitter and Transmit Cell Buffer sizein the Cell Buffer RAM, and bits[3:1] control
receiver the Receive Cell Buffer size. Definitionsfor these bitsappear in Table 9,

“UTOPIA Configuration control of the Cell Buffer RAM,” on page 60.
While these bits primarily affect the operation of the Cell Buffer RAM,

a buffer size selection of 0 cells places the corresponding transmit or
receive UTOPIA interface in reset mode. In reset mode the correspond-
ing output signals are placed into their inactive states.

MXT3010 Reference Manual Version 4.1 71

The UTOPIA port

Selecting transmit
or receive mode

Selecting cell
length and HEC
operation

UTOPIA speed
select

72

Transmit-only operation is selected by setting bits [3:1] of the
UTOPIA Configuration register (R62) to zeroes, thus placing
the UTOPIA port receiver in reset mode. Receive-only opera-
tion is selected by setting bits [6:4] of the UTOPIA Configura-
tion (R62) to zeroes, thus placing the UTOPIA port transmitter
in reset mode. Figure 25 shows a UTOPIA port using 8/8- and
16-bit modes.

FIGURE 25.The UTOPIA port: 8/8 and 16-bit modes

MXT3010 MXT3010 MXT3010
8-bit transmit 16-bit transmit 16-bit receive
8-hit receive
Tx Control Rx Tx Control Tx Rx Control Rx

8 8
yar tt h oy oy by b
SONET Framer SONET Framer
OC3 0C12

s K il

The UTOPIA configuration operation uses R42, bits0 and 1, to
select HEC operation and cell length.

TABLE 13. Cell length and HEC control

Bit Description

0 HEC Control
0 HEC is generated (Tx), inserted (Tx), and checked (Rx)
1 HEC is omitted
1 Cdl Length Control
0 52-byte cells
1 56-byte cells

The MXT3010 can operate each UTOPIA interface (transmit
and receive) either at the input clock frequency or at one-half
that frequency. Sincethe SWAN processor internal clock runsat

Version 4.1 MXT3010 Reference Manual

UTOPIA port interface overview

UTOPIA Port
clock phases

twice the input clock frequency, these sel ections correspond to
one-half or one-quarter of the internal clock frequency. The
MXT3010 generates a UTOPIA output clock for each of the
transmit and receive interfaces based on the setting of the clock
selection bit in the UTOPIA Configuration register (R62). All
PHY to ATM layer transfers should be controlled from therising
edge of these clocks.

TABLE 14. UTOPIA port clock selection

Bit Description

7 UTOPIA Port operational/output clock selection
0 TXCLK and RXCLK operate at 1/2 of internal clock frequency.
1 TXCLK and RXCLK operate at 1/4 of internal clock frequency.

Figure 26 and Figure 27 show the relationship between the chip
input clock, the internal clock, and TXCLK and RXCLK oper-
ating at 1/2 and 1/4 of theinternal clock frequency, respectively.

FIGURE 26.Clock phasesfor RX/TX CLK = 1/2 Internal Clock

INPUT CLK
R T AVAVAVAVAVAVAVAVAVAVAN

RX CLK

TX CLK

FIGURE 27.Clock phasesfor RX/TX CLK = 1/4 Internal Clock

INPUT CLK
R T AVAVAVAVAVAVAVAVAVAVAN

RX CLK

TX CLK

MXT3010 Reference Manual Version 4.1 73

The UTOPIA port

Cell format
examples

74

UTOPIA cell formats

Two standard formats for cells are defined for UTOPIA inter-
faces depending on the width of the data busin use. Addition-
aly, proprietary schemes may define arbitrary cell lengths and
formats as long as the format is commonly understood by the
components on the bus. Figure 28 shows the standard cell for-
mats for UTOPIA interfaces.

FIGURE 28.UTOPIA 8-bit and 16-bit cell for mats

8-bit UTOPIA 16-bit UTOPIA
1
2 q é i ATM Header
3 ATM Header 5 ok HEC
g HEC 2 z
8 9
6 10T SAR PDU
7 _ _
8 SAR PDU 50 | 51
- 52 53
51
52
53

In the case of cells received through a 16-bit UTOPIA port, the
PHY inserts an additional byte after the HEC to ensure that the
SAR PDU data structure presented to the UTOPI A port is 16-bit
aigned. After the HEC has been checked by the UTOPIA port,
both the HEC and the extra byte are deleted before the cell is
stored in the Cell Buffer RAM. In the case of cells transmitted
through a 16-bit UTOPIA port, the UTOPIA port inserts an
additional byte after the HEC to ensure that the data structure
presented to the PHY is 16-bit aligned. The PHY transmitsthe
HEC over the SONET interface, but discards the extra byte.

The following figures show examples of HEC-enabled 52-byte
mode, HEC-disabled 52-byte mode, HEC-enabled 56-byte
mode, and HEC-disabled 56-byte mode.

Version 4.1 MXT3010 Reference Manual

UTOPIA port interface overview

FIGURE 29.HEC-enabled 52-byte mode

52-byte cell
0x0000 Unused 8-bit UTOPIA 16-bit UTOPIA
0x0002 |Receive Cell Status Word
0x0004 | ATM Header bytes 0, 1 ‘21 ATM Header
0x0006 | ATM Header bytes 2, 3 ATM Header XXX HEC

9 SAR PDU

0x000A | SARPDU bytes 2,3
0x000C | SAR PDU hytes 4,5

1
2
3
0x0008 SAR PDU bytes 0, 1 g HEC
6
7
8

QG| |B|w|o|or|w|~
-
B

SAR PDU o1

0x000E | SAR PDU bytes 6, 7 - 53
0x0010 | SARPDU bytes7, 8 E%
. 53

0x0036 | SAR PDU bytes 46, 47

0x0038 Unused
0x003A Unused
0x003C Unused
0x003E Unused

FIGURE 30.HEC-disabled 52-byte mode

— S2-hytecell
0X0000 Unused 8-bit UTOPIA 16-bit UTOPIA
0x0002 |Receive Cell Status Word 1
0x0004 | ATM Header bytes 0, 1 2 ATM Head é ‘2‘ At reader
0x0006 | ATM Header bytes 2, 3 Z - : 5
0x0008 | SAR PDU hytes 0. 1 5 5110
Ox000A | SAR PDU bytes 2,3 ? TR
0x000C | sAR ppU hytes4.5 - SAR PDU 29 | 50
0000 | AR PDU bytes 6. 7 gcl) S
0x0010 | sAR PDU bytes 7.8 52

0x0036 | SAR PDU bytes 46, 47

0x0038 Unused
0x003A Unused
0x003C Unused
0x003E Unused

MXT3010 Reference Manual Version 4.1 75

The UTOPIA port

0x0000
0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010

0x0036
0x0038
0x003A
0x003C
0x003E

0x0000
0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010

0x0036
0x0038
0x003A
0x003C
0x003E

76

FIGURE 31.HEC-enabled 56-byte mode

_ S6-bytecell
User Header bytes 0, 1

8-bit UTOPIA 16-bit UTOPIA
User Header bytes 2. 3 T T 5
ATM Header bytes 0, 1 3 2 User Header
3 User Header 5 5
ATM Header bytes 2, 3 7 = : ATM Header
SAR PDU bytes 0, 1 5 9 | xxx HEC
6 10 11
SAR PDU bytes 2, 3 > ATM Header 5 3
SAR PDU bhytes 4,5 8 14 15 SAR PDU
9 HEC - -
:AR PDU bytes 6. 7 10 52 T
AR PDU bytes 7, 8 11 SAR PDU 56 57
12
55
SAR PDU bytes 46, 47 gg
Receive Cell Status Word
Unused
Unused
Unused
FIGURE 32.HEC-disabled 56-byte mode
____ S6-bytecell
User Header bytes 0, 1 8-bit UTOPIA 16-bit UTOPIA
User Header bytes 2, 3 T 1 5
ATM Header bytes 0, 1 2 3) User Header
3 User Header 5 5
ATM Header bytes 2, 3 7 = : ATM Header
SAR PDU bytes 0, 1 5 9 10
SAR PDU bytes 2. 3 S | ATM Header = ii SAR PDU
SAR PDU bytes 4,5 8 - -
9 53 54
sembetl | =
VIes 7. 11 SAR PDU
54
55
SAR PDU bytes 46, 47 56
Receive Cell Status Word
Unused
Unused
Unused
Version 4.1 MXT3010 Reference Manual

Receive cell flow

Receive cell flow

The UTOPIA Receiver transfers cells from an external framing
deviceinto the Cell Buffer RAM. All cells received from the
physical layer device are written into the Cell Buffer RAM. If

HEC insertion and checking is enabled in the Mode Configura-

tion Register (R42), the validity of the cell's HEC byte is marked
in bit 9 of the Receive Cell Status field. If HEC insertion and
checking is disabled, bit 9 should be ignored.

Since Header Error Control (HEC) generation and checking is a
PHY Layer function, the MXT3010 discards the HEC field
before copying the cell into the Cell Buffer RAM. As a result, a
cellin the Cell Buffer RAM consists of 52 contiguous bytes with
no gap existing between the ATM Header and the SAR PDU.

The UTOPIA port writes receive cells into the Cell Buffer RAM
beginning at location 0x0000. The UTOPIA Receiver writes
successive cells into successive cell buffers in the Cell Buffer
RAM. During device initialization, the programmer can specify
how many cells the UTOPIA Receiver can use. If the Receiver
buffer size is set to six cells, for example, the Receiver loops
around after the sixth cell and begins writing cells again at loca-
tion 0x0000 in the Cell Buffer RAM. If the Receiver buffer size
is set to eight cells, the receiver loops around after the eighth cell
and begins writing cells again at location 0x0000 in the Cell
Buffer RAM.

1. For applications which do not use the UTOPIA port, HEC generation and
checking is provided in the SWAN processor. See “HEC generation and
check circuit” on page 25.

MXT3010 Reference Manual Version 4.1 77

The UTOPIA port

78

A Receive Cell Statusword is stored in Cell Buffer RAM at the
compl etion of each receive cell. The format of the Receive Cdll
Statusword is:

5 14 18 12 11 10 9 8 7 6 5 4 3 2 1 O

Reserved ‘ HE‘ CE ‘ PTI Copy PHY Addr
Bits Name Function
4.0 PHY Address The address of the PHY from which this cell was
received.

7.5 PTI Copy A copy of the Payload Type Indicator field from the
received cell header.

8 CE CRC10 Error
When set to one (1), this bit indicates an erroneous
CRC was received. Otherwise, thishit is zero (0).
Thisbit should be ignored when CRC10isnot in use.

9 HE HEC Error
When set to one (1), this bit indicates an erroneous
HEC was received. Otherwise, thisbit is zero (0).
This bit should be ignored when HEC is not in use.

15:10 Reserved These bits should be ignored on reads.

The location of the Receive Cell Status word in the Cell Buffer
RAM isdependent on the configured cell length, 52 or 56 bytes.
For more information, see “Receive Cell Status location” on
page 63.

UTOPIA receiver counters

The UTOPIA Receiver contains two counters, RXBUSY and
RXFULL, that track cells received from the PHY layer and
stored in the Cell Buffer RAM. Figure 33 on page 79 and
Figure 34 on page 81 show how these counters are used in the
reception process. A written description follows in “The
RXBUSY counter” on page 79 and in “The RXFULL counter”
on page 81.

Version 4.1 MXT3010 Reference Manual

Receive cell flow

FIGURE 33.The RXBUSY counter

Portl
Done
Port2
UTOPIA Cell Done UTOPIA Cell
CPU Received # CPU Received
Decrement | | Increment Decrement | [Increment
Receiver Busy Counter Receiver Full Counter
(Cells in Cell Buffer RAM (Cells in Cell Buffer RAM
awaiting CPU Rx servicing awaiting DMA transfer)
RXCLAV —P 3 ESS3 Rx Attention
to RXENB_ <a— Control Logic — B ESSO Rx Busy
CPU
The RXBUSY counter
Function The RXBUSY counter tracksthe arrival of new cdllsinthe Cell

Buffer RAM awaiting CPU servicing. The deviceinitialization
process clears the RXBUSY counter to zero.

Incrementing Asthe UTOPIA receiver placesthe last byte of a cell into the
receive section of the Cell Buffer RAM, it increments the
RXBUSY counter.

Signals driven TheRXBUSY signal of theRXBUSY counter driveshit 9 of the
External State Signals (ESS) register (R42). The SWAN proces-
sor tests ESS9 to determine when one or more cells are awaiting
processing by the CPU in the Cell Buffer RAM:

» If ES =0, no cells are awaiting processing.

» IfESS® =1, one or more cells are awaiting processing.

The CPU can use the ESS9 signal to conditionally branch to a
receive cell service routine. For example, a Branch Immediate

MXT3010 Reference Manual Version 4.1 79

The UTOPIA port

Decrementing

instruction (“Bl Branch Immediate” on page 272) can specify a
conditional branch to $SRECV_CELL if ESS9 is a 1:

Bl $RECV_CELL ESS9/1

In addition to the RXBUSY indication on ESS9, a receiver
attention output of the RXBUSY counter drives ESS3. This sig-
nal indicates that the receive buffer is almost full:

e |[f ESS3 =0, the Cell Buffer RAM receive buffer contains
less than 4 cells.

« |[f ESS3 =1, the Cell Buffer RAM receive buffer contains 4
or more cells.

As the CPU services the newly arrived cell, the CPU decrements
the RXBUSY counter. The CPU decrements the RXBUSY
counter using the Counter System Operation feature of the
Branch instructions. For example, a Branch Immediate (BI)
instruction can specify an unconditional branch to $SMAIN and
decrement the RXBUSY counter using a counter system opera-
tion option. See “Counter system operation” on page 269.

Bl $MAI N DRXBUSY

Version 4.1 MXT3010 Reference Manual

Receive cell flow

FIGURE 34.The RXFULL counter

UTOPIA Cell

CPU Received

Decrement | | Increment

Receiver Busy Counter

(Cells in Cell Buffer RAM
awaiting CPU Rx servicing)

Portl

Done
Port2
Done UTOPIA Cell

CPU Received

vy ¥

Decrement | | Increment

Receiver Full Counter
(Cells in Cell Buffer RAM
awaiting DMA transfer)

\

Control Logic

#

CPU

/

— ESS3 Rx Attention
—» ESS9 Rx Busy

RXCLAV —P»
to RXENB_ <e——

The RXFULL counter
Function The RXFULL counter indicates to the DMA engines and the
CPU that cellsareinthe Cdl Buffer RAM awaiting transfer. The
RXFULL counter also drivesthe RXENB_signal to the PHY
devices. The deviceinitialization process:

» Partitions the Cell Buffer RAM.

» Establishes a value for the number of cells that can be
stored in the Cell Buffer RAM receive section.

» Clears the RXFULL counter to zero.
Incrementing As the last byte of a cell is placed into the receive section of the
Cell Buffer RAM by the UTOPIA receiver, it increments the
RXFULL counter.

When the MXT3010 receives a cell, it tests the RXCLAV signal
from the PHY device, which signals the presence of a cell ready
for transfer. The UTOPIA Port controller tests the availability of
space in the Cell Buffer RAM by examining the count kept by

MXT3010 Reference Manual Version 4.1 81

The UTOPIA port

Decrementing

the RXFULL counter. If the MXT3010 can accept acell and the
PHY hasacell to send, the UTOPIA port enablesthe transfer by
asserting the ATM layer Receiver Enable (RXENB) output.

ThePort 1/Port 2 DMA controllers can decrement the RXFUL L
counter at the completion of a data transfer operation if the
DMA command specifies the UTOPIA post-DMA operative
directive (POD) optioninamemory write operation. For further
information on POD and other DMA instruction options, see
“The Control instruction field option” on page 287.

Alternatively, the CPU can decrement the RXFULL counter
after the received cell has been processed. As with the RXBUSY
counter, the CPU decrements the RXFULL counter by specify-
ing a Branch instruction with an option. For example, a Branch
Immediate (BI) instruction can specify an unconditional branch
to $SMAIN and decrement the RXFULL counter using the DRX-
FULL counter system operation option.

Bl $MAI N DRXFULL

Whether RXFULL is decremented by use of a Branch instruc-
tion or by use of a DMA instruction, the CPU must decrement
the RXBUSY counter whenever it finishes handling a cell.

Transmit cell flow

82

The UTOPIA transmitter transfers cells from the Cell Buffer
RAM to an external framing device. All cells to be transmitted
must reside in the Cell Buffer RAM before transmission. As part
of the transmit operation when HEC generation is enabled, the
UTOPIA transmitter inserts a valid HEC between the last byte
of the ATM Header and the first byte of the SAR-PDU. In 8-bit
mode, only the 8-bit HEC is inserted; in 16-bit mode, the 8-bit
HEC plus an 8-bit stuffer are inserted.

Version 4.1 MXT3010 Reference Manual

Transmit cell flow

The UTOPIA port transfers cells from the Cell Buffer RAM
beginning at location 0x0200. The UTOPIA transmitter reads
successive cells from the Cell Buffer RAM. During deviceini-
tidization, the programmer can specify how many cells the
UTOPIA transmitter should use. If the transmitter buffer sizeis
set totwo cells, thetransmitter loops around after the second cell
and begins reading cells again at |ocation 0x0200 in the Cell
Buffer RAM. For example, if thetransmitter buffer sizeisset to
six cells, the transmitter loops around after the sixth cell and
begins reading cells again at location 0x0200 in the Cell Buffer
RAM.

Each transmit cell buffer is associated with an 16-bit control
word. The transmit control word is written through a FIFO-like
internal memory mapped into R43. Writes to R43 push control
words onto the control byte FIFO for use when the transmit
operation is executed.

The format of the transmit control word is:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ‘ [‘ CG ‘ TXPHY
Bits Name Function
4.0 TXPHY Select the address of the target PHY in amulti-PHY
system
5 CG Generate and insert a CRC10 for this cell
6 | Insert unassigned cell
15:7 Reserved Programs should write a zero to these hits.

The UTOPIA Control FIFO register recirculates its output back
to itsinput. For applications that only transmit one type of cell,
the 8 locations in R43 can be loaded at initialization time and
need not be written again.

MXT3010 Reference Manual Version 4.1 83

The UTOPIA port

UTOPIA transmitter counters

The UTOPIA transmitter contains two counters, TXBUSY and
TXFULL, that track cellsin the transmit section of the Cdll
Buffer RAM. Figure 35 on page 84 and Figure 36 on page 85
show how these counters are used in the transmission process. A
written description follows in “The TXBUSY counter” on
page 84 and in “The TXFULL counter” on page 86.

FIGURE 35.The TXBUSY counter

Portl
Done
Port2
UTOPIA Cell UTOPIACell Done
Tx begins C;U Tx b;gins ‘ C;U
Decrement | | Increment Decrement | | Increment

Transmitter Busy Counte
Transmitter Full Counter (Cells in Cell Buffer RAM
loaded by DMA transfer)

N

TXCLAV —P 3 ESS2 Tx Attention
Control Logic
to TXENB_ <—— —» ESS10 Tx Full
CPU
The TXBUSY counter
Function The CPU uses the TXBUSY counter to inform the UTOPIA

transmitter that a new cell in the Cell Buffer RAM is ready for
transmission. When the TXBUSY counter is non-zero, the
MXT3010 generates the ATM layer Transmit Enable
(TXENB_) output signal that informs the PHY device that the
MXT3010 is ready to send a cell.

84 Version 4.1 MXT3010 Reference Manual

Transmit cell flow

Incrementing Program execution can be accelerated if the DMA controller
increments the TXBUSY counter after it reads data. Thistech-
nique requires the DMA command to specify a memory read
operation with the POD option (see “Post-DMA Operation
Directives (PODs)” on page 109). For example:

DMALR rsa/rsb, rla[BC#, CRC{X Y}, POD, ST]
DMA2R rsal/ rsb, rla[Bd #, POD, ST]

Alternatively, the CPU can increment the TXBUSY counter by
specifying a Branch instruction with a counter system operation
option. For example:

Bl $MAIN | TXBUSY

Decrementing As the UTOPIA transmitter processes the first byte of a cell, the
transmitter decrements the TXBUSY counter.

FIGURE 36.The TXFULL counter

Portl
Done
Port2
UTOPIA Cell UTOPIA Cell Done
Tx b;gins C;U Tx b;gins ‘ C;U
Decrement | | Increment Decrement | | Increment

Transmitter Busy Counte
Transmitter FullCounter (Cells in Cell Buffer RAM
loaded by DMA transfer)

N

TXCLAV —P 3 ESS2 Tx Attention
to TXENB_ <ag Control Logic

#

CPU

— ESS10 Tx Full

MXT3010 Reference Manual Version 4.1 85

The UTOPIA port

Function

Signals driven

Incrementing

86

The TXFULL counter

The TXFULL counter tracks the number of cellsthat are avail-
able in the Cell Buffer RAM for transmission. The CPU uses
this counter to determineif space is available in the Cell Buffer
RAM to assemble acell viaDMA transfers.

The TXFULL output of the TXFULL counter is connected to
ESS 10.

« |[f ESS 10 = 0, the Cell Buffer RAM transmit buffer has
space available.

« IfESS 10 =1, the Cell Buffer RAM transmit buffer queue
is full, and the CPU does not build a cell.

The CPU can use the ESS 10 signal to conditionally branch to a
transmit cell routine, since available space allows cell building
to begin. For example, a Branch Immediate instruction (“Bl
Branch Immediate” on page 272) can specify a conditional
branch to $TRANSMIT_CELL if ESS10is a O:

Bl $TRANSM T_CELL ESS10/0

The Tx Attention output of the TXFULL counter is connected to
ESS 2. This signal indicates that the transmit buffer is approach-
ing a drained state.

e |f ESS 2 =0, the Cell Buffer RAM transmit buffer contains
more then 2 cells.

* |[f ESS 2 =1, the Cell Buffer RAM transmit buffer contains
2 or fewer cells.

As the CPU begins processing a new cell, the CPU increments
the TXFULL counter. Now, the CPU can queue the next cell for
transmission as a background task. The CPU increments the
TXFULL counter by specifying a branch instruction with an
option. For example:

Bl $MAIN | TXFULL

Version 4.1 MXT3010 Reference Manual

Transmit cell flow

Decrementing

Asthe UTOPIA transmitter processes the last byte of acell, the
transmitter decrements the TXFULL counter.

CRC10 generation and checking support

TheUTOPIA port can perform CRC10 generation and checking
in support of AAL3/4, OAM cells, and RM cells. Generation of
CRC10 iscontrolled on a cell-by-cell basis for transmission.
CRC10 checking is performed on all receive cdlls.

The UTOPIA transmitter generates and inserts a CRC10 for a

cell if a1l waswritten into the CG hit of the control byte for the

cell buffer (see “R43-write UTOPIA Control FIFO register” on
page 205). If CG = 1, the UTOPIA transmitter generates and
inserts a CRC10 field into the cell. If CG = 0, the CPU does not
insert a CRC10 field into the cell. The CG bit should be set when
gueuing an AAL3/4, OAM cell, or RM cell for transmission.

The SWAN processor can determine if a CRC10 error exists for
a received cell by checking the CE bit in the second halfword of
the received cell. If CE = 1, a CRC10 error exists in the cell. If
CE =0, no CRC10 error exists in the cell. If a cell is from a con-
nection that does not use a CRC10 field, the state of CE is irrel-
evant and should not be checked.

MXT3010 Reference Manual Version 4.1 87

The UTOPIA port

Multi-PHY support

The MXT3010 supports the connection of up to 16 physical
portstoasingle UTOPIA port. The UTOPIA port iscompliant1

with the ATM Forum’s Level 2 specification for Multi-PHY
operations, but can also support Level 1 devices. Bits [15:9] of
the UTOPIA Configuration register (R62) are used to support
multi-PHY operation. The bit assignments are as follows:

TABLE 15. Bit assignmentsfor multi-PHY operation

Bits Description

13:9 UTOPIA Port Most Significant PHY Address

The UTOPIA Port Receiver polls PHY devices searching for an
RXCLAV by incrementing the polled address according to the
UTOPIA Level 2 specification. The UTOPIA Port Receiver
knows that it has reached the |ast address and should begin at
zero again when it reaches this address. For examples of the use
of these hits, see Figure 37 on page 89 and Figure 38 on
page 90.

15:14 Number of Physical PHY devices present

Thisvaluetellsthe UTOPIA Port Receiver the number of physi-
cal PHY devices present. Thisin turn determines the number of
RXCLAV/TXCLAV and RXENB_/TXENB_ signalsthat should
be used.

00 Reserved
01 1-PHY mode
10 2-PHY mode
11 Reserved

1. Whilethe MXT3010 is compliant with the ATM Level 2 specification, it
uses athree-clock polling cycle rather than the two-clock polling cycle
shown in the specification diagrams. In addition, the MXT3010 does not
provide an idle address of 1F between addresses. The three clock polling
cycle reduces the number of PHY devices that can be polled during a 52-
clock cell timefrom 26 to 14. Thus, if 16 PHY devices are used, more than
one cell timeis needed to poll them all. Refer to Application Note 20,
“MXT3010EP UTOPIA Level 1 and Level 2 Interface Operatiforfurther
infomration.

88 Version 4.1 MXT3010 Reference Manual

Multi-PHY support

The use of bits[15:9] isbest understood by considering the con-
figurations shown in Figure 37 and Figure 38.

FIGURE 37.Level 2 PHY configurations

— 0
TXCTRL[3:1] 16-port —
MXT3010 device .
— 15
— 0
TXCTRL[31] 4-port I—
MXT3010 device —
— 3
|
Note: While only transmit control Avort — 4
signals (TX) signals are shown, a d:\)/ice :
corresponding set of receive (RX) L
signals is also used. |
— 8
4-port +—
device —
— 11
— 12
4-port +—
device |—
— 15

Address control (i.e. which device
is 0-3, which is 4-7, etc.) provided
by host or other external device

The two implementations shown are logically equivalent Level
2 configurations. Since thereis only onelogical PHY, hits
[15:14] should be 01 to select 1-PHY mode. Since the most sig-
nificant PHY addressis 15, bits[13:9] should be 1111.

MXT3010 Reference Manual Version 4.1 89

The UTOPIA port

FIGURE 38.Mixed Level 1 and Level 2 PHY configuration

TXCTRL[1:0] — 0
TXCLAV Level 1
TXENAB device
- 3
MXT3010
— 4
TXCTRL[3)/TXCLAV[1] Level2 —
TXCTRL[2ITXENAB[1}gy, device
7

Notes:1.While only transmit control signals (TX) are shown, acorre-
sponding set of receive (RX) signalsis also used.

2. Inthis configuration, the Level 1 device must tri-state the
RXDATA/RXSOC leads when its RXENB__ pin is de-asserted.

The implementation shown has two logical PHY's. In this con-
figuration, TX/RXCTRL[3] isused as TX/RXCLAV for the sec-
ond PHY, and TX/RXCTRL[2] isused as TX/RXENB_ for the
second PHY. Sincethere are two logical PHY' s, bits [15:14]
should be 10 to select 2-PHY mode. Since the most significant
PHY addressis 7, bits [13:9] should be 0111.

Mode TX/RX CLAV TX/RX ENB ADRS
1PHY TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [3:0]
2PHY

PHY 0 TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [1:0]

PHY 1 TX/RXCTRL[3] TX/RX CTRL[2] TX/RX CTRL [1:0]

Version 4.1 MXT3010 Reference Manual

Receive Header Reduction hardware

Receive Header Reduction hardware

The MXT3010 provides receive header reduction via bits [6:0]
of the System register (R63). Theresults of thisreduction can be
used as a Channel I1D. The bit definitions are as follows:

TABLE 16. Receive Header Reduction control

Bits Name Function

6:0 VPI/VCI UtopiaReceiver Reduction Mask

Setting

0000001
0000011
0000111
0001111

0000010
0000110
0001110
0011110

0000100
0001100
0011100
0111100

0001000
0011000
0111000
1111000

0010000
0110000
1110000

0100000
1100000

1000000
0000000

Value written into ATM Header lower
halfword in CBR

{0,0,0,0,0,0, vpi(0), vci(7:0), clp}
{0,0,0,0,0, vpi(1:0), vci(7:0), clp}
{0,0,0,0, vpi(2:0), vci(7:0), clp}
{0,0,0, vpi(3:0), vci(7:0), clp}
{0,0,0,0,0, vpi(0), vci(8:0), clp}
{0,0,0,0, vpi(1:0), vci(8:0), clp}
{0,0,0, vpi(2:0), vci(8:0), clp}
{0,0, vpi(3:0), vci(8:0), clp}
{0,0,0,0, vpi(0), vci(9:0), clp}
{0,0,0, vpi(1:0), vci(9:0), clp}
{0,0, vpi(2:0), vci(9:0), clp}
{0, vpi(3:0), vci(9:0), clp}
{0,0,0, vpi(0), vci(10:0), clp}
{0,0, vpi(1:0), vci(10:0), clp}
{0, vpi(2:0), vci(10:0), clp}
{vpi(3:0), vci(10:0), clp}
{0,0,vpi(0), vci(11:0), clp}
{0,vpi(1:0), vci(11:0), clp}
{vpi(2:0), vci(11:0), clp}
{0,vpi(0), vci(12:0), clp}
{vpi(2:0), vci(12:0), clp}
{vpi(0), vci(13:0), clp}
{vci(14:0), clp}

MXT3010 Reference Manual Version 4.1 91

The UTOPIA port

Receive header reduction mode is enabled by bit 0 of the
UTOPIA Configuration register (R62).

TABLE 17. Receive Header Reduction enable bit

Bits Description

0 UTOPIA Receiver Reduction Mode Enable Bit

0 Reduction Function Disabled (ATM Header bytes [2:3] written
into the Cell Buffer RAM unchanged)

1 Reduction Function Enabled (ATM header bytes [2:3] written
into the Cell Buffer RAM after reduction function performed
according to Reduction Mask Setting selected by R63[6:0]).

92 Version 4.1 MXT3010 Reference Manual

UTOPIA port configuration summary

UTOPIA port configuration summary

UTOPIA configuration information is stored in the UTOPIA
Configuration register, R62. The SWAN processor passes this
information to the UTOPIA Port at system initialization. Two

bits (0,1) inthe ESSregister (R42) are also used in the program-
ming of the UTOPIA port. Descriptions of these bits appear in

the tables referenced in Table 18. For a complete listing and
description of all of the bits in these registers, see “R42-read
External State Signals (ESS) register” on page 200 and “R62
The UTOPIA Configuration register” on page 219.

TABLE 18. UTOPIA configuration information

Bits Function Reference

R42[0] HEC control Table 13 on page 72

R42[1] Cell length control Table 13 on page 72

R62 [0] UTOPIA Receiver Reduction mode Table 17 on page 92
enable bit

R62[3:1] Receive Cell Buffer sizein the Cell Table 9 on page 60
Buffer RAM (000 = Receiver Reset)

R62[6:4] Transmit Cell Buffer size in the Cell Table 9 on page 60
Buffer RAM (000 = Transmitter Reset)

R62 [7] UTOPIA Port operational / output Table 14 on page 73
clock frequency selection

R62 [8] UTOPIA Port data bus width Table 11 on page 71

R62[13:9] UTOPIA Port most significant PHY Table 15 on page 88
address

R62 [15:14] Number of physical PHY devices Table 15 on page 88
present

R63[6:0] Receiver Header Reduction control Table 16 on page 91

MXT3010 Reference Manual Version 4.1 93

The UTOPIA port

UTOPIA port sequence diagrams

This section shows sequence diagrams for the following
UTOPIA Port operations:

» Receive timing for single PHY, 8-bit mode (Figure 39 on
page 94)

e Transmit timing for single PHY, 8-bit mode (Figure 40 on
page 95)

« Receive full timing for single PHY, 8-bit mode (Figure 41
on page 95)

e Transmit full timing for single PHY, 8-bit mode (Figure 42
on page 95)

Set-up times, propagation times, and other timing information
for the UTOPIA Port interface are provided in “Timing” on
page 343.

FIGURE 39.UTOPIA Port receivetiming - single PHY, 8-bit mode

. 4 RxPeriod .
b E—

RXSOC ﬂ i\ Note 1 vy /7 ;5
RXENB_ . K\ ; /; l K\ I
. . . —7
RXDATA:0] %(X 1 XX H2>(1 pa7 X X pas X X _h1 X X2
1 48 1 1 1 1 ' 1 1
RXCLAV . —— :; ;; = 7 —

Notes for Figure 39, Figure 40, Figure 41, Figure 42:

1. RXSOC must not be asserted outside the scope of avalid cell. That
is, it can only be asserted while RXENB_is asserted (low).

2. RXCLAV/TXCLAV must be stable during octets 45 through 48.

L
/

94 Version 4.1 MXT3010 Reference Manual

UTOPIA port sequence diagrams

FIGURE 40.UTOPIA Port transmit timing - single PHY, 8-bit mode

. 4 TxPeriod

TXSOC : ﬁ "\\ Note 1 , : /A “
1 1 : 1 / / U 1 1 :
TXENB_ | /; I K\ I I ;. l /7 I K\ I
; | : : 7 7/ : ; | |
TXDATA[7:0]) X 11 XX H2>4 par X X pas X X hz X X2
, P48 I : ! : I I I
TXCLAV . /L . .
. . . R A . . .
. . X \ X /, / " Note2 | / X \
FIGURE 41.UTOPIA Port receive full timing - single PHY, 8-bit mode
: RxPeriod | | :
RXSOC L,] T\ Note 1 : :
7/ ' ' '
I ' /[' l : I I I
RXENB__. I A\ I I I I

RXDATA[7:0] P4 P48)<:l X H1)O(Hz)O(H3)O(H4)O< HEC)

. Y : : : : :
RXCLAV | Note2. ',;Jl I \

FIGURE 42.UTOPIA Port transmit full timing - single PHY, 8-bit mode
. 4 TxPeriod .

> i J l I | ;
ek /N, NSNS\

: g : : : : :
TXCLAV . Note2 . ’,;J! ! \

MXT3010 Reference Manual Version 4.1 95

The UTOPIA port

96 Version 4.1 MXT3010 Reference Manual

cuarter7 The Portl and Port2 Interfaces

—) DRAM
Agzlccei‘ftifn ' Multi-purpose .
Devices DMA (Port2) High Mo Bottars
— Cell Buffer RAM Performance & Other
gl\l-:i\t(car UTOPIA DMA (Portl) Information
Fabric Port Mem ControIIerI
Instruction Cache I
; ; SRAM
Fast Memory _ Fast Memory
: o Controller P> Instructions &
Host | Isnltger:;;:?l!‘% [, Processor ' Data Structures
Cell Scheduling
i
System I

Port1 and Port2 are high-speed interface ports. For each port, this
chapter includes:

» Port interface overview ¢ Control signals

» Port operations e Burst and non-burst operations

+ Port DMA controllers + Data flow to Cell Buffer RAM

MXT3010 Reference Manual Version 4.1 97

The Portl and Port2 Interfaces

Port interface overview

SWAN processor
memory access

DMA commands

98

Both Port1 and Port2 provide high speed transfer paths to and
from the MXT3010 Cell Buffer RAM. The characteristics of the
two ports differ, however, and are shown in Table 19.

TABLE 19. Characteristicsof Portl and Port2

Portl Port2

Supportsonly burst mode opera- Supports both burst and non-burst
tions. mode operations.

Provides a 32-bit, multiplexed Provides a16-bit, multiplexed address
address and data bus. and data bus

Provides access for COMMIN Provides a mechanism for memory-

and COMMOUT register 1/0 mapped 1/0 vianon-burst mode. This

transfers. can be used to access the program-
ming interface of aPHY deviceor a
CAM.

Provides CRC-32 generation
and checking.

The SWAN processor does not access Portl or Port2 address
space directly. The processor programs the Port DMA Control-
lersto perform a DMA read or write operation to move the data
between the Cell Buffer RAM and Port1/Port2 address space.
The SWAN processor initiates all port operations. It initiates a
port transfer by executingaDMA instruction that writesaDMA
command into the port's command queue.

A typical DMA command format is shown below:

DMALR rsa/rsb rla [BC/#] [CRCX|CRCY] [POD] [ST]

A single DMA command can transfer of up to 255 bytes of
information. The DMA command specifies:

Version 4.1 MXT3010 Reference Manual

Port interface overview

» The transfer’s starting address in memory (from registers
rsa and rsb)

» The transfer’s starting address in the Cell Buffer RAM
(from register rla)

» The size of the transfer (from BC/#, or if no BC/# value is
specified, from the Alternate Byte Count/ID register, R52)

» The direction of the transfer (Read or Write) (from the
choice of DMAR or DMA1W, for example)

» A series of instruction field options (IFOs) that control cer-
tain aspects of the transfer (BC/#, CRCX|CRCY, ST, POD)

For more information about the DMA commands, see page 283

Instruction field The Portl instruction field options supported within the DMA
optionssupported instruction include Byte Count (BC/#), Cyclical Redundancy
with the DMA Check (CRCX or CRCY), Silent Transfer (ST), and Post-DMA
instruction Operation Directive (POD). If no BC/# is specified in the com-

mand line, the command executes using a subset of the options
(BC/#, CRX/CRY) from the Alternate Byte Count/ID register,
R52.

The Port2 instruction field options supported within the DMA

instruction include Byte Count (BC/#) and Post-DMA Opera-

tion Directive (POD). If no BC/# is specified in the command

line, the command executes using the byte count (BC/#) field
from the Alternate Byte Count/ID register, R52.

Detailed descriptions for instruction field options supported
with Portl and Port2 DMA instructions appear in the sections
cited in the following table.

IFO For Further Information, See

BC “The Byte Count instruction field option (BC)” on page 286

CRCX, “CRC partial result registers and the CRCX/CRCY instruction
CRCY field option” on page 103 (Port1 only)

ST “Silent transfers” on page 105
POD “Post-DMA Operation Directives (PODs)” on page 109

MXT3010 Reference Manual Version 4.1 929

The Portl and Port2 Interfaces

The Port DMA command queues

The Portl and Port2 DMA Controllers each contain atwo-deep
command queue. The MXT3010 processor contains an addi-
tional single-entry command queue for each Port1 and Port2
interface. With these queues, software can have up to three
DMA Controller commands outstanding to each port simulta-
neously.

Portl and Port2 DMA command queues

The Port1 and Port2 command gqueues each have two stages
referred to as the queue stage and the active stage. Figure 43
shows the DMA command gueues for the MXT3010.

FIGURE 43.DMA command queues for the M XT3010EP

MXT3010 Processor

v
Y Y

Processor Command Processor Command
Queue Queue
Portl Command Port2 Command
Queue Stage Queue Stage
P1QRQ_ P2QRQ_
Portl Active Port2 Active
Stage Stage
P1RQ_ P2RQ_
Portl Port2

100 Version 4.1 MXT3010 Reference Manual

The Port DMA command queues

Bus parking

The DMA command information generated by a DMA read or
write instruction is written into the selected SWAN command
gueue. The command istransferred into the associated DMA
controller'scommand gqueue as soon asthe queueisavailable. If
the DMA controller's active stage is not busy, the DMA com-
mand is transferred from the command queue stage to the active
stage and a port bus DMA operation begins.

If, however, the DMA active stageisbusy, the operation remains
in either the SWAN or port DMA Controller queue stage until
the active operation completes. One cycle after the active oper-
ation completes, the DMA command queue operation is trans-
ferred into the active stage, and anew operation begins. If aport
DMA Controller command isissued whilethe SWAN command
gueue isfull, the processor stalls until the active operation fin-
ishes.

The QRQ _ output signal is asserted whenever acommand is

present a port's DMA queue. An external arbiter can use this sig-
nal to allow the MXT3010 to maintain ownership of a bus until

all commands are drained from both the active and queue stages
of the port DMA Controller. The arbiter does this by not
responding to requests from other devices as long as there is a
QRQ_ assertion on the port currently being serviced. Allowing
the MXT3010 to maintain bus ownership in this fashion is
referred to as “bus parking”. See “Port2 bus parking” on

page 158.

Testing DMA Controller queues with the ESS bits

Software can monitor the status of the DMA Controller com-
mand queues by testing External State Signals (ESS) 13 and 11
for Portl and ESS12 and 14 for Port2. Table 20 and Table 21
show how ESS status bits are used to indicate DMA Controller
status.

MXT3010 Reference Manual Version 4.1 101

The Portl and Port2 Interfaces

102

TABLE 20. ESSBitsfor DMA Controller status

ESShit Sate Function

1

12

13

14

0

B O P O Rr O K

Portl DMA Controller queue stage and active stage empty
Portl DMA Controller queue stage or active stage busy
Port2 DMA Controller queue stage and active stage empty
Port2 DMA Controller queue stage or active stage busy
Portl DMA Controller queue stage empty

Portl DMA Controller queue stage busy

Port2 DMA Controller queue stage empty

Port2 DMA Controller queue stage busy

TABLE 21. Example of DMA Controller statusbit utilization

ESS13& 11 Portl queue status

00 Controller queue stage and active stage empty
01 Controller queue stage empty; active stage busy
10 Invalid combination

1 Controller queue stage busy; active stage busy

Branch instructions can be used to control program flow based
on the status of these bits. For more information, see “Branch
Instructions” on page 261.

Version 4.1 MXT3010 Reference Manual

Port Controller features

Port Controller features

The Cyclical Redundancy Check 32 generator for
Portl

A CRC32 generator is provided in the Portl DMA Controller to
generate and to check AALS5 CRC32 polynomials during seg-
mentation and reassembly operations. The CRC32 circuit gener-
ates a CRC32 for a Convergence Sublayer (CS) Protocol Data
Unit (PDU) asitistransferred between the host memory and the
Cell Buffer RAM. The CRC32 generator operates on data 16-
bits at atime.

CRC partial result To support pipelined DMA operations, the MXT3010 imple-
registers and the ments two CRC32 partial result registers, CRC32PRX (R44,

CRCX/CRCY R45), and CRC32PRY (R46, R47). Each DMA instruction spec-
instruction field ifies, viaaninstruction field option (IFO), whether aCRC32 cal-
option culation occurs and if so, which of thetwo CRC32 partial result

registersto use. Specification of the CRCX/CRCY IFO is sum-
marized in Table 22.

TABLE 22. Specification of the CRCX/CRCY instruction field option

IFO Action

none CRC32 partial result registers are not modified

CRCX A CRC32 partial result is generated based on the CRC32PRX
register’s value and the result is deposited into CRC32PRX
(R44/R45).

CRCY A CRC32 partial result is generated based on the CRC32PRY
register’s value and the result is deposited into CRC32PRY

(R46/RAT).
Using partial To generate CRC32, a program must initialize the CRC32 logic
result registers with any prior partial result before the DMA data transfer

begins. For thefirst cell of aCS-PDU, initialize the selected par-
tial result register to OXFFFFFFFF. At the completion of the

MXT3010 Reference Manual Version 4.1 103

The Portl and Port2 Interfaces

Pipelined
operation

104

DMA transfer, read the CRC32 partial result from the selected
partial result register and save those results in the Channel
Descriptor to use the next time that a cell arrives. On transmits,
for thelast cell of an AAL5 CS-PDU, invert the partial result
before placing it into the last four bytes of the cell. On receives,
the program can test for a CRC32 error by testing the appropri-
ate CRC32 error bitinthe Sparse Event Register (R57) whenthe
final DMA transfer operation finishes.

Although the use of command queueing and pipelined DMA
operations requires that care be taken with CRC32 partial gen-
eration, these operations greatly enhance system performance.
Using dua partial result registers, firmware can keep the DMA
command gueue full by managing the CRC32 partial result reg-
isters and the CRC32X/CRC32Y instruction field option bits of
the DMA command.

Cyclical Redundancy Check operation acceleration

Theregistersfor the Cyclical Redundancy Check (CRC) and the
MXT3010 instruction Store Register Halfword (SRH) acceler-
ate the handling of CRC results during AALS5 packet segmenta-
tion or reassembly. Direct Memory Access operations function
independently of MXT3010 code execution oncethey have been
started. Because of this functional independence, firmware can
process the next channel descriptor in parallel with the DMA
transfer (and CRC accumulation) of the previous channel as
soon as the DMA operation has been committed for that previ-
ous channel. This parallelism provides processing time to the
SWAN that might otherwise be wasted waiting for the transfer
to complete. However, the program must still save the results of
the partial CRC accumulation at the conclusion of aDMA trans-
fer in the previously serviced Channel Descriptor.

Version 4.1 MXT3010 Reference Manual

Port Controller features

CRCXandCRCY Atthetimethat aDMA read or write operation with CRCX or
address holding CRCY indicated isinitiated to Port1, the MXT3010 automati-
registers cally stores the address contained in the internal Fast Memory
Link Address register into one of two temporary holding regis-
ters — either that for CRCX operations or that for CRCY opera-
tions. Typically, the address stored is the current Channel
Descriptor address.

Upon completion of the DMA transfer, the SWAN instruction,
SRH, writes the contents of the CRC partial result registers
(R44/ R45 or R46/ R47) to Fast Memory using the address con-
tained in either the CRCX holding register or the CRCY holding
register as the base address for the transfer. The programmer
must specify an offset with the SRH instruction to place the par-
tial results at the appropriate field within the Channel Descrip-
tor.

Silent transfers

On some occasions, it is desirable to perform CRC calculations
on data that did not traverse Portl.

» For LAN emulation purposes, the MXT3010 program may
need to add a header to a message from Portl memory
before transmitting the message.

* In AAL5, the MXT3010 program may need to add a trailer
to a message from Portl memory before transmitting the
message.

The MXT3010 provides this capability via théent transfer
instruction field option. When a Portl DMA instruction is issued
with the silent transfer (ST) option specified in the command
line, data is transferred into the Portl CRC logic, and the CRCX
or CRCY partial result is updated, as selected by the CRCX/
CRCY instruction field option. During a silent transfer, the
Portl state machine operates with the same timing as an ordi-

MXT3010 Reference Manual Version 4.1 105

The Portl and Port2 Interfaces

nary Portl DMA transfer (see Figure 45 on page 119), but no
P1ORQ or P1IRQ signalsare generated, the external arbiter
does not manipulate PLIASEL_or PITRDY _, and datais not
transferred on the Port1 bus.

Example 1 of Transmission of atypica AALS5 end of message cell typicaly
silent transfer use involvesat least three DMA instructions, represented by the fol-
lowing pseudocode:
DMAIR, 40 bytes, CRCX ; This moves 40 bytes of datainto the Cell
; Buffer RAM in preparation for transmission.
;A CRC isaccumulated on this data.
DMA1W, 4 bytes, CRCX, ST; Thisinstruction uses an rlavalue that points
; tothe UU, CPl, and length bytes at byte 40.
; Thisinstruction incorporates previously
; written UU, CPI, and length information
; into the CRC without modifying the contents
; of the Cell Buffer RAM.
DMA1R, CRCX, ST, POD ; Thisinstruction complements the CRC and
; writes the result to the location specified in
; rla(typically byte 44 of the cell). The POD
; option increments TXBUSY, informing the
; UTOPIA transmitter that anew cell in the
; Cell Buffer RAM isready for transmission.
; (See “The TXBUSY counter” on page 84.)

Example 2 of Itisoccasionally useful to provide asilent transfer without CRC

silent transfer use s that the queue state can be predicted. It may be desirable
under some circumstances to fill the SWAN processor’'s DMA
command queue and intentionally stall the processor. If the com-
mand queue is full, a processor stall can be achieved by intro-
ducing an additional DMA request. In this case, since a stall is
desired rather than a real DMA action, a zero byte silent transfer
should be specified, as such a request reaches the command
gueue, but does not reach the designated port queue.

106 Version 4.1 MXT3010 Reference Manual

Port Controller features

DMA Plus
instructions

Post-increment option on rla operations

Thetarget rlaregister can automatically increment when the
DMA transfer is completed with the DMA Plusinstruction. The
increment is 64 modulo 512. If eight 64-byte Cell Buffer regis-
tersare used, this savesthe SWAN processor the code needed to
advance the rlaregister to the next cell buffer in Cell Buffer
RAM following each DMA transfer.

Two steps are necessary to utilize the rlaincrement option:

1. To enable the rlaincrement option, set mode bit 5 in the
Configuration Register (R42).

2. Create aDMA Plusinstruction by adding a plus sign to any
DMA instruction for which the rlaincrement optionis
desired. The DMA Plusinstructions are DMA1R+,
DMA1W+, DMA2R+, and DMA2W+.

If the rlaincrement mode is not enabled, do not use the DMA
Plusinstructions. For more information on the DMA Plus
instructions, see “The RLA increment bit (i-bit)” on page 285.

Data alignment

The port DMA Controller operates on halfword-aligned data
located locally, such as in the Cell Buffer RAM, and in host
memory. On memory reads and writes, the local halfword
address is specified in the chosen local address register, rla. The
DMA controller programs the external halfword address into the
DMA instruction. The DMA controller performs data alignment
dynamically in those cases where the starting address of the
source and destination locations are not halfword aligned.

MXT3010 Reference Manual Version 4.1 107

The Portl and Port2 Interfaces

Byte manipulations on Portl

The Portl bus supports only word and halfword DMA writes,
with PAHWE [1:0] being used as selects for the half-words.
However, the P1 address leads (P1AD [31:0]) provide a byte
address, and the P1 bus supports byte DMA reads. The DMA
read operations can transfer even or odd byte counts and start or
end transfers on even or odd boundariesin system memory or in
Cell Buffer RAM.

Transfers that end on odd byte boundaries in the Cell Buffer
RAM result inthe single byte of the last halfword address being
stored aside in anticipation of the next transfer. This byteis not
accumulated in CRC calculations until the subsequent transfer is
initiated. Multiple transfers must be certain to end with a half-
word-aligned boundary to properly complete the CRC calcula
tion. Therefore, the beginning and ending of any multi-burst cell
accumulation process must occur on even byte boundaries. New
CRC accumulations that do not begin on an odd byte addressin
Fast Memory might include some arbitrary stale byte in the
transfer.

Table 23 showsthevalid and invalid transfersto usefor thefirst,
mid-cell, and last transfer for any given cell during cell con-
struction from system memory. Follow the rulesin Table 23 to
ensure that the cell accumulation begins and ends on proper
boundaries.

TABLE 23. Valid and invalid first, mid-cell, and last transfers.

rlaSart Byte Use of this start address and byte count is valid for:

Address Count |First Transfer Mid-Cdl Transfer Last Transfer

Even Even |Yes Yes Yes
Even Odd Yes Yes No?
Odd Even |No° Yes No?
Odd Odd |No® Yes Yes

a. Causes cdl to end on odd boundary
b. Causescell to start on odd boundary

108 Version 4.1 MXT3010 Reference Manual

Burst and non-burst operation (Port2)

Post-DMA Operation Directives (PODs)

The port DMA Controllers support afeature referred to as Post-
DMA Operation Directives, or PODs. PODs instruct the DMA
controller to perform UTOPIA port counter manipulationswhen
the operation ends. For instance, during reassembly, firmware
can instruct the DMA controller to decrement the RXFULL
counter by specifying the POD instruction field option in the
DMA1W command.

When aPOD isspecified withaDMA write operation, the DMA
controller decrements the UTOPIA port's RXFULL counter.
(See “UTOPIA receiver counters” on page 78.) The RXFULL
counter is used for UTOPIA RXENB_ assertion at the conclu-
sion of the DMA operation. The CPU is finished with a received
cell once the DMA command required to transfer the cell's SAR
SDU to memory is written into the DMA queue. CRC32 patrtial
results might still need handling.

If the POD directive is specified with a DMA read operation, the
DMA controller increments the TXBUSY counter when the
DMA operation finishes. (See “UTOPIA transmitter counters”
on page 84.) The CPU is finished with a transmit cell once it ini-
tiates the data transfer from memory. The CPU must be sure that
the appropriate command byte, ATM headers, and AAL Head-
ers/Trailers (if any) are written into the cell holder before the
data transfer completes.

Burst and non-burst operation (Port2)

A burst mode transfer includes an address cycle and one or more
data cycles. Burst mode is used with high-speed synchronous

transfer devices such as SRAMSs. In contrast, a non-burst trans-
ferincludes an address cycle and a single data cycle that models

MXT3010 Reference Manual Version 4.1 109

The Portl and Port2 Interfaces

transfers on atypica asynchronous multiplexed bus. Non-burst
mode is used with low-speed non-synchronous transfer devices
such asPHY's, CAMs, and FLASH memories.

While Port1 supports only burst mode operations, Port2 sup-
ports both burst mode and non-burst mode operations. Port2
burst mode DMA operations proceed similarly to Portl DMA
burst operations. During non-burst transfers, the Port2 DMA
controller can insert a programmable number of wait states and
can also generate control signalsthat allow direct connection to
external devices.

Selection of burst mode or non-burst mode operation is accom-
plished via the Port2 basic protocol. See “Port2 basic protocol”
on page 137.

Port Operations

Portl basic protocol

The Portl DMA interface supports two transfer mechanisms:
DMA burst-mode transfers initiated by the MXT3010 and com-
munication register I/O transfers initiated by an external device.
For information on DMA burst-mode transfers, see “Burst and
non-burst operation (Port2)” on page 109. For information on
communication register transfers, see “Communications” on
page 177

Figure 44 and Table 24 illustrate the correspondence between

rsa/rsb register values and the Portl bus signals for Portl DMA
transfers.

110 Version 4.1 MXT3010 Reference Manual

Port Operations

FIGURE 44.Diagram of Portl DMA instruction bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

rsa P1AD[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

rsb P1AD[15:0]

TABLE 24. Port 1 DMA instruction bit mapping

Reg Bits Function Port2 Bus
rsa 15:0 Address P1AD[31:16]
rsb 15.0 Address P1AD[15:0]

Portl control signals

Table 25 describes the signals that control Portl transfers. Two
additional status signals, CIN_BUSY and COUT_RDY, allow

both an external device and the SWAN processor to determine
the state of the COMMIN/COMMOUT register set.

Restrictions on Portl Addressing

The address counter for Portl does not increment across the
boundary between PLAD[15] (rsb[15]) and PLADJ[16] (rsa
[0Q]). Therefore, firmware running on the MXT3010 must
ensure that DMA transfers to/from Port1 do not cross 64K
boundaries.

MXT3010 Reference Manual Version 4.1 m

The Portl and Port2 Interfaces

TABLE 25. Signalsto control Portltransfers

Signal

Purpose

P1QRQ_

When the Port1 state machine detects the presence of acommand in the queue stage
of the Portl DMA command queue, the state machine assertsthis signal to an externa
device. This provides an advance indication that PIRQ _ will soon be asserted.

PIRQ_

When the Portl state machineisin the Idle state and detects the presence of a com-
mand in the active stage of the Port1 DMA command queue, the state machine asserts
this signal to an external device. The external device responds by manipulating
P1ASEL and PITRDY _ to control aDMA transfer.

P1ASEL _

Thissignal isan input to the MXT3010 and is driven by an external device. The
externa device uses this signal to select between address and data cycles. The exter-
nal device can also usethis signal in conjunction with PITRDY _ to desel ect (tri-state)
the Portl DMA engine.

PITRDY _

Thissignal isan input to the MXT3010 and is driven by an externa device. The
externa device uses this signal to insert wait states. The external device can also use
thissignal in with PIASEL _ to deselect (tri-state) the Portl DMA engine.

P1RD

During aDMA transfer, thissignal is an output driven by the MXT3010. During a
communication register transfer, thissignal is an input to the MXT3010 and isdriven
by an external device. In either use, this signal indicates whether the transfer is aread
() or awrite (0) transfer.

P1END_

Thissignal indicates the last cycle of a DMA operation.

P1AD[3L:0]

Thisisamultiplexed, bi-directional 32-bit bus. Datais read into and out of the
MXT3010 during DMA transfers and during communication register 1/0 transfers.
P1AD [31] isthe most significant bit, and PLAD[0] is the least significant bit.

PIHWE[1:0]

During data cycles, PAHWE[1] and PIHWE[0] act as Half Word Enables. If
PIHWE[1] is asserted, PLAD[15:0] should contain valid data. If PIHWE[0] is
asserted, PLAD[31:16] should contain valid data.

P1IRDY _

During DMA write data cycles, the MXT3010 asserts PLIRDY whileit is sourcing
valid data on P1AD[31:0]. During DMA read data operations, the MXT3010 asserts
P1LIRDY_if it is able to sample PLAD[31:0] on the next rising edge of clock.

COMMSEL

Thissignal isan input to the MXT3010 and is driven by an external device. The
external device uses this signal to perform communication register 1/0O.

P1ABORT _

Thisinput signal causes the termination of the data transfer at the completion of the
next data phase. It is used only by the P1 DMA engine, and the SWAN processor has
no knowledge of PLABORT _ signal indications.

CIN_Busy

Driven high when host writes COMMIN; cleared when MXT3010 reads COMMIN.

COUT _Ready

Driven high when MXT3010 writes COMMOUT; cleared when host reads COM-
MOUT.

LTN

Thisisaninternal signal indicating that the Last Transfer will occur Next (LTN).

12

Version 4.1 MXT3010 Reference Manual

Port Operations

Portl DMA read
transfers

The Portl control state machine

General information concerning DMA transfers

Asindicatedin“The Port DMA command queues” on page 100,
the MXT3010EP asserts a port’s RQ_ signal if that port has a
DMA command active. Additionally, it asserts the associated
QRQ__signal if there is an additional DMA command enqueued
behind the active command. The port’s RD signal indicates
whether the requested DMA transfer is to be a read or a write.
Arbitration logic external to the MXT3010EP monitors these
signals and, in the case of a shared bus, other requestors to deter-
mine whether to start a DMA transfer. Upon deciding to start a
transfer, the external logic steps ASEL_ and TRDY _through the
various states of a DMA transfer, concluding witheat Trans-

fer during which the MXT3010EP dismisses the current RQ_
request, and during which the arbitration logic again determines
subsequent bus utilization. TMXT3010EP re-asserts RQ__ at
the conclusion of the “Clean Up” state (which follolaast

Transfer) if a queued command exists at that time.

Table 26 shows the state table for Portl DMA read transfers, and
Figure 45 shows a sequence diagram for a DMA read transfer.
The table and the figure are best understood by considering the
function of the various inputs, outputs, and states for read trans-
fers.

Inputs

« ASEL_and TRDY_

These inputs are manipulated by an external device to step
the state machine through various states.

* LTN

This input (Last Transfer Next) is an internal MXT3010EP
signal based on the byte count. When asserted, it indicates
that the next DMA transfer state will be the last.

MXT3010 Reference Manual Version 4.1 113

The Portl and Port2 Interfaces

114

Outputs
« P1AD

This is a bi-directional address/data bus. It has four possible
states: Out-Address, In-Data, In-X (Don't Care), and Tri-
state.

. IRDY_

When this output is asserted, the MXT3010EP will sample
data on the rising edge of clock. Thus, in Table 26, IRDY_
is asserted only when P1AD is presentindpata.

« END_

The END_ output is asserted by the MXT3010EP during the
Last Transfer state.

Although not shown in Table 26, the state machine also has a
COMMSEL input. During DMA transfers, the COMMSEL sig-
nal is low for all states shown. Please see“Communication reg-
ister 1/0O transfers” on page 133 for COMMSEL high.

Sates

* Address 1, Automatic-turnaround, and Address 2

The state machine differentiates between two types of
Address state, Address 1 and Address 2.

When a DMA transfer begins, and the MXT3010EP
samples both ASEL_and TRDY _ as asserted (low), the
MXT3010EP drives address information onto the P1AD
bus; this is referred to as Address 1 state.

At some point after the Address 1 state begins, the
external controller that drives the ASEL_and TRDY _
leads will de-assert ASEL_ (high) while maintaining
TRDY_ in the asserted state (low). This step prepares
the MXT3010EP for data transfer. When the
MXT3010EP is thus switched, it will interject an
Automatic-turnaround state during which it will not

Version 4.1 MXT3010 Reference Manual

Port Operations

accept data (IRDY _ will be de-asserted (high)). The
Automatic-turnaround state provides time for the
MXT3010EP to turn off its bus drivers and for the
external device to turn on its bus drivers.

If the system using the M X T3010EP requires that
address cycles be inserted during a DMA transfer at
some point after data reads have begun, i.e. after the
automatic -turnaround state, these are referred to as
Address 2 states. Address 2 states differ from Address 1
states, as Address 2 states require that the external
controller manipulate ASEL__and TRDY _
appropriately to insert Tri-state intervals between the
Address 2 states and any data read states to allow time
for the bus direction to be changed.

» Data Read

During a Data Read, an external device drives data onto the
P1AD bus and the MXT3010EP reads that data. Thus, the
P1AD column in the state table sholmsData, and the
IRDY_ column shows assertion (low) indicating that the
MXT3010EP will read the data. There are three common
cases for what happens after a Data Read:
If ASEL_ remains de-asserted (high) and TRDY _
remains asserted (low), the Data Read is followed by
another Data Read.
If ASEL_ remains de-asserted (high) and TRDY _is de-
asserted (high), the Data Read is followed by a Data
Wait.
If ASEL_ remains de-asserted (high) and TRDY _
remains asserted (low), and LTN is asserted (high), the
Data Read is followed by a Last Transfer.

There are two other cases for what happens after a Data
Read, but these are used less often than the three listed
above.
If the states of ASEL_ and TRDY _ are switched to
ASEL_ asserted (low) and TRDY_ de-asserted (high),
the Data Read is followed by Tri-state (Datapd all
outputs are tri-stated.

MXT3010 Reference Manual Version 4.1 115

The Portl and Port2 Interfaces

If ASEL_isasserted (low) and TRDY _ remains
asserted (Ilow), the Data Read isfollowed by an Address
cycle. To avoid bus contention when inserting an
Address cycle, it is preferable that ASEL_/TRDY _ be
low/high such that the Data Read is followed by a Tri-
state (Data) (see previous paragraph), and that the Tri-
state (Data) then be followed by an Address 2 state
(ASEL_/TRDY _ both low).

« Data Wait

During a Data Wait, an external device drives data onto the
P1AD bus, but the MXT3010EP ignores that data. Thus, the
P1AD column in the state table shoMsX, and the IRDY _
column shows de-assertion (high) indicating that the
MXT3010EP will not read the data. There are three com-
mon cases for what happens after a Data Wait:

If ASEL_ remains de-asserted (high) and TRDY _
remains de-asserted (high), the Data Wait is followed by
another Data Wait.

If TRDY_is asserted (low) and LTN is de-asserted
(low), the Data Wait is followed by a Data Read.

If TRDY_is asserted (low) and LTN is asserted (high),
the Data Wait is followed by a Last Transfer.

There are two other cases for what happens after a Data
Wait, but these are used less often than the three listed
above.

If the states of ASEL_ and TRDY_ are switched to
ASEL_ asserted (low) and TRDY_ de-asserted (high),
the Data Wait is followed by Tri-state (DW) and all
outputs are tri-stated.

If ASEL__is asserted (low) and TRDY_ remains
asserted (low), the Data Wait is followed by an Address
cycle.

1. Thestate machine keepstrack of several versions of the tri-state condition.
For example, Tri-state (Data) refers to atri-state condition entered from
the Data Read state. See “Tri-state” on page 117.

116

Version 4.1 MXT3010 Reference Manual

Port Operations

» Tri-state

During a tri-state condition, all outputs are tri-state. This
condition is always entered whenever ASEL _ is asserted
(low) and TRDY _ is de-asserted (high). The state machine
maintains separate versions of the tri-state condition
depending upon the state from which the state machine
entered the tri-state condition. The versions are Tri-state
(Address 1), Tri-state (Address2), Tri-state (Automatic-turn-
around), Tri-state (Data), Tri-state (Data Wait), Tri-state
(Last Transfer), Tri-state (Clean-up), and Tri-state (Turn-
around Wait). As shown in Table 26, four of these states are
identical, transitioning to Data Read or Last Transfer
depending upon the state of the LTN input.

Last Transfer

Last Transfer is a special case of Data Read. It differs from
Data Read in three ways:
The END_ output is asserted (low) during Last Transfer

During this state, external logic decides how to
condition the ASEL_ and TRDY __ leads during the
Clean Up state that follows. This, in turn, will determine
the state that follows the Clean Up state.

It is followed by the Clean Up state.
» Clean Up

During the Clean Up state, the IRDY_ and END__ outputs
are de-asserted (high) and P1RQ _is de-asserted (high). The
state which follows Clean Up is determined by the condition
of ASEL_ and TRDY_. As indicated above, the condition of
these inputs was determined by the external arbitration logic
during the Last Transfer state.

MXT3010 Reference Manual Version 4.1 17

The Portl and Port2 Interfaces

TABLE 26. Satetablefor thePortl DMA burst read state machine

Input Outputsin the
o Signals Next State
2ld 5 2 2 7o
S |2 E K |Current Sate Next Sate 2 T g
1 L H X% Any Tri-state (current_statq Tri-state
2 L L X [Anypre Auto-turnarourft Address 1 Out-Addr H H
3 L L X |Any post Auto-turnaround Address 2 Out-Addr H H
4 H L X |Address1 Auto-turnaround Tri-state H H
5 H L L [Address?2 Data Read In-Data L H
6 H L H [Address?2 Last Transfer In-Data L L
7 H L L [Auto-turnaround Data Read In-Data L H
8 H L H |Auto-turnaround Last Transfer In-Data L L
9 H L L |DataRead Data Read In-Data L H
10 |H L H |DataRead Last Transfer In-Data L L
11 |H L X |Auto-turnaround Wait Auto-turnarouRd Tri-state H H
12 [H L L |DataWait Data Read In-Data L H
13 |[H L H |DataWait Last Transfer In-Data L L
14 |H L X |Last Transfer Clean Up In-X H H
15 |H L X |Clean Up, Tri-state (Last Transfer) Auto-turnaround Wait Tri-state H
16 |H L X |Tri-state (Address 1, Clean Up, Auto-turnarounf Tri-state H H
Auto-turnaround Wait)
17 |H L L |Tri-state (Address 2, Auto-turn- | Data Read In-Data L H
around, Data Read, or Data Wai
18 |H L H | Tri-state (Address 2, Auto-turn- | Last Transfer In-Data L L
around, or Data Wait)
19 |[H H X |Address 1, Auto-turnaround Waif,Auto-turnaround Wait | Tri-state H H
Tri-state (Address 1, Auto-turn-
around Wait)
20 |H H X |Address 2, Auto-turnaround, DatedData Wait In-X H H
Read, Data Wait, Clean Up, Tri-
state (Auto-turnaround, Addressp,
Data, Data Wait, Last Transfer, ar
Clean Up)
21 |H H X |Last Transfer Clean Up In-X H H
a. X =don't care
b. A pre Auto-turnaround state is any state between the most recent Last Transfer state and the

¢. This Auto-turnaround will be Auto-turnaround Wait if there is no RQ_ assertion at this time.

118

Auto-turnaround state of a DMA transfer. A post turnaround state is any state between the most

recent auto turnaround and the next Last Transfer state.

Version 4.1

MXT30.

10 Reference Manual

Port Operations

FIGURE 45.Port1 DMA Read transfer with aWaJt state

cLk ‘\Jf\/“\/“L/\Jf\/“L/\J*\/“x/“L/\JF\/

P1QRQ_ ' \QRQ reasserts lfanother DMAenters portqueuq’
PIRQL LN v f B/
PrasEL. N/ o
PITRDY_ & . ! /_\ I /— I
omm
P1END_ u ' : ' _'/
P1ADIN[31:0] |
P1ADout[31:0] ifwite) "@ I —
P1HWE[1:0] @—mm_mmm-
PURDY_ ./ . —\ :/_7\ o %_l
COMMSEL Lt i
LTN (Internal) +— . Lo /N

State LTX CU AD1 ATA RD RD DW RD RD RD LTX CU TRI
Next state is determined by table line #14 2 4 7 9 20 12 9 9 10 14 1 1

Figure 45 showsthe Last Transfer (LTX) and Clean Up (CU)
states of aprevious DMA read or writetransfer. During the Last
Transfer state, the external logic that controlsthe ASEL _and
TRDY _ leads makes a decision as to whether it should:

1. Allow aCOMM SEL transfer (having detected a communi-
cation request)

2. Prepare for another DMA transfer (having detected
P1QRQ _ asserted)

3. Relinquish the bus by entering a tri-state condition
4. Perform some other type of bus operation

Having decided on the appropriate course of action, the external
control logic conditionsASEL _and TRDY _at the beginning of
the Clean Up state so that the Port1 state machine will enter the
desired state after the Clean Up state.

MXT3010 Reference Manual Version 4.1 119

The Portl and Port2 Interfaces

120

In the example shown in Figure 45, the externa logic electsto
perform anew DMA transfer, and drives both ASEL__ and
TRDY _ to the asserted (Ilow) state during the Clean Up state.
With ASEL_and TRDY _ low, the Clean Up state qualifies as
Any pre Auto-turnaround state in the Table 26 state table. Thus,
when the state machine ssmplesthe ASEL__and TRDY __ leads,
line 2 of the state table causes the next state to be Address 1
(AD1).

During Address 1, the MXT3010EP puts address information
onto the PLIAD leads. IRDY _and END __are high. If, during
Address 1, the external logic drives ASEL __ high while leaving
TRDY _ low, the state machine samples that condition, and line
4 of the state table causes the next state to be Auto-turnaround.

During Auto-turnaround, the MXT3010EP prepares the PIAD
leads for datatransfer. IRDY _and END _ are still high. With
ASEL _till highand TRDY still low during the Auto-turn-
around state, line 7 of the state table causes the next state to be
aData Read state.

During Data Read, an external device places data on the PIAD
leads, and the MXT3010EP assertsthe IRDY _ lead low to indi-
cateitisgoing to samplethat data. Since ASEL _isstill high and
TRDY _islow, the state machine samples that condition, and
line 9 of the state table causes the next state to be a Data Read
State.

The second Data Read in the above example isidentical to the
previous Data Read, except that the external logic has driven
TRDY _ high. Since TRDY _has gone high, line 20 of the state
table causes the next state to be a Data Wait state. The use of a
Data Wait state is optional. It is shown in this figure and subse-
guent figures only to illustrate the waveforms that occur during
aData Wait.

Version 4.1 MXT3010 Reference Manual

Port Operations

During Data Wait, the incoming data is ignored (“In-X"), and

the IRDY_ lead goes high to indicate that the MXT3010EP is
not going to sample the data. In the example, TRDY _ returns is
returned to the low state, the state machine samples that condi-
tion, and line 12 of the state table causes the next state to be a
Data Read state.

During Data Read, an external device places data on the P1AD
leads, and the MXT3010EP asserts the IRDY_ lead (low) to
indicate it is going to sample that data. Since ASEL __is still high
and TRDY _is low, line 9 of the state table causes the next state
to be a Data Read state.

This Data Read is similar to the previous Data Reads. Since
ASEL__is still high and TRDY_is low, line 9 of the state table
causes the next state to be a Data Read state.

During this Data Read, the LTN signal (generated by the byte
count logic within the MXT3010EP) is asserted. Therefore, line
10 of the state table causes the next state to be a Last Transfer
(LTX).

Last Transfer is similar to a Data Read, except that the END _
output is asserted (low). Line 14 of the state table causes the next
state to be a Clean Up (CU) state. During the Last Transfer state,
the external controller decides what to do with the ASEL_ and
TRDY_ inputs during the Clean Up state. The state that follows
the Clean Up state depends upon that decision. In this example,
the decision was to tri-state the bus. Thus, during Clean Up, the
external controller has driven ASEL_ low and TRDY high.
When the state machine samples that condition, line 1 of the
state table causes the next state to be Tri-state (CleanUp).

MXT3010 Reference Manual Version 4.1 121

The Portl and Port2 Interfaces

FIGURE 46.Port1 DMA Read transfer Wlthout aWalt staIe

cLK Wwvw

P1QRQ_ | _/ \QRQ reasserts |fanother DMA enters queue/ :
PIRQ_ /_\ ! R ' :/ :R
PIASEL_ AN A\
PITRDY_ 1+ /—
piRD T
P1END_ L/ . I ml
P1ADIN[31:0] —
P1ADout[31:0] ifwitey .-@ - '
P1HWE[1:0] @_@ﬂﬁlmtﬂ@-
P1IRDY_ :_:/ : : : . : : : : :/_f__:
COMMSEL . . SR R
LTN (Internal) : ' ' : : : : : J N\

State LTX CU AD1 ATA RD RD RD RD RD LTX CU TRI °
Next state is determined by table line #14 2 4 7 9 9 9 9 10 14 1 1

Figure 46 is similar to Figure 45, but without await state. The
description of the figure isidentical, except that there are no
transitions controlled by lines 20 or 12 of the state table, as
PITRDY _remains asserted (low) throughout the transfer.
Rather, the read process continues to be determined by line 9 of
the state table until LTN is asserted and state table line 10
applies, causing the next state to be Last Transfer (LTX).

Portl DMA write transfers

Table 27 shows the state table for Portl DMA write transfers,
and Figure 47 shows a sequence diagram for aDMA writetrans-
fer. The table and the figure are best understood by considering
the function of the various inputs, outputs, and states for write
transfers.

122 Version 4.1 MXT3010 Reference Manual

Port Operations

Inputs

« ASEL_, TRDY_, LTN

These inputs have the same definitions as shown page 113.

Outputs
 P1AD

This is a bi-directional address/data bus. It has four possible
states: Out-Address, Out-Data, Out-X (Don't Care), and Tri-
state. In contrast to a DMA read, when the bus is changed
from an address mode (outward) to a write data mode (out-
ward), no intervening states are required.

. IRDY_

When this output is asserted, the MXT3010EP is sourcing
valid data. Thus, in Table 27, IRDY_ is asserted only when
the next state is Out-Data.

« END

The END_ output is asserted by the MXT3010EP during the
Last Transfer state. This output can be used by any external
logic that requires this information.

Although not shown in Table 27, the state machine also has a
COMMSEL input. During DMA transfers, the COMMSEL sig-
nal is low for all states shown. Please see“Communication reg-
ister 1/0 transfers” on page 133 for COMMSEL high.

Sates

» Address

In contrast to a DMA read, the write state machine has only
one state for Address. When a DMA cycle begins, and the
MXT3010 EP samples both ASEL_and TRDY_ as asserted
(low), the MXT3010EP drives address information onto the
P1AD bus; this is referred to as Address state.

MXT3010 Reference Manual Version 4.1 123

The Portl and Port2 Interfaces

« Data Write

During a Data Write, the MXT3010EP drives data onto the
P1AD bus and an external device reads that data. Thus, the
P1AD column in the state table sho@st-Data, and the
IRDY_ column shows assertion (low) indicating that the
MXT3010EP is sourcing valid data. There are three com-
mon cases for what happens after a Data Write:

If ASEL_ remains de-asserted (high) and TRDY _
remains asserted (low), the Data Write is followed by
another Data Write.

If TRDY_is de-asserted (high), the Data Write is
followed by a Data Wait.

If LTN is asserted (high), the Data Write is followed by
a Last Transfer.

There are two other cases for what happens after a Data
Write, but these are used less often than the three listed
above.

If the states of ASEL__ and TRDY _ are switched to
ASEL_ asserted (low) and TRDY_ de-asserted (high),
the Data Write is followed by Tri-state (Data)

If ASEL_ is asserted (low) and TRDY_ remains
asserted (low), the Data Write is followed by an
Address cycle.

+ Data Wait

During a Data Wait, the MXT3010EP drives data onto the
P1AD bus, but the external device ignores that data. Thus,
the P1AD column in the state table shawg-X, and the
IRDY_ column shows de-assertion (high) indicating that the
external device should not read the data. There are three
common cases for what happens after a Data Wait:

1. Thestate machine keepstrack of several versions of the tri-state condition.
For example, Tri-state (Data) refers to atri-state condition entered from
the Data Write state.

124

Version 4.1 MXT3010 Reference Manual

Port Operations

If ASEL_ remains de-asserted (high) and TRDY _
remains de-asserted (high), the Data Wait is foll owed by
another Data Wait.

If TRDY _isasserted (low) and LTN is de-asserted
(low), the Data Wait is followed by a Data Write.

If TRDY _isasserted (low) and LTN is asserted (high),
the Data Wait isfollowed by a Last Transfer.

There are two other cases for what happens after a Data
Wait, but these are used less often than the three listed
above.
If the states of ASEL__and TRDY __ are switched to
ASEL _asserted (low) and TRDY _ de-asserted (high),
the Data Wait is followed by Tri-state (Data Wait) and
al outputs are tri-stated.
If ASEL_isasserted (low) and TRDY _ remains
asserted (low), the Data Wait is followed by an Address
cycle.

» Tri-state

During a tri-state condition, all outputs are tri-state. This
condition is always entered whenever ASEL _ is asserted
(low) and TRDY _ is de-asserted (high). The state machine
maintains separate versions of the tri-state condition
depending upon the state from which the state machine
entered the tri-state condition. The versions are Tri-state
(Address), Tri-state (Data), Tri-state (Data Wait), Tri-state
(Last Transfer), and Tri-state (Clean-up). As shown in Table
27, three of these states are identical, transitioning to Data
Read or Last Transfer depending upon the state of the LTN
input.

MXT3010 Reference Manual Version 4.1 125

The Portl and Port2 Interfaces

TABLE 27. Satetablefor thePortl DMA burst write state machine

© 00 N O o M W NP .
TableLine

P e
R O

12

13
14

15

Input Outputsin the
Signals Next State
| | |
>
B2 E S50
£ E H | Current Sate Next Sate g X5
L H X [Any Tri-state (current_state) | Tri-state
L L X [Any Address Out-Addr H H
H L L |Address Data Write Out-Data | H
H L H |Address Last Transfer Out-Data | L
H L L |DaaWrite Data Write Out-Data | H
H L H |DataWrite Last Transfer Out-Data | L
H L L |DataWait Data Write Out-Data | H
H L H |DataWait Last Transfer Out-Data | L
H L X |Last Transfer Clean Up Out-X H H
H L X |CleanUp Idie? Tri-state H H
H L L |ldle Tri-state (Address, Data Data Write Out-Data | H
Write, or Data Wait)
H L H |Tri-state (Address, Data Write, or | Last Transfer Out-Data | L
Data Wait)
H L X |Tri-state (Last Transfer, Clean Up) | Data Write Out-X H H
H X | Address, Data Write, Data Wait, Data Wait QOut-X H H
Clean Up, Tri-state (Address, Data
Write, Data Wait, Last Transfer, or
Clean Up)
H H X |Last Transfer Clean Up Out-X H H
a. Theldle state will be maintained indefinitely if thereis no RQ_ assertion.
Verson 4.1 MXT3010 Reference Manual

126

Port Operations

FIGURE 47.Port1 DMA Writetransfer with a Wait state

TSR AV aVAVAVAYAYAYAVAVAVAY:

P1QRQ_ / '\QRQ_reasserts ifanlother DMAIenterlsqueLlle X
PIRQ. 1/ \ /T
P1ASEL_ _/ Coa Lﬁ
PITRDY_ /_\ /—
p1rD LT\ Y
P1END_ __/ | _/_\—

P1ADIn[31:0] <fread

P1ADout[31:0] mm@mm-mmmm)
P1HWE[1:0] @ME_EEW-

PllRDY_E_E/E ; /_\ /_—_’

COMMSEL
LTN (Internal) :
State LTX CU ADR WD WDWDWWD WD WD LTX CU TRI'
Next state is determined by table line # 9 2 3 5 14 7 5 5 6 9 1 1

Figure 47 shows the Last Transfer (LTX) and Clean Up (CU)
states of aprevious DMA read or writetransfer. During the Last
Transfer state, the external logic that controlsthe ASEL _and
TRDY _ leads makes a decision as to whether it should:

1. Allow aCOMM SEL transfer (having detected communi-
cation request)

2. Prepare for another DMA transfer (having detected
P1ORQ asserted)

3. Relinquish the bus by entering a tri-state condition
4. Perform some other type of bus operation

MXT3010 Reference Manual Version 4.1 127

The Portl and Port2 Interfaces

128

Having decided on the appropriate course of action, the external
control logic conditionsASEL_and TRDY _ at the beginning of
the Clean Up state so that the Port1 state machine will enter the
desired state after the Clean Up state.

In the example shown in Figure 47, the external logic electsto
perform anew DMA transfer, and drives both ASEL__and
TRDY _ to the asserted (low) state during the Clean Up state.
With ASEL__and TRDY _ low, the Clean Up state qualifies as
Any state in the Table 27 state table. Thus, when the state
machine samplesthe ASEL__and TRDY __ leads, line 2 of the
state table causes the next state to be Address (ADR).

During the Address state, the MXT3010EP puts address infor-
mation onto the P1AD leads. IRDY _and END _ are high. If,
during the Address state, the external logic drives ASEL__high
whileleaving TRDY _ low, the state machine samples that con-
dition, and line 3 of the state table causes the next state to be
Data Write.

During Data Write, the MXT3010EP places data on the PIAD
leads, and the MXT3010EP assertsthe IRDY _ lead low to indi-
catethat it hasdoneso. Since ASEL _isstill highand TRDY _is
low, the state machine samples that condition, and line 5 of the
state table causes the next state to be a Data Write state.

The second Data Write in the above exampleisidentical to the
previous Data Write, except that the external logic has driven
TRDY _ high. Since TRDY _ has gone high, line 14 of the state
table causes the next state to be a Data Wait state. The use of a
Data Wait state is optional. It is shown in this figure and subse-
quent figures only to illustrate the waveforms that occur during
aData Wait.

During Data Wait, the outgoing data should be ignored (“Out-

X"), and the IRDY__ lead goes high to indicate that the
MXT3010EP does not guarantee the data. In the example,

Version 4.1 MXT3010 Reference Manual

Port Operations

TRDY _ returnsis returned to the low state, the state machine
samples that condition, and line 7 of the state table causes the
next state to be a Data Write state.

During Data Write, the MXT3010EP places data on the PLAD
leads, and the MXT3010EP assertsthe IRDY _ lead low to indi-
catethat it hasdone so. Since ASEL _isstill highand TRDY _is
low, the state machine samples that condition, and line 5 of the
state table causes the next state to be a Data Write state.

This Data Write is similar to the previous Data Writes. Since
ASEL isdtill highand TRDY _islow, line 5 of the state table
causes the next state to be a Data Write state.

During this Data Write, the LTN signal (generated by the byte
count logic within the MX T3010EP) is asserted. Therefore, line
6 of the state table causes the next state to be a Last Transfer
(LTX).

Last Transfer is similar to a Data Write, except that the END _
output is asserted (low). Line 9 of the state table causes the next
stateto beaClean Up (CU) state. During the Last Transfer state,
the external controller decides what to do with the ASEL__and
TRDY _ inputs during the Clean Up state. The state that follows
the Clean Up state depends upon that decision. In this example,
the decision wasto tri-state the bus. Thus, during Clean Up, the
external controller has driven ASEL_ low and TRDY high.
When the state machine samples that condition, line 1 of the
state table causes the next state to be Tri-state (CleanUp).

MXT3010 Reference Manual Version 4.1 129

The Portl and Port2 Interfaces

FIGURE 48.Port1 DMA Writetransfer without a Wait state

CLK

|

QRQ_ reasserts if anotherr DMA'enters queue

P1QRQ_
PIRQ_ ./ N\

P1ASEL_

PITRDY_ '+
P1RD ' :\
P1END_ L/ |
P1ADInN[31: 0]
P1ADout[31: 0]
PIHWE[L:0]

o L

im

COMMSEL

LTN (Internal) :

State LTX CU ADR WD WD WD WD WD LTX CU TRI

Next state is determined by table line # 9 2 3 5 5 5 5 6 9 1 1

Figure 48 is similar to Figure 47, but without a wait state. The
description of the figure isidentical, except that there are no
transitions controlled by lines 14 or 7 of the state table, as
PITRDY _ remains asserted (low) throughout the transfer.
Rather, the write process continues to be determined by line 5 of
the statetable until LTN isasserted and state tableline 6 applies,
causing the next state to be Last Transfer (LTX).

Multiple Portl Read and Write Transfers

Figure 45 and Figure 47 each show the conclusion of aDMA
transfer followed by the read or write DMA transfer being
described. In each case, the commencement of a DMA transfer
depends upon the states of QRQ , RQ , ASEL _and TRDY _
during the Clean Up phase of the preceding bus cycle. Thus, to

130 Version 4.1 MXT3010 Reference Manual

Port Operations

create timing diagrams representing an arbitrary sequence of
Port1 reads and writes, photocopy Figure 49 and Figure 50
below, and cut them on the heavy lines shown. Paste them
together to create the desired diagram.

FIGURE 49.Cut-and-Paste Version of Portl Read

P1ADIN[31:0] (52X03 X 54X 08 D+

P1ADout[31:0] fwite) i) ADR)———————————————

p1vwe 0] KoY T XXX —
| /A

STV AVAVAVAVAVAVAVAVAVAY AWV
P1QRQ_ | ' \ QR;Q_ reasserts if another DMA enters port| queue/ E
PIRQ_ .1/ N .+ o o A |
PIASEL. © |\/ o T I
PITRDY_ : S S/ W S S S VAR
e S S e T

PIRD Iy '
piEND_ Y/ | o o\ !

PLURDY_ ./ | + N\

COMMSEL

LTN (Internal) ' /N

State LTX CUIADR1ATA RD RD DW RD RD RD LTX CU [RI
Next state is determined by table line #14 2 4 7 9 20 12 9 9 10 14 1 1

MXT3010 Reference Manual Version 4.1 131

The Portl and Port2 Interfaces

FIGURE 50. Cut-and-Paste Version of Portl Write

PAANNNANNNN

.\ QRQ_ reasserts if another DMA enters queue/ |

CLK

P1QRQ_

PIRQ_ ! N SRS VA |
P1ASEL_ ' e S
PITRDY_ ! /A N R /A

—\ L

P1RD N oo .

PIEND_ '\ | . . N

P1ADIN[31:0] Kiffeady)—f——t—t
P1ADOu[31:0] e @)EDRX D0)X DL K D2X D2 X 54X 05 D+—
p1HWE(1:0] <o) T oo X 11 X3 X1 oo (D
PLRDY . /T ./ N\ .+ . /T
commseL . . b . o 0 L
LTN (Internal) — 1| L ' ' JooN L

State LTX CU|ADR WD WDWDWWD WD WD LTX CUI[TRI'
Next state is determined by table line # 9 2 3 5 14 7 5 5 6 9 1 1

132 Version 4.1 MXT3010 Reference Manual

Port Operations

Communication register I/O transfers

In addition to monitoring bus request signals from the
MXT3010EP and other devices, arbitration logic external to the
MXT3010EP monitors external requests for Communication
Register I/0 transfers. Upon deciding to start a Communication
Register I/0O transfer, the external logic assertsASEL _ (low) and
de-asserts TRDY __ (high) to bring the Port1 businto a tri-state
condition. The external logic then asserts the COMM SEL input
of the MXT3010EP. The P1RD signal, driven by the external
device, determines whether the 1/0 transfer isaread or write.
Since the state tables for COMM SEL reads and COMM SEL
writes are so brief, Table 28 shows the combined state table for
both reads and writes. Figure 51 shows a sequence diagram for
atypical COMMIN write followed by a COMMOUT read.

TABLE 28. Satetablefor Portl communication I/O state machine

Outputsin the
Input Signals Next State
® o
- 2
HEEEE 3
Sl E O o Current State Next Sate q
1 L H L X [Any Tri-state (current_state) | Tri-state
2 L H H H |Tri-state (current_state) | Comm Out Read 1 Tri-state
3 L H H H |CommOutRead1 Comm Out Read 2 Tri-state
4 (L H H H |CommOutRead?2 Comm Out Data Vaid Data
5 L H H H |CommOutDataValid Comm Out Data Valid Data
6 L H H L |Tri-state(current_state) | Comm In Write Tri-state”
7 L H H L |CommlnWrite Comm In Write Tri-state
8 L H L L |CommlinWrite Comm In Data Strobe Data from external
device
a. During Communications I/O, P1RD is driven by an external device
b. During this and the next state, the MXT3010 tristates the bus. The external device drives data

onto the bus.

MXT3010 Reference Manual

Version 4.1 133

The Portl and Port2 Interfaces

FIGURE 51.COMMIN write! followed by COM MOUT read

cLK WVWI\I\N\]

P1QRQ_ . ! \ QRQ reasserts if another DMA enters port queue

P1IRQ_

P1ASEL_

PITRDY_

P1RD

P1END_ _/

P1ADIN[31:0] lfready>— —(Data)——————(Data

P1ADout[31:0] ' {f write

PURDY_ '/ N
COMMSEL ' ' o/ A o/~ _. .

State LTX CU ' TRI 'CIW CIS' TRI' RD1 RD2 DV TRI'
Next state is determined by table line # ---- ---- 6 8 1 2 3 4 10 1

Figure 51 shows the Last Transfer (LTX) and Clean Up (CU)
states of aprevious DMA read or write transfer. During the Last
Transfer state, the external logic that controls the ASEL _and
TRDY _ leads makes a decision as to whether it should:

1. Allow aCOMM SEL transfer (having detected a communi-
cation request)

2. Prepare for another DMA transfer (having detected
P1QRQ _ asserted)

3. Relinquish the bus by entering a tri-state condition

4. Perform some other type of bus operation

Having decided on the appropriate course of action, the external
control logic conditionsASEL _and TRDY __ at the beginning of
the Clean Up state so that the Port1 state machine will enter the
desired state after the Clean Up state.

1. InaCOMMIN write, dataiswritten from an external device into the MXT3010EP. In a COM-
MOUT read, datais read from the MXT3010EP by an external device.

134 Version 4.1 MXT3010 Reference Manual

Port Operations

In the example shown in Figure 51, the external logic electsto
perform COMMIN and COMMOUT transfers. To do this, it
drivesASEL _low and TRDY _ high during the Clean Up state.
Sampling ASEL__low and TRDY _ high, the MXT3010EP
places the P1 bus in the Tri-state condition (see line 1 of Table
26, Table 27, and Table 28).

During the Tri-state condition, the external logic asserts the
COMMSEL input and drives P1RD to select aread or write
transfer. Detecting the assertion of COMMSEL, the
MXT3010EP prepares an internal data path for theread or write
of R40/41, the Host Communication registers.

In Figure 51, the MXT3010EP samples the assertion of COM-
MSEL high and P1RD low, and line 6 of the state table causes
the next state to be Comm In Write. During the Comm In Write
state, the external logic de-asserts COMM SEL while retaining
P1RD low. The M XT3010EP samplesthese conditionsand line
8 of the state table causes the next state to be Comm In Data
Strobe.

During Comm In Data Strobe, data supplied by an externa
device iswritten into the 32-bit register formed by the concate-
nation of R40 and R41 within the MXT3010EP. Also during
Comm In Data Strobe, the states of ASEL__ (low), TRDY _
(high), and COMMSEL (low) are such that line 1 of the state
table causes the next state to be Tri-state.

During this Tri-state condition, the external logic asserts the
COMMSEL input and drives PIRD high to select either aread
transfer. In Figure 51, the M X T3010EP samples the assertion of
COMMSEL high and P1RD high, and line 2 of the state table
causesthe next stateto be Comm Out Read 1. If the COMM SEL
and P1RD leads are maintained in their high states during
Comm Out Read 1, line 3 of the state tabl e causes the next state
to be Comm Out Read 2.

MXT3010 Reference Manual Version 4.1 135

The Portl and Port2 Interfaces

136

If the COMMSEL and P1RD leads are maintained in their high
states during Comm Out Read 2, line 4 of the state table causes
the next state to be Comm Out Data Valid. During Comm Out
Data Valid, data supplied by the concatenation of R40 and R41
within the MXT3010EP is supplied to the externa device.

If the external device can sample the data quickly during Comm
Out Data Valid, the external logic can condition the states of
ASEL_ (low), TRDY_ (high), and COMMSEL (low) such that
line 1 of the state tabl e causesthe next state to be Tri-state. If the
external device requires more time to sampl e the data, the exter-
nal logic can condition the states of ASEL_ (low), TRDY _
(high), and COMM SEL (high) such that line 5 of the state table
causes the next state to be an additional period of Comm Out
Data Valid.

Version 4.1 MXT3010 Reference Manual

Port Operations

Port2 basic protocol

The Port2 interface supports two transfer mechanisms:
MXT3010-initiated DMA burst mode transfers and non-burst
transfers. Each command issued to the DMA command queueis
tagged aseither burst or non-burst, viarsabit 7. If rsg[7] is 1, the
transfer isaburst transfer. If rsg[7] is 0, the transfer isanon-
burst transfer. Non-burst transfers can insert a programmable
number of wait states.

Figure 52 and Table 29 illustrate the correspondence between
rsalrsb register values, the Port2 bus signals, and alogical half-
word address for Port2 burst DMA transfers.

FIGURE 52.Diagram of Port2 burst DMA instruction bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

rsa Unused Burst| Unused P2AD [15:11]

1 1 1 1
A19 Al18 Al7 Al6 Al5

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

rsh P2AD[10:0] P2AI [3:0] 0

Al4 A13 A12 A1l A10 AO9 AO8 AO07 AO6 AO5 A04 A03 A02 A01 A00

TABLE 29. Port2 burst DMA instruction bit mapping

Logical

Reg Bits Function Port2 Bus Halfword Bit
rsa 15:08 Not used - -

07 Burst bit=1 (selects mode) -

06:05 Not used - -

04:00 Address P2AD[15:11] 19:15
rsb 15:05 Address P2AD[10:0] 14.04

04:01 Address P2AI[3:0] 3.0

00 Discarded - -

MXT3010 Reference Manual Version 4.1 137

The Portl and Port2 Interfaces

The information in Table 29 can a so be expressed as shown in
Table 30.

TABLE 30. Another view of Port2 burst DMA instruction bit mapping

MXT3010 Memory
Firmware Byte Internal Register Halfword MXT3010 Port2
Address Bit Bit Address Bit Pin
AOO (Isb) RSB[0] - NC
AO1 RSB[1] A0 (Isb) HW P2AI[0]
A02 RSB[2] A0l P2AI[1]
AO3 RSB[3] A02 P2AI[2]
AO4 RSB[4] AO3 P2AI[3]
A05 RSB[5] AO4 P2AD[0]
AOB RSB[6] A05 P2AD[1]
AO07 RSB[7] A06 P2AD[2]
AO8 RSB[8] AO07 P2AD[3]
A09 RSB[9] AO08 P2AD[4]
A10 RSB[10] A09 P2AD[5]
All RSB[11] A10 P2AD[6]
Al12 RSB[12] All P2AD[7]
A13 RSB[13] Al12 P2AD[8]
Al4 RSB[14] A13 P2AD[9]
Al15 RSB[15] Al4 P2AD[10]
Al6 RSA[OQ] A15 (msb) HW P2AD[11]
Al7 RSA[1] Al6 P2AD[12]
Al8 RSA[2] Al7 P2AD[13]
A19 RSA[3] A18 P2AD[14]
A20 RSA[4] A19 P2AD[15]

Since the Port2 burst DMA instruction bit mapping permits the
use of 20-bit halfword addressing, one million (1M) 16-bit half-
words can be addressed.

138 Version 4.1 MXT3010 Reference Manual

Port Operations

Figure 53 and Table 31 illustrate the correspondence between
rsalrsb register values, the Port2 bus signals, and alogical half-
word address for Port2 non-burst DMA transfers.

FIGURE 53.Diagram of Port2 non-burst DMA instruction bits

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| |
rsa Unused #of Waits |Burst P2A[3:2] P2AD [15:11]
1 1 1 1 1 1 1 1 1 1 1
Al7 Al6 Al5 Al4 A13 Al2 All
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

P2AD[10:0]

rsh

Al A0 A0 A0 A0 A0 A0 A0 A0 AO0 A0

TABLE 31. Port2 non-burst DMA instruction bit mapping

Logical
Reg Bits Function Port2 Bus Halfword Bit
rsa 15:11 Not used - -
10:08 #waits[2:0] (selects number of wait states) -
07 Burst bit =0 (selects mode) -
06:05 Address P2AI1[3:2] 17:16
04:00 Address P2AD[15:11] 15:11
rsb 15:05 Address P2AD[10:0] 10:0
04:00 Discarded - -
MXT3010 Reference Manual Verson4.1 139

The Portl and Port2 Interfaces

The information in Table 31 can aso be expressed as shown in
Table 32.

TABLE 32. Another view of Port2 non-burst DM A instruction bit

mapping
MXT3010 Memory

Firmware Byte Internal Register Halfword MXT3010 Port2
Address Bit Bit Address Bit Pin

AOO (Isb) RSB[0] - NC

AO1 RSB[1] - NC

A02 RSB[2] - NC

AO3 RSB[3] - NC

AO4 RSB[4] - NC

A05 RSB[5] A0 (Isb) HW P2AD[0]
AOB RSB[6] A0l P2AD[1]
AO07 RSB[7] A02 P2AD[2]
AO8 RSB[8] AO3 P2AD[3]
A09 RSB[9] AO4 P2AD[4]
A10 RSB[10] A05 P2AD[5]
All RSB[11] A06 P2AD[6]
Al12 RSB[12] AO07 P2AD[7]
A13 RSB[13] AO08 P2AD[8]
Al4 RSB[14] A09 P2AD[9]
Al15 RSB[15] A10 P2AD[10]
Al6 RSA[OQ] All P2AD[11]
Al7 RSA[1] Al12 P2AD[12]
Al8 RSA[2] A13 P2AD[13]
A19 RSA[3] Al4 P2AD[14]
A20 RSA[4] A15 (msb) HW P2AD[15]
A2l RSA[5] Al6 P2AI[2]
A22 RSA[6] Al7 P2AI[3]

Sincethe Port2 non-burst DMA instruction bit mapping permits
the use of 18-bit halfword addressing, 256K 16-bit halfwords
can be addressed.

140 Version 4.1 MXT3010 Reference Manual

Port Operations

TABLE 33.

Multi-function Al pins (P2AI[3:0])

In burst mode, P2AI [3:0] provide an address index consisting
of the lower four bits of an address (see Table 29). In non-burst
mode, P2A1[3:2] provide the most significant address bits (see
Table 31). Also in non-burst mode, P2AI [1] represents P2RD _,
and P2AI[Q] represents Address Latch Enable. These signals
can be used to provide a glueless interface to non-burst devices.

Port2 control signals

Table 33 describes the signals that control Port2 transfers

Signalsto control Port2 transfers

Signal

Purpose

P2QRQ_

When the Port2 state machine detects the presence of acommand in the queue
stage of the Port2 DMA command queue, the state machine assertsthis signal to an
external device; this provides advance indication that P2RQ _ will soon be asserted.

P2RQ_

When the Port2 state machineisin the Idle state and detects the presence of a com-
mand in the active stage of the Port2 DMA command queue, the state machine
asserts this signal to an external device. The external device responds by manipu-
lating P2ASEL _ and P2TRDY _to control a DMA transfer.

P2TRDY _

Thissignal isan input to the MXT3010 and is driven by an externa device. The
external device usesthissignal to insert wait states. The external device can also
use this signal in conjunction with P2ASEL _to deselect (tri-state) the Port2 DMA
engine.

P2IRDY_

During DMA write data cycles, the MXT3010 asserts P2IRDY while it is sourcing
valid data on P2AD[15:0]. During DMA read data operations, the MXT3010
asserts P2IRDY _if it is able to sample P2AD[15:0] on the next rising edge of
clock.

P2ASEL _

Thissignal isan input to the MXT3010 and is driven by an externa device. The
external device uses this signal to select between address and data cycles. The
external device can also use this signal in conjunction with P2TRDY _ to deselect
(tri-state) the Port2 DMA engine.

P2QBRST

Thissigna isan output driven by the MXT3010. The MXT3010 usesthis signal to
indicate the transfer mode, such as burst or non-burst, of the active command.

P2RD

During aDMA transfer, this signal is an output driven by the MXT3010. Thissig-
nal indicates whether the transfer isaread (1) or awrite (0) transfer.

P2END_

Thissignal indicates the last cycle of aDMA operation.

P2AD[15:.0]

Thisis amultiplexed, bi-directional 16-bit bus. Dataisread into and out of the
MXT3010 during DMA transfers.

LTN

Thisisaninternal signa indicating that the Last Transfer will occur Next (LTN).

MXT3010 Reference Manual Version 4.1 141

The Portl and Port2 Interfaces

142

The Port2 control state machine

Port2 DMA transfers originate and terminate as discussed in
“General information concerning DMA transfers” on page 113.

Port2 DMA burst-mode read transfers

Table 34shows the state table for Port2 DMA burst-mode read
transfers and Figure 56 shows a sequence diagram for a Port2
DMA burst-mode read transfer. Table 34 is identical to Table 26,
“State table for the Portl DMA burst read state machine,” on
page 118. The inputs, outputs, and states are the same as those
described in “Inputs” on page 113, “Outputs” on page 114, and
“States” on page 114, with four exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD bus is 16 bits; the P1AD bus is 32 bits (and has
HalfWord Enable signals).

3. Only Portl has a COMMSEL input.
4. Only Port2 has a P2QBRST output.

Version 4.1 MXT3010 Reference Manual

Port Operations

TABLE 34. Satetablefor the Port2 DMA burst-mode read state machine

© 00 N o 0o~ WN B .
TableLine

S e G
N o o0 w N PR O

18

19
20
21

22

23

Input Outputsin the
Signals Next State
| >-I '
9] E E Current State Next State % é %
< - 4 o = uw
L H X |[Any Tri-state (current_state) | Tri-state
L L X [AnypreAuto-turnaround Address 1 Out-Addr H H
L L X [AnypostAuto-turnaround Address 2 Out-Addr H H
H L X |Addressl Auto-turnaround Tri-state H H
H L L |Address2 Data Read InData L H
H L H |Address2 Last Transfer In-Data L L
H L L [Auto-turnaround Data Read InnData L H
H L H |Auto-turnaround Last Transfer InData L L
H L L |DataRead Data Read InData L H
H L H |DataRead Last Transfer In-Data L L
H L X |Auto-turnaround Wait Auto-turnaround Tri-state H H
H L L |DaaWait Data Read InData L H
H L H |DataWait Last Transfer In-Data L L
H L X |LastTransfer Clean Up In-X H H
H L X [CleanUp Data Read In-X H H
H L X |Tri-state (Address1) Auto-turnaround Tri-state H H
H L L |Tri-state (Address 2, Auto-turn- Data Read InnData L H
around, Data Read, or Data Wait)
H L H |Tri-state (Address 2, Auto-turn- Last Transfer InnData L L
around, or Data Wait)
H L X |Tri-state (Last Transfer, Clean Up) | Data Read In-X H H
H L X |Tri-state (Auto-turnaround Wait) | Auto-turnaround Tri-state H H
H H X |Addressl, Tri-state (Address 1, Auto-turnaround Wait | In-X H H
Auto-turnaround Wait)
H H X |[Address?2, Auto-turnaround, Data | Data Wait In-X H H
Read, Data Wait, Clean Up, Tri-
state (Auto-turnaround, Address2,
Data, Data Wait, Last Transfer, or
Clean Up)
H H X |LastTransfer Clean Up In-X H H
MXT3010 Reference Manual Verson4.1 143

The Portl and Port2 Interfaces

A sequencediagram for atypical DMA burst-mode read transfer
using the Port2 read state table (Table 34) isshown in Figure 54.
This diagram includes await state.

FIGURE 54.Port2 DMA burst-mode Read transfer with a Wait state

N AVAVAVAVAVAVAVAVAVAVAVAY/

P2QRQ_ : ' ! / .\ QR:Q_ relasserlts if arlwtherl DMA: enterls porthueutlg/ :
P2RQ_ | TN L | E EY::
PASEL_ @ I\ . T .
P2TRDY E E E E ! V__T\ E/__r__:
por0 T — | E
P2END_ TX__/ E - I ' __] ;
P2ADIN[15:0]

P2ADout[15:0] [fwie) -.@ — -
P2AI[3:0] <'fread>>—,< o Xan X A0 +2 mm
P2IRDY_ ; / : : ; TN T

P2QBRST '4 T

LTN (Internal) — ' N

State LTX CU ADR1ATA RD RD RDW RD RD RD LTX CU TRI
Next state is determined by table line #14 2 4 7 9 22 12 9 9 10 14 1 1

Figure 54 isidentical to Figure 45 on page 119, with the follow-
ing exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD busis only16 bits.

3. There are no HalfWord Enable signals, but there are P2AlI
[3:0] signals.

4. Port2 has a P2QBRST output and has ho COMM SEL
input.

The sequence of statesisidentical to that shown in conjunction
with Figure 45 on page 119, and the same explanatory text
applies.

144 Version 4.1 MXT3010 Reference Manual

Port Operations

A second sequence diagram for atypical DMA burst-mode read
transfer using the Port2 read state table (Table 34) is shown in
Figure 55. This diagram does not include a wait state.

FIGURE 55.Port2 DM A burst-mode Read transfer without a Wait state

e E QRQ_ reasserts if angther DMA enters port gieue
P2QRQ_ /L : l
PRQ_ /N L N
PaAsEL. | N/ 1
e o e e e e
P2rD T > E ; E E E E ! E E E
P2END_ __/ - : _'/“\—'
P2ADIN[15:0]
P2ADout[15:0] ifwitey .-@ I —
P2AI[3.O]I fread >—< i mmmm
PaRDY_ /TN LT
L A N
LTN (Internal) ' ' ' : : : : : /N I :

State LTX CU ADR1ATA RD RD RD RD RD LTX CU TRI
Next state is determined by table line #14 2 4 7 9 9 9 9 10 14 1 1

Figure55isidentical to Figure 46 on page 122, with the follow-
ing exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD busis only16 bits.

3. There are no HalfWord Enable signals, but there are P2AlI
[3:0] signals.

4. Port2 has a P2QBRST output and has no COMM SEL
input.

The sequence of statesisidentical to that shown in conjunction
with Figure 46 on page 122, and the same explanatory text
applies.

MXT3010 Reference Manual Version 4.1 145

The Portl and Port2 Interfaces

146

Port2 DMA burst-mode write transfers

Table 35 shows the state table for Port2 DMA burst-mode write
transfers and Figure 56 shows a sequence diagram for a Port2
DMA burst-mode write transfer. Table 35 isidentical to

Table 27 on page 126. The inputs, outputs, and states are the
same as those described in “Inputs” on page 113, “Outputs” on
page 114, and “States” on page 114, with four exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD bus is 16 bits; the P1AD bus is 32 bits (and has
HalfWord Enable signals).

3. Only Portl has a COMMSEL input.
4. Only Port2 has a P2QBRST output.

Version 4.1 MXT3010 Reference Manual

Port Operations

TABLE 35. Satetablefor the Port2 DMA burst write state machine

Input Outputsin the
o Signals Next State
j‘: !) >
ﬁ_ﬁ ‘z’ E E Current State Next State g @ %
1 L H X |[Any Tri-state (current_state) | Tri-state
2 L L X [Any Address Out-Addr H H
3 H L L |Address Data Write Out-Data L H
4 H L H |Address Last Transfer Out-Data L L
5 H L L |DaaWrite Data Write Out-Data L H
6 H L H |DaaWrite Last Transfer Out-Data L L
7 H L L |DataWait Data Write Out-Data L H
8 H L H |DaaWait Last Transfer Out-Data L L
9 H L X |LastTransfer Clean Up Out-X H H
10 |[H L X |CleanUp Idle? Tri-state H H
11 (H L L |Idle Tri-state (Address, Data Data Write Out-Data L H
Write, or Data Wait)
12 (H L H |Tri-state (Address, Data Write, or | Last Transfer Out-Data L L
Data Wait)
13 [H L X |Tri-state (Last Transfer, Clean Up) | Data Write Out-X H H
14 |H H X |Address, DataWrite, DataWait, | DataWait Out-X H H
Clean Up, Tri-state (Address, Data
Write, Data Wait, Last Transfer, or
Clean Up)
15 ([H H X |Last Transfer Clean Up Out-X H H

a. Theldle state will be maintained indefinitely if there isno RQ _ assertion.

A sequence diagram for atypical DMA burst-mode write trans-
fer using Table 35 is shown in Figure 56. This diagram includes
await state.

MXT3010 Reference Manual Version 4.1 147

The Portl and Port2 Interfaces

FIGURE 56.Port2 DMA burst-mode writetransfer with a Wait state

CLK N\ / ;

P2QRQ_ : I :/ :\QRlQ relasser;s|far|10therlDMAlenterlsqueLlle
P2RQ_ /_\ l /_'t
e
P2TRDY. l /—\ e /—
p2rD LT\ SRR
e
P2ADIN[15:0] —
P2ADOUL[15:0] Furtey A[19 ‘E@
P2AI[3'O]I —— A[3 0).(A[3 o1+2
P2IRDY_ J, T L /_T\ YA _p
P2QBRST _,/ \ -
LTN (Internal) : : ' ' ' ' ' ' '/_"\ ' :

State LTX CU ADR WD WD wWDW WD WD WD LTX CU TRI'
Next state is determined by table line # 9 2 3 5 14 7 5 5 6 9 1 1

The sequence of statesin Figure 56 is the same as that for
Figure 47, “Portl DMA Write transfer with a Wait state,” on
page 127, and the same explanatory text applies.

148 Version 4.1 MXT3010 Reference Manual

Port Operations

A sequence diagram for atypical DMA burst-mode write trans-
fer using Table 35 is shown in Figure 56. This diagram does not
include await state.

FIGURE 57.Port2 DMA burst-mode write transfer without a Wait state

AV AVAVAV AV

P2QRQ_ | /S
PRQ. /Nl Lot TN
PaASEL. N/ T T
POTROY_ o
P2RD LT\ R R
. AT U

P2ADIN[15:0] ifready)— —
P2ADOUt[15:0] urieY@YAES 4 DO X DLX D2X(D3 X 54X D5 D+
P2AI[3:0] ————<_ARB0] XA+1XA+XA+3KA+AX A+5)T

P2RDY_ . o/ N\ o N
P2QBRST ./ 7 T T T T T T I\,
LTNQnternal) + v /TN

State LTX CU ADR WD WD WD WD WD LTX CU TRI
Next state is determined by table line # 9 2 3 5 5 5 5 6 9 1 1

The sequence of statesin Figure 57 isthe same asthat for
Figure 48, “Portl DMA Write transfer without a Wait state,” on
page 130, and the same explanatory text applies.

MXT3010 Reference Manual Version 4.1 149

The Portl and Port2 Interfaces

Port2 DMA non-burst-mode read transfers

Table 36shows the state table for Port2 DM A non-burst-mode
read transfers and Figure 59 shows a sequence diagram for a
Port2 DMA non-burst-mode read transfer.

TABLE 36. Satetablefor the Port2 DMA non-bur st-mode read state machine

Input
Signals Outputsin the Next Sate
= o N D
24 > e) N =
E ﬁ g E Current Sate Next State é @ § 5 é %
1 L H X [Any Tri-state (current_statq Tri-state
2 |L L X |Any Address1 Out-Addr H Y L H H
3 |H L X |Addressl Address2 Out-Addr L V L H H
4 H L X |Address2 Address Hold Out-Addr L V L L H
5 |H L X |Address Hold Data Wait In-X L v L L H
6 |H L L |DataWait Data Wait In-X L v L L H
7 H L H |Data Wait Last Transfer In-Data L V L L L
8 H L X |Last Transfer Clean Up In-X H V L L H
9 |H L X |CleanUp ldIé Tri-state H V L L H
10 (H H X |Data Wait Data Wait In-X H X X X H
a. For non-burst-mode operation, the LTN (Last Transfer Next) signal is asserted when the pro-
grammable wait-timer expires. See “#waits [2:0]” in Table 31, “Port2 non-burst DMA instruc-
tion bit mapping,” on page 139.
b. The P2AI[3:2] outputs have valid (V) address information on them throughout all states marked

150

“V". These outputs can be decoded to form four chip selects if desired.
c. The Idle state will be maintained indefinitely if there is no RQ__ assertion.

Version 4.1

MXT3010 Reference Manual

Port Operations

A sequence diagram for aDMA non-burst-mode read transfer
using Table 36 is shown in Figure 58.

FIGURE 58.Port2 DM A non-burst-mode Read transfer.

IERVaAVAVAVAVAVAVAVAVAVAVAVAV/

P2QRQ_ ° : \ QRQ reasserts if another DMAIenters port queuq/ E
e N A R N
PaASEL_ T N/ . 1 N
L
T S R S
P2END_ T__y e s W A
P2ADIN[15:0] <Ifread> I ' / - <Data‘1>\
P2ADout[15: 0]“ ADR[150]|
P2Au32]<y§§>——< j j ADR@?JQ: ' : : j>__
PARDY L N n L
P2QBRST 0\ . . L | S

P2AI[1]/P2RD_ T T\

P2AI[0]/P2ALE_ / : :\ ! ! !) . , \ ‘
LTN (Internal) ; : : L ! : : : /TN :

State LTX CU AD1 AD2 ADHRDW RDW RDW RDW RDW LTX CU TR
Next state is determined by table line # --- 2 3 4 5 6 6 6 6 7 9 1 1
Note:During a Port2 Non-Burst DMA Read, an externa device places
data on the P2AD leads. The Port2 DMA Read command can spec-
ify, viabits [10:8] of the rsaregister, the number of wait states that

occur before the MXT3010EP samples the data. In the example
shown above, 5 wait states have been inserted.

Figure 58 showsthe Last Transfer (LTX) and Clean Up (CU)
states of aprevious DMA read or writetransfer. During the Last
Transfer state, the externa logic that controlsthe ASEL__and
TRDY _ leads makes a decision as to whether it should:

MXT3010 Reference Manual Version 4.1 151

The Portl and Port2 Interfaces

152

1. Prepare for another DMA transfer (having detected
P2QRQ _ asserted)

2. Relinquish the bus by entering a tri-state condition
3. Perform some other type of bus operation

Having decided on the appropriate course of action, the externa
control logic conditionsASEL _and TRDY __ at the beginning of
the Clean Up state so that the Port2 state machine will enter the
desired state after the Clean Up state.

In this example, a non-burst read transfer is performed. During
the Clean Up state, both ASEL_and TRDY _arelow, and line 2
of the state table indicatesthat the next stateis Address 1 (AD1).
During Address 1, the ASEL _ lead is driven high, and line 3 of
the state table indicates that the next state is Address 2 (AD?2).

In the Address 2 state, the ASEL _lead is still high and the
TRDY _lead isstill low. Line 4 of the state table indicates that
the next state is AddressHold (ADH). At thistime, the P2AI1[0]
output, functioning as Address Latch Enable (ALE) transitions
from high to low, performing the address latching function char-
acteristic of asynchronous, multiplexed busses.

During Address 1, Address 2, and Address Hold, the
P2AD[15:0] leads carried the lowest order 16 bits of the desired
address. P2A1[3:2]carried bits A[17:16] during thethree address
states and also carry those bits throughout the DMA transfer.
Thus, they can used as chip selectsif desired. P2AI[1] createsan
inverted version of P2RD (P2RD) to provide a glueless inter-
face on the P2 bus.

During the Address Hold state, the ASEL _lead is still high and
the TRDY _leadisstill low, and line 5 of the state tableindicates
that the next state is Data Wait. Asindicated by lines 6 and 7 of
the state table, the Data Wait condition persists until the wait

Version 4.1 MXT3010 Reference Manual

Port Operations

timer (set by rsa[10:08]) expires. Expiration of the wait timer
asserts LTN, and line 7 of the state table indicates the next state
isLast Transfer (LTX).

Aswith all of the other DMA transfer types discussed, Last
Transfer isfollowed by Clean Up; during Last Transfer the
external arbiter selects conditionsfor ASEL__and TRDY _ that
determine the bus activity after the Clean Up state. In Figure 58,
ASEL islow and TRDY _is high during the Clean Up state,
and line 1 of the state table indicates the next state is Tri-state.

It isalso possible that ASEL _ could be retained high and
TRDY _ could beretained low. In that case, the bus would enter
an ldle state during which the data leads would be tri-state, but
the control leads would still be in their previous state.

MXT3010 Reference Manual Version 4.1 153

The Portl and Port2 Interfaces

Port2 DMA non-burst-mode write transfers

Table 37shows the state table for Port2 DMA burst-mode write
transfers and Figure 60 shows a sequence diagram for a Port2
DMA burst-mode read transfer.

TABLE 37. Satetablefor the Port2 DMA non-burst-mode write state machine

Input
Signals Outputsin the Next Sate
o —
£ | N | |
_| [| & L
o |4 X w a) > = Qa J A
=W O =z o) o =)
E 2 K K |Current Sate Next State § x é S § &
1/lL H X [Any Tri-state (current_statq Tri-state
2L L X |Any Address1 Out-Addr H W H H H
3|/H L X |Addressl Address2 Out-Addr L V H H H
4/H L X |Address2 Address Hold Out-Addr L V H L H
5|H L X |Address Hold Data Wait Out-Data L V H L H
6/H L L [DataWait Data Wait Out-DataL V H L H
7/H L H |Data Wait Last Transfer Out-DattL V H L L
g|H L X [Last Transfer Clean Up Out-X H vV H L H
g|/H L X |CleanUp Idié Tri-state H V H L H
10/H H X |Data Wait Data Wait Out-Data H X X X H
a. For non-burst-mode operation, the LTN (Last Transfer Next) signal is asserted when the pro-
grammable wait-timer expires. See “#waits [2:0]” in Table 31, “Port2 non-burst DMA
instruction bit mapping,” on page 139.
b. The P2AI[3:2] outputs have valid (V) address information on them throughout all states

154

marked “V”. These outputs can be decoded to form four chip selects if desired.
c. The Idle state will be maintained indefinitely if there is no RQ__ assertion.

Version 4.1

MXT3010 Reference Manual

Port Operations

A sequence diagram for aDMA non-burst-mode read transfer
using Table 37 isshown in Figure 59.

FIGURE 59.Port2 DMA non-burst-modeWritetransfer.

. . X , . . ' | '
State LTX CU ADl1 AD2 ADH WDW WDW-WDW:WDW'WDW' LTX ' CU ' TRI

CLK /

P20QRQ : I ! I\QR:Q reasserlts |fa;10ther DMAIenters porthueuq/ E
PRQ_ /N L TN
P2ASEL_ N/ T Lo) S——
POy LT
P2RD —\ : S
P2END_ +_/ : R \—/ I
P2ADin[15:0] <Ifread> S “Write Data (See Note) >
P2ADoUt[15:0] ifwite) “ AbR[15 I S
P2AI[3:2] <@§>—~< . ;\DR[1|7 16]| I . —
P2IRDY_ _/ —\ RN LT
P2QBRST —\ R e
P2AI[1]/P2RD._ T % |
P2AI[0]/P2ALE._ I / \ L
LTN (Internal) : I Lo TN .

Next state is determined by table line #--- 2 3 4 5 6 6 6 6 7 9 1 1

Note:During a Port2 Non-Burst DMA Write, the MXT3010EP places data
on the P2AD leads for at least one clock cycle. The Port2 DMA
Write command can specify, via bits[10:8] of the rsaregister, the
number of additional cycles (wait states) during which the
MXT3010 holds the data on the bus. In the example shown above, 5
walit states have been inserted in addition to the minimum data asser-
tion period of one clock cycle.

The sequence of states shown in Figure 59 is exactly the same
asthat shown in Figure 58, except that thisisawrite. The same
description applies, substituting writes for reads as necessary.

MXT3010 Reference Manual Version 4.1 155

The Portl and Port2 Interfaces

Additional Portl and Port2 Design Information

156

Arbitrating access to Portl

System configurations utilizing the M X T3010 often haveaHost
processor installed on Port1. This allows the Host processor to
access the MXT3010 Communication 1/0 registers and to
access the SRAM. For example, consider the system shown in
Figure 60.

FIGURE 60.System example for Portl bus.

Portl Bus
MXT3010 Controller . Memory

The functions of the Bus Controller are as follows;

1. Inresponse to PIQRQ __and P1RQ _,grant the MXT3010
access to the Memory, manipulating PIASEL__ and
PITRDY _ to step the MXT3010 through read (P1RD high)
or write (P1RD low) DMA transfers as described in Figure
45 and Figure 47 respectively.

2. Inresponse to bus request signals from the Host, grant the
Host access to the Memory or to the MXT3010 Communi-
cations /O register, performing aread or write transfer as
requested by the Host.

Version 4.1 MXT3010 Reference Manual

Additional Port1 and Port2 Design Information

A single master
burst-mode
interface

A non-burst-only
interface

3. An existing DMA transfer should not be interrupted. The
maximum MXT3010/Memory transfer is 255 bytes (64 bus
datacycles). It is recommended that the maximum Host/
Memory transfer also be 64 bus data cycles.

4. The Bus Controller may also include a Portl to PCI bus
adapter if desired. Also, the Bus Controller may also
include Memory interface logic.

Simplified Port2 interfaces

When the MXT3010 is the only Port2 master, no arbitration
function isrequired. The following simplified interfaces can be
implemented:

Logic to manipulate P2ZASEL__and P2TRDY _ can be built into
the slave device attached to Port2. In this configuration,
P2TRDY_ may betied low if generation of Data Wait statesis
not required. When there is no bus activity, P2ZASEL _ should
also be held low. Once the slave device samples RQ__aslow, it
samples the DMA address from P2AD and P2Al and drives
P2ASEL __high on the same or any subsequent clock edge.

Once P2 ASEL _ishigh, the subsequent cyclesfollow the Table
34 or Table 35 sequences as determined by the state of RD (read/
write). As with multi-master bus configurations, P2END _ low
delineatesthelast halfword transfer. P2ASEL _should bedriven
low when P2END _issampled low. P2ASEL _must be held low
until the next DMA.

P2ASEL _ can betied highand P2TRDY _ can betied low. Once
RQ_islow, the state machine begins operation and the dave
device receives the DMA address from P2AD and P2Al. The
dave device sampl es the address on the falling edge of P2AI[Q]/
P2ALE_. Subsequent buscyclesfollow the Table 36 or Table 37
sequences as determined by the state of RD (read/write).

MXT3010 Reference Manual Version 4.1 157

The Portl and Port2 Interfaces

Bus driving, turnaround, and bus parking

The port interfaces can operate in a shared bus environment. In
such an environment, the following port interface signals are
shared between all devices on their respective busses:

Port 1 Port 2
P1AD[31:0] P2AD[15:0]
P1END_ P2END _
P1RD P2RD
P1IRDY _ P2IRDY _
P1HWE[1:0]

To prevent bus contention on shared port interface signals, port
interface controllers should create a tri-state cycle between the
times the MXT3010EP and another device drive the bus. In
addition, to prevent the bus from floating indefinitely, port inter-
face controllers must ensure the busis driven when thereis no
device performing transfers on the bus. This can be done, for
example, by placing the MXT3010EP into address mode. The
MXT3010 enters address mode on therising edge of clock when
ASEL islow, TRDY_islow, and (for Portl) COMMSEL is

low.
Speeding up Many of the timing diagrams for Port1 and Port2 interfaces
transfers show PxASEL _ switching one clock period after PXRQ_is

asserted to select the data phase. If the MXT3010 is being used
in asystem that does not need to tri-state the bus, PXASEL__ can
be negated at the same time PXRQ _is asserted if PXTRDY _is
asserted (bus parked). This speeds up Port cycles by one clock
period. This process is described in more detail in “Port2 bus
parking” on page 158.

Port2 bus parking ~ While the following text describes bus parking on Port2, Portl
bus parking operates similarly.

158 Version 4.1 MXT3010 Reference Manual

Additional Port1 and Port2 Design Information

When the MXT3010istheonly Port2 Master, the device may be
parked on the bus. Parking minimizes bus handshaking over-
head. While the MXT3010 is parked, it actively drives the
P2AD pins.

In abus parking configuration, P2ZTRDY_ may be tied low.
During periods of no busactivity, P2ASEL __should also be held
low. Once the P2 Slave device samples P2RQ __low, it samples
the DMA address from P2AD and P2AIl and drives P2ASEL
high on the same or any subsequent clock edge.

Once ASEL _ is deasserted, the MXT3010 drives valid data on
subsequent cycles. Aswith non-parked bus configurations,
P2END _ low delineates the last halfword transfer. P2ASEL
should be driven low when P2END _issampled low. P2ZASEL

Data Alignment

The MXT3010 can begin Portl reads on odd byte boundaries
and can begin Port1 writes on odd halfword boundaries. The
reads always appear (on the bus) to be word reads where the
internal Portl hardware shiftsthe data appropriately for the byte
address. Although A1 and AO represent the byte address, they
can be, and usually are, ignored by external hardware. On
writes, the PAHWE1 and PIHWEO signal s determinewhich half
of the word is being written on 32-bit boundaries, halfword
enabled. The MXT3010 takes care of any shifting/swapping.

DMA transfersin burst mode cause one or more data cycleson
the bus. Each cycle can transfer four bytes (Portl) or two bytes
(Port2). On reads, the MXT3010 can start at an odd byte (or in
the case of Portl, an odd halfword) where it internally deter-
mines which bytes are important and performs lane switching
(shifting). Onwrites, the MXT3010 can only write on hafword
boundaries and an even number of bytes dueto the halfword-ori-
ented write enables. The last byte written for an odd byte trans-

MXT3010 Reference Manual Version 4.1 159

The Portl and Port2 Interfaces

fer may beignored if the transfer desired an odd byte size, but
the last byte transfer will be written. Thus, the number of data
cyclesfor four bytes may be one or two bus data cycles depend-
ing on the byte alignment.

160 Version 4.1 MXT3010 Reference Manual

Transfer complete

Transfer complete

A DMA transfer can conclude for either of two reasons:
» The byte count (BC/#) has reached zero
» The P1ABORT _ signal has been asserted (Portl only)

Byte Count zero

Standard end For both Portl and Port2, END __is asserted during the data cycle
timing that presents the final data on the bus. The DMA cycle con-
cludes with a “cleanup” cycle.

FIGURE 61.DMA Read transfer with standard END_ signal

i \J\JWVWW\/W

P1QRQ_ . U \QRQ_ reasserts if another DMA enters queue/
PIRQ_ /N vt N
PLASEL. L N/ 1 o A
PITRDY_ o+ I I /—
o
P1ADin[31: 01

P1ADout[31:0] mm ADR
P1HWE[1:0] @_@EEEE@-
P1IRDY_ / X . : : ./_:__.
COMMSEL - S S S S S S S B S
LTN (Internal) ' ' ' : : : : : :/ : \ : :
State LTX CU AD1 ATA RD RD RD RD RD LTX CU TRI *
Next state is determined by table line #14 2 4 7 9 9 9 9 10 14 1 1

MXT3010 Reference Manual Version 4.1 161

The Portl and Port2 Interfaces

Early end option Mode bits (bit 6 and bit 7) in the Mode Configuration register
(R42) enable an early end option for each port. When enabled,
the End signal asserts concurrent with the request for the next-
to-last datacycle. External circuitry must qualify thissigna with
the appropriate control signals (ASEL__and TRDY) to deter-
minethat adatacycleis present on the bus. This ensuresthat the
external controller recognizes the actual end condition and not
that the current clock cycleis await state.

FIGURE 62.DMA Read transfer with Early END

AV AV VAV AV AVAV AV AV AW aVaY/

P1QRQ_ N _/ :\QRQ_ reasserts if another DMA énters queue/ !

PIRQ_ ./ N o o 2 2 - /N
PlASEL_ © N/ 1 e o
PITRDY .+ L AN

! : : ' ' ' ' ' ~N ' '

P1RD / ' ' ' ' ' . ' ' '
Pieno_ L/ | N
P1ADIN(31:0] read}) --—

P1ADout[31:0] *{ifwie) ..@ : ;
P1HWE[1:0] @_@EEEE@- ;

P1IRDY_ / I '
COMMSEL + . .

LTN (Internal) ' . . I I I ;/ : e .
State ‘ LTX I CuU I AD1 ATA RD RD RD RD RD LTX CU TRI '
Next state is determined by table line #14 2 4 7 9 9 9 9* 10 14 1 1
*While line 9 of the state table indicates the END_ output is high in the next state, enabling the Early End option
allows the LTN signal to assert PLEND_ immediately.

Note: External logic must ensure that ASEL _ishigh and TRDY_islow
when END _is asserted (low). If TRDY _is high (shown by dashed
lines), aWait state is indicated and the last data cycle of the DMA
transfer cycleis extended beyond the length indicated. For normal end
conditions this is unimportant, but if a design is relying upon an “early
end”, this condition is important.

162 Version 4.1 MXT3010 Reference Manual

Transfer complete

External DMA cycle abort (PLABORT)

TheMXT3010 hasaninput signal (PLABORT) that permitsan
external deviceto indicate an early termination of a DMA read
operation from Portl memory. During a DMA Read operation
on Port1, assertion of the PLIABORT _ signal terminatesthe read
with the data in the following cycle. For example, asserting
P1ABORT _ during the fifth data phase of a DMA burst termi-
natesthe operation after the sixth data phase has completed. The
action of PLABORT _issimilar to that of theinternal signal
LTN, except that when atransfer isterminated by PLABORT _,
no PLEND _ assertion occurs.

FIGURE 63.DMA Read transfer terminated by PlABORT

cLk WMJ\N

P1QRQ_ ' \QRQ reasserts |fan0ther DMAenters queue/ E
PIRQ. 1/ N\ SRR /&
PIASEL. '+ '\ A,
PITRDY_ .+ /—
PIRD 7 N
P1END_ T_lr/ I ' !
P1ADIN[31:0] <Tread})) mmmmm S

P1ADout[31:0] <t wite) -.@
P1HWE[L:0] @—@mmmmm-
P1IRDY_ / : I I L ! ./—.“_:
COMMSEL S S S S S S N BT

PLABORT . . . o+ &+ o+ oo N/ o
State LTX CU AD1 ATA RD RD RD RD RD LTX* CU TRI

Next state is determined by table line #14 2 4 7 9 9 9 9 10* 14 1 1

*The state table does not show the effects of PLABORT_. The effects are equivalent to LTN, which is shown in the
state table (with the line numbers cited here), with the exception that no END_ assertion occurs.

During aDMA Write operation on Port1, assertion of the
P1ABORT _signal terminatesthe write of the datain the follow-

ing cycle.

MXT3010 Reference Manual Version 4.1 163

The Portl and Port2 Interfaces

Endian-ness

164

Within modern computer systems, there are two way's of
addressing a multi-byte data value such as (hex) ABCD:

FIGURE 64.Most Significant Byte is the Lowest Address (“Big-endian”)

Data: A B C D

Address: 0 1 2 3

FIGURE 65. Least Significant Byte is the Lowest Address (“Little-
endian”)

Data: A B C D

Address: 3 2

Themapping in Figure 64 storesthe most significant bytein the
lowest numeric byte address. The mapping in Figure 65 stores

the least significant byte in the lowest numeric byte address,

These methods are commonly referred to as “big-endian” and
“little-endian” respectively.

If a processor that uses big-endian or little-endian addressing
accesses the data shown Figure 64 and Figure 65 on a word
basis, the entire 32-bit quantity ABCD is accessed, and no prob-
lems result. However, processsors that use big-endian address-
ing receive different results than those using little-endian
addressing when making word or byte accesses. See Table 38.

Version 4.1 MXT3010 Reference Manual

Endian-ness

TABLE 38. Comparison of Big-endian and Little-endian Read

Operations
Access Big-Endian Result Little-Endian Result
32-hit ABCD ABCD
16-hit xxx0 AB CD
16-hit xxx2 CD AB
byte xxx0 A D
byte xxx1 B C
byte xxx2 C B
byte xxx3 D A

A convenient method of dealing with this problem isto use the
swapping instructions availablein little-endian processorsin
combination with a hardware byte-swapper. A byte-swapper,
implemented in hardware, in shown in Figure 66.

FIGURE 66.Har dware Byte-swapping Circuit

Big-endian processor

| A B C D
3
Hardware
Little-endian processor
| D | C | B | A |
3 2 1 0

Figure 67 showswhat happenswhen the hardware byte-swapper
isused in conjunction with a software instruction that swapsthe
bytes on aword basis within the little-endian processor.

MXT3010 Reference Manual Version 4.1 165

The Portl and Port2 Interfaces

FIGURE 67.Word Access

Big-endian processor

Hardware

| D | C B A |
3 2 1 0
Software
| A | B | C | D |
3 2 1 0

The combination of hardware and software shown in Figure 67
produces the same result as shown in Table 38 on page 165, the
first line of which (in an expanded form) is reproduced in Table

39.

TABLE 39. Accesses With Hardwar e and Softwar e Swaps, 32-bit
Big-Endian Little-Endian Result after H/W-S/'W

Access Result Result Swaps

32-bit ABCD ABCD ABCD

At first glance, this appears to be a waste of hardware and soft-
ware. However, theresultsfor halfword (16-bit) and byte (8-hit)
operations are more interesting.

166 Version 4.1 MXT3010 Reference Manual

Endian-ness

FIGURE 68.16-bit xxx0 Access

Big-endian processor

1 3

Little-endian processor

Software

Big-endian processor

1 3

Little-endian processor

| D | C | B A
3 2 1 0
Software
| C D
3 2 1 0

The combinations of hardware and software shown in Figures
68 and 69 produce Table 40.

MXT3010 Reference Manual Version 4.1 167

The Portl and Port2 Interfaces

TABLE 40. Accesses With Hardware and Software Swaps, 32-bit and 16-bit

Little-Endian Result
Access Big-Endian Result Per Table 38 Result after H/W-S'W Swaps
32-bit ABCD ABCD ABCD
16-hit xxx0 AB CD AB
16-bit xxx2 CD AB CD

FIGURE 70.Byte Access

Big-endian processor

Little-endian processor

| D | C | B | A |
3 2 1 0

The combination of hardware and software shown in Figure 70
produces Table 41.

TABLE 41. Accesses With Hardwar e and Softwar e Swaps, 32-bit, 16-bit, and 8-bit

Little-Endian Result

Access Big-Endian Result (Per Table 38) Result after H/W-S/W Swaps

32-bit ABCD ABCD ABCD

16-hit xxx0 AB CD AB

16-bit xxx2 CD AB CD

byte xxx0 A D A

byte xxx1 B C B

byte xxx2 C B C

byte xxx3 D A D
Asindicated in Table 41, the combination of the hardware byte-
swapper and byte swapping instructions within the little-endian
processor allow thelittle-endian processor to accessinformation
in the big-endian system and receive consistent results.

168 Verson 4.1 MXT3010 Reference Manual

Port1 and Port2 Reference Designs

See “Endian Implementation in PLMemMaker” on page 171
and “Endian Implementation in P2MemMaker” on page 174 for
examples of endian treatment in reference designs.

Portl and Port2 Reference Designs

P1MemMaker

The MXT3010EP Portl interface requires a memory controller
function to support bus arbitration, bus selection, bus driving,
bus turnaround, and bus holding operations. In Maker’s
MXT3025 evaluation Board and similar designs, Maker uses
P1MemMaker, a device that is a integrated memory system con-
troller, integrated PCI interface, COMMIN/COMMOUT Regis-
ter, and MXT3010EP Portl interface. It performs the following
functions:

* Memory System Controller

The Memory System Controller (MSC) provides the bus
arbitration and selection functions for the PCI or Portl
access for tranfers to shared memory. It controls up to 4
Mbytes of shared DRAM. The typical memory system is
organized as 1Mx32 and implemented with two (2) 1Mx16
EDO DRAMs. The memory system is usually mapped into
the PCI memory space and mapped into the lower 4 Mbytes
of the MXT3010EP Portl address space. The MSC sup-
ports full speed burst transfers of up to 256 bytes to the
memory system, but transfers must not cross 4-Kbyte
boundaries. Also, the MSC controls the resetting and boot
loading of the MXT3010EP through a 128 Kbyte boot
PROM.

MXT3010 Reference Manual Version 4.1 169

The Portl and Port2 Interfaces

170

PCI Interface

The PCI bus interface is a 32-bit, 33 Mhz PCI Version 2.1
implementation supporting the PCI configuration registers, a
slave-only interface, and no support for initiating transfers
from the host processor to shared memory or the
MXT3010EP device.

COMMIN/COMMOUT Register

The P1MemMaker also controls communications between
the MXT3010EP COMMIN/COMMOUT register and the
PCI host. The CINBUSY, COUTRDY, and COMMSEL sig-
nals are connected to the P1MemMaker. Typically the PCI
host communicates to code running in the MXT3010EP via
commands passed through the MXT3010EP’s COMMIN
register. The code running in the MXT3010EP communi-
cates to the PCI host via commands passed through the
MXT3010EP’'s COMMOUT register, writing to command
responses and to indication queues. The COMMIN/COM-
MOUT register (32-bits) thus provides the two-way com-
munications. Details of CINBUSY and COUTRDY
operation are provided in Chapter 8 of MET3010 Refer-
ence Manual.

MXT3010EP Portl interface

The Portl Controller is a 32-bit multiplexed address and
data bus operating at 50 Mhz supporting MXT3010EP
accesses to shared memory.

Maker’'s PLMemMaker reference design is available through the
WEB under the "Hardware Development Tools" page and pro-
vides the following verilog files:

e arbiter.v

This module defines the memory arbiter.

Version 4.1 MXT3010 Reference Manual

Port1 and Port2 Reference Designs

e dp.v
This module defines the data paths.
e dram_cntrl.v
This module defines the DRAM controller.
e plorca.v
This module defines the top level of PLMemMaker
e plctrl.v
This module defines the Port 1 A/B controller.
e pci_be.v

This module defines the PCI back end controller with CSR.

Endian Several Maker products utilize the Portl MemMaker FPGA to
Implementationin allow the MXT3010 and a PCI bus to share a Portl memory.
P1MemMaker Within Portl MemMaker, the address and data information on

the time-multiplexed Portl and PCI busses are registered, and
the data leads are transposed as shown in Figuidod2ad
transpositions are performed on the address information.

FIGURE 71.The Portl MemMaker FPGA
Host (Little-endian)

PCI Bus
D CB A)

P1 O Shared Memory
MemM aker < .'m (Big-endian)
A B CD <

Portl Bus

MXT3010 (Big-endian)

MXT3010 Reference Manual Version 4.1 171

The Portl and Port2 Interfaces

FIGURE 72.Data Path Connections - Shared Memory to PCI

31

Port1 Shared Memory
| A | B | < | D | (Big-endian)
P1 MemMaker
3 0 PCI Bus
| D [C [B | A | (Little-endian)

FIGURE 73.Data Path Connections - Shared Memory to M XT3010

31

A

B | C | D | Portl Shared Memory

PLAD[31]

A

A 4 4 (Big-endian)

P1 MemMaker

v PIAD[0]

A

MXT3010 Portl Pins

B c D | (Big-endian)

172

P2MemMaker

The MXT3010EP Port2 interface requires a memory controller
function to support bus arbitration, bus selection, bus driving,

bus turnaround, and bus holding operations. In Maker’s
MXT3025 evaluation Board and similar designs, Maker uses
P2MemMaker, a device that is a integrated memory system con-
troller, a PCI interface, and an MXT3010EP Port2 interface. It
performs the following functions:

* Memory System Controller

The Memory System Controller (MSC) provides the bus
arbitration and selection functions for the PCI or Port2
access for tranfers to shared memory. It controls up to 2
Mbytes of shared SRAM. The typical memory system is
organized as two (2) 64kx16 SRAMs. The memory system
is typically mapped into the PCI memory space and mapped

Version 4.1 MXT3010 Reference Manual

Port1 and Port2 Reference Designs

into the lower 256K bytes of the MXT3010EP Port2 address
space. The M SC supports full speed burst tranfers up to 256
bytes to the memory system, but transfers must not cross 4-
Kbyte boundaries. The MSC also controlstransfersto the
non-burst memory space.

+ PCI Interface

The PCI Bus interface is a 32-bit, 33 Mhz PCI Version 2.1
Implementation supporting the PCI configuration registers,
a slave only interface, and no support for initiating transfers
from the host processor to shared memory or the
MXT3010EP device.

* Port2 Interface

The Port2 Controller is a 16-bit multiplied Address and Data
bus operating at 50 Mhz supporting MXT3010EP accesses
to shared memory.

Maker’s P2MemMaker reference design is available through the
WEB under the "Hardware Development Tools" page and pro-
vides the following verilog files:

* mem_cntrl.v
This module defines the SRAM controller.
» p2_arbiter.v
This module defines the memory arbiter.
e p2_dp.v
This module defines the data paths.
* p2_ORCA.v
e p2_pci_be.v
This module defines the PCI back end controller.

e p2ctrl.v

MXT3010 Reference Manual Version 4.1 173

The Portl and Port2 Interfaces

This module defines the Port 2 Rx/Tx controller.

Endian Several Maker products utilize the Port2 MemMaker FPGA to

Implementationin ~ allow the MXT3010 and aPCI b

us to share a Port2 memory.

P2MemMaker Within the Port2 MemMaker, the address and data information
on the time-multiplexed Port2 and PCI busses are registered,
and the dataleads are transposed as shown in Figure 75. No lead
transpositions are performed on the address information.

FIGURE 74.The Port2 MemMaker FPGA
Host (Little-endian)
PCI Bus

B A

P2
MemM aker

A B

m Shared Memory
'< (Big-endian)

Port2 Bus
MXT3010 (Big-endian)

FIGURE 75.Data Path Connections - Shared Memory to PCI

il 0
| A | B |

174 Version 4.1

Port2 Shared Memory
(Big-endian)

P2 MemM aker

PCI Bus
(Little-endian)

MXT3010 Reference Manual

Port1 and Port2 Reference Designs

FIGURE 76.Data Path Connections - Shared Memory to M XT3010

kil 0
| A | B | Port2 Shared Memory
(Big-endian)
P2 MemMaker
P2AD[0
PAD[LS] 3 v g MXT3010 Port2 Pins
| A B | (Big-endian)
MXT3010 Reference Manual Version 4.1

175

The Portl and Port2 Interfaces

176 Version 4.1 MXT3010 Reference Manual

cuarters Communications

ISata Multi-purpose l
Stream | pMA (Port2) High St
Cell Buffer RAM Performance Stream
Cell utoria | DMA (Port
Stream Port
Instruction Cache I
Control
Fast Memory | Memory
H Controller SRAM

g ™

<> g’;e;;i'm; . SWAN'"" Processor Ty
ell Scheduling

System

Host/M X T3010 communications include the COMMIN/COM -
MOUT register and the eight pinsthe MXT3010 assignsfor inter-
chip communications. Thischapter describesthe communications
functions of the COMMIN/COMMOUT register and inter-chip

signalling pins.

MXT3010 Reference Manual Version 4.1 177

Communications

The COMMIN/COMMOUT register

CIN_BUSY and
COUT_RDY

178

The MXT3010 device implements a two-way communications
channel with the host processor. The communication channel
consists of a32-bit COMMIN/COMMOUT register imple-
mented as a set of two 16-hit registers, R40 [31:16] and R41
[15:0]. Accessing the COMMIN/COMMOUT register via
Port1, the host processor uses the register asa COMMIN regis-
ter to write information (commands/status/addresses) into the
device, and asa COMMOUT register to read information from
the device.

Register Function
COMMIN Host to MXT3010 communications
COMMOUT MXT3010 to host communications

The M XT3010 deviceimplements two output signalsthat allow
both the host and the SWAN processor to determine the state of
the COMMIN/COMMOUT register set. Definitions for these
signals are provided in Table 42, and timing for these signalsis
shown in Figure 77 on page 180.

TABLE 42. Definitionsof CIN_BUSY and COUT_RDY

Signal Function
CIN_BUSY The CIN_BUSY signal isused for host to MXT3010
communications (R40/R41 used as COMMIN).

1 The host has written information into R40/R41
that has not yet been read by the SWAN processor.

0 The SWAN has read the information in R40.

COUT_RDY TheCOUT_RDY signal isused for MXT3010 to host
communications (R40/R41 used as COMMOUT).

1 The SWAN processor has written information into
R40 that has not yet been read by the host.

0 The host has read the information in R40/R41.

Version 4.1 MXT3010 Reference Manual

The COMMIN/COMMOUT register

Restrictions on
CIN_BSY and
COUT_RDY

As shown above, when the host processor writesto COMMIN
(R40/R41), CIN_BUSY is asserted until the SWAN processor
reads R40. Before writing the next word into the register R40/
R41, the host must be sure that the SWAN processor has pro-
cessed the previous word. The host doesthis by testing the state
of CIN_BUSY. The state of CIN_BUSY is accessible to the
SWAN as ESS6.

When the SWAN processor writesto COMMOUT _HIGH
(R40), the COUT_RDY output is asserted until the host reads
the COMMOUT register. TheCOUT_RDY output isaccessible
to the SWAN processor as ESS7. Therefore, the SWAN can
check that the host has read COMMOUT by testing ESSY.

Since reads and writes to R40 affect the CIN_BUSY and
COUT_RDY signals, the SWAN program should read or write
R41 before reading or writing R40 when performing 32-bit
communication. No such restriction appliesto the host, asit uses
32-bit transfers that access R40 and R41 simultaneously. Since
R40 controls the flags, COMMOUT_LOW (R41) can be used
during debugging to pass data without affecting the flags.

The CIN_BSY flag is cleared when a nullified instruction
accessesthe COMMIN_HIGH register (R40). Therefore, do not
placeaninstruction that accesses COMMIN_HIGH inadlot that
may be nullified. For more information on the nullify operator,
see “The Nullify operator” on page 265.

MXT3010 Reference Manual Version 4.1 179

Communications

FIGURE 77.Timing of CIN_BUSY and COUT_RDY

CLK R A A I A A A S O S S
PIRQ /" assaiei o Dt commant cnr e pr v s
PLASEL. . N .o owobob i
PrROY. -/
COMMSEL A S/ N S/ VS S S S S
CIN_BUSY S S B A B
courroy ————
pir >
PIADISLOl X pnaso—amo———am—————
STATE " lde cW CIs idle cOLCO2 CODV idle

CIW = Comm In Write; CIS = Comm In Data Strobe; C01,2 = Comm Out Read1,2; CODV = Comm Out Data Valid
DMA transfer COMMIN Write COMMOUT Read

Interchip communications

Besides the COMMIN/COMMOUT register, the MXT3010
dedicates eight pins for interchip communication: four input
pins, ICSI_[D:A], and four output pins, ICSO_[D:A].

The ICSI pins Theinput pins are listed in Table 43.

TABLE 43. ICSl pins
Pin 110 Connected to

ICSI_A Input Sparse Event/ICS register (R57) bit 12 (read)
External State Signals (ESS) register (R42) bit 0

ICSI_B Input Sparse Event/ICS register (R57) bit 13 (read)
External State Signals (ESS) register (R42) bit 1

ICSI_C Input Sparse Event/ICS register (R57) bit 14 (read)
ICSI_D Input Sparse Event/ICS register (R57) bit 15 (read)

The appearances of ICSI_A and ICSI_B in the ESS register are
synchronized to the MXT3010 input clock, but are not latched.

180 Version 4.1 MXT3010 Reference Manual

Interchip communications

In contrast, the appearances of these bits in the Sparse Events/
ICS register (R57) include both a masking feature and latching.

Theappearancesof ICSI[D:A] inthe Sparse Events/| CSregister
(R57) are enabled by masking conditions in the System register
(R63). If enabled, each input is sampled by the clock. If the sig-
nal is asserted for two successive clock cycles, this conditionis
latched until cleared by the SWAN processor.

The ICSO pins The output pins are listed in Table 44.

TABLE 44. 1CSO pins
Pin 1/0 Connected to
ICSO_A Output Sparse Event/ICSregister (R57) bit 12 (set/clear)
ICSO_ B Output Sparse Event/ICSregister (R57) bit 13 (set/clear)
ICSO_C Output Sparse Event/ICSregister (R57) bit 14 (set/clear)
ICSO_ D Output Sparse Event/ICSregister (R57) bit 15 (set/clear)

The output pinsare sourced from four Sparse Event/| CSregister
(R57) outputs. The SWAN processor can changethe state of any
one of the output pins by changing the state of the Sparse Event
register output bit associated with the pin.

Enabling the The SWAN processor reads configuration information from
ICSO pins ICSO_(D:A) during reset. To ensure that the SWAN processor

does not drive these pins at reset, the pins are reset in input
mode. The SWAN processor senses configuration information
from them as it exits reset. To use these pins as outputs, the soft-
ware must enable these pins by setting the EN bit in the System
register (R63).

For more information on the Sparse Event/ICS register, see
“R57-read Sparse Event/ICS register” on page 213. For more
information on the System register, see “R63 The System regis-
ter” on page 221.

MXT3010 Reference Manual Version 4.1 181

Communications

182 Version 4.1 MXT3010 Reference Manual

Sction2 Regiger and
|ndruction
Reference

This section includes register descriptions and the SWAN instruc-
tion set.

Registers

The register descriptions are organized by location, starting with
theregister filein locations R(31:0) and continuing with registers
R32 through R63. A table is provided that includes the register
location, name, size, and whether it's a read or write register.

Each register description includes the register location, bit map,
description, reset value, bit definitions, and notes.

Table 45 lists the registers.

MXT3010 Reference Manual Version 4.1 183

TABLE 45. Hardwareregisters

Location Name Read/Write
R32 Genera Purpose - 0000 R/W
R33 Genera Purpose - FFFF R/W
R34 Genera Purpose - FFOO R/W
R35 Genera Purpose - 0040 R/W
R36-Write The Bit Bucket w
R37 Genera Purpose R/W
R38 Genera Purpose R/W
R39 General Purpose R/W
R40 COMMOUT/COMMIN(31:16) R/W
R41 COMMOUT/COMMIN(15:0) R/W
R42-Read ESS register R
R42-Write Mode Configuration register Set/Clear
R43-Read Fast Memory Bit Swap register R
R43-Write UTOPIA TX Control FIFO register W
R44 CRC32PRX (15:0) R/W
R45 CRC32PRX (31:16) R/W
R46 CRC32PRY (15:0) R/W
R47 CRC32PRY (31:16) R/W
R48 rla Address register R/W
R49 rla Address register R/W
R50 rla Address register R/W
R51 rla Address register R/W
R52 Alternate Byte Count /ID register R/W
R53 Instruction Base Address register R/W
R54 Programmable Interval Timer (PITO) R/W
R55 Programmable Interval Timer (PIT1) R/W
R56 The Fast Memory Data register R/W
R57-Read Sparse Event/ICS register R
R57-Write Sparse Event/ICS register Set/Clear
R58 Fast Memory Shadow register R/W
R59 Branch register R/W
R60 CSS Configuration register R/W
R61-Read Scheduled Address register R
R62 UTOPIA Configuration register R/W
R63 System register R/W

184 Version 4.1 MXT3010 Reference Manual

Instructions

Instructions

The SWAN instruction set is organized functionally. The
instructions are described in alphabetical order within each
functional area. Also included in this sectionisalist of the
functional groups and an alphabetical list of the instructions.

The specific instruction reference includes the instruction’s full
name, mnemonic, the layout of the 32-bit instruction word, format,
purpose, description, fields, restrictions and any information
specific to a functional area.

The functional groups of the instructions are:

* ALU instructions

* Branch instructions

» Cdll Scheduling instructions

* DMA instructions

* Load and Store internal RAM and Fast Memory instructions

Table 46 lists the instructions alphabetically.

MXT3010 Reference Manual Version 4.1 185

TABLE 46. Alphabetical list of instructions

Instruction
Mnemonic Instruction Functional Group Page
ADD Add Registers ALU 234
ADDI Add Register and Immediate ALU 235
AND And Registers ALU 236
ANDI And Register and Immediate ALU 237
BF Branch Fast Memory First Word ~ Branch 270
Shadow Register
BFL Branch Fast Memory First Word ~ Branch 271
Shadow Register and Link
BI Branch Immediate Branch 272
BIL Branch Immediate and Link Branch 273
BR Branch Register Branch 274
BRL Branch Register and Link Branch 275
CMP Compare two Registers ALU 238
CMPI Compare Register and Immediate ALU 239
CMPP Compare two Registers with Previ- ALU 240
ous
CMPPI Compare Register and Immediate ALU 241
with Previous
DMA1R, DMA Operations DMA 289,
DMA1W, 290,
DMAZ2R, 291,
DMA2W 292
FLS Find Last Set ALU 242
LIMD Load Immediate ALU 243
LD Load Register Load and Store 321
Internal RAM
LDD Load Double Register Load and Store 322
Internal RAM
LMFM Load Multiple from Fast Memory Load and Store Fast 308
Memory
MAX Maximum of two Registers ALU 244
MAXI Maximum of Register and Immedi- ALU 245
ae
MIN Minimum of two Registers ALU 246

186 Version 4.1 MXT3010 Reference Manual

Instructions

I nstruction
Mnemonic Instruction Functional Group Page
MINI Minimum of Register and Immedi- ALU 247
ate
OR Or Registers ALU 248
ORI Or Register and Immediate ALU 249
POPC Service Schedule Cell Scheduling 278
PUSHC Schedule Cell Scheduling 280
SFT Shift Right or Left based on Signed ALU 250
Shift Amount
SFTA Shift Right Arithmetic ALU 251
SFTAI Shift Right Arithmetic Immediate ALU 252
SFTC Shift Right Circular ALU 253
SFTCI Shift Circular Immediate ALU 254
SFTRI/ Shift Right or Left Immediate ALU 255
SFTLI

SHFM Store Halfword to Fast Memory Load and Store Fast 311
Memory Instructions

SRH Store Register Halfword Load and Store Fast 312
Memory Instructions

ST Store Register Load and Store 323
Internal RAM

STD Store Double Register Load and Store 324
Internal RAM

SUB Subtract Registers ALU 256

SUBI Subtract Register and Immediate ALU 257

XOR Exclusive-or Registers ALU 258

XORI Exclusive-or Register and Immedi- ALU 259

ate

MXT3010 Reference Manual Version 4.1 187

188

Instruction description notations

The following table lists the abbreviations used in the SWAN
processor, describes them briefly, and indicates the functional
instruction group(s) within which that abbreviation is used.

TABLE 47. Abbreviationsused in SWAN instructions

Abbreviation Description

Usage

rsa Source register, software or hardware ALU, DMA

rsb Source register, software ALU, DMA

rd Destination register, software or hardware ALU, Load/
Store

abc ALU branch condition IFO? ALU

UM Automatic update memory IFO ALU

MODx Modulo arithmetic IFO ALU

AE Always execute IFO ALU

usi Unsigned immediate vaue ALU

s Sign-extended 10-bit immediate value ALU

usa Unsigned shift amount ALU

tcsa Two’s-complement shift amount ALU

li Long immediate value ALU

ESS# External State Signals register bit position Branch

S State of ESS bit for comparison Branch

C Conditional execution operator Branch

cso Counter system operation IFO Branch

wadr Target word address Branch

rla Load address register Load/Store

IDX/# Load address index Load/Store

LNK Linking IFO Load/Store

#HW Halfword count Load/Store

BC/# Byte count DMA

CRCX, CRC generation control DMA

CRCY

POD DMA post-operation directive DMA

a IFO = Instruction Field Option
Verson 4.1 MXT3010 Reference Manual

CHAPTER 9 Registers

This chapter describes the registers associated with the SWAN
processor.

Register types

The two types of registersin the SWAN processor are general-
purpose and control/status. The general-purpose registers are
classified as software registers because their usage and content is
firmware dependent. The registers that control functions and pro-
vide status information are classified as hardware registers.

Software registers

The SWAN processor has 32 general-purpose software registers,
R0-R31, each 16-bits wide. The software registers have no man-
datory implicit hardware or software usage conventions. How-

ever, restrictions apply when software registers are used with the
Load Multiple Fast Memory (LMFM) instruction. The specified

MXT3010 Reference Manual Version 4.1 189

Registers

190

register isrestricted based on the use of the Link instruction field
option and thelength of thetransfer. For further information, see
“General information for Load and Store Fast Memory instruc-
tions” on page 294.

Hardware registers

The SWAN processor has 32 control and status hardware regis-
ters, R32-R63. In certain cases the MXT3010 mode configura-
tion affects the register function. For more information on
modes, see “R42-write Mode Configuration register” on

page 201.

Specifying registers in SWAN instructions

Most of the SWAN instructions include register read or write
operations. In those instructions, fields are provided to specify
which registers are used. The fields are identified by abbrevia-
tions that indicate whether the register is used as a source or as
a destination, and whether any restrictions apply to that register.
The following table lists the field abbreviations used, their
descriptions, and the permitted registers for that field.

TABLE 48. Field abbreviations

Abbrev Permitted I nstruction

iation Description Registers Type

rsa Source register, software or R0O-R63 ALU, DMA
hardware

rsb Source register, software RO-R31 ALU, DMA

rd Destination register, software R0-R63 ALU, Load/
or hardware Store

rla Load address register R48-R51 Load/Store

GA, GB, GC, GD

\ersion 4.1 MXT3010 Reference Manual

Register types

Initializing software and hardware registers

The software registers RO-R31 are unchanged by device initial-
ization and therefore are indeterminate at power up. Initializa-
tion software should clear these registers before use. The
hardware register descriptions (R32-R63) indicate which regis-
ters are unchanged by deviceinitialization and which are initial-
ized to specific values.

TABLE 49. Hardwareregisters

Location Name Read/Write
R32 General Purpose - 0000 R/W
R33 General Purpose - FFFF R/W
R34 General Purpose - FFOO R/W
R35 Genera Purpose - 0040 R/W
R36-write The Bit Bucket W
R37 Genera Purpose R/W
R38 General Purpose R/W
R39 Genera Purpose R/W
R40 COMMOUT/COMMIN(31:16) R/W
R41 COMMOUT/COMMIN(15:0) R/W
R42-read ESS register R
R42-write Mode Configuration register Set/Clear
R43-read Fast Memory Bit Swap register R
R43-write UTOPIA TX Control FIFO register W
R44 CRC32PRX (15:0) R/W
R45 CRC32PRX (31:16) R/W
R46 CRC32PRY (15:0) R/W
R47 CRC32PRY (31:16) R/W
R48 rla Address register R/W
R49 rla Address register R/W
R50 rla Address register R/W
R51 rla Address register R/W
R52 Alternate Byte Count /ID register R/W
R53 Instruction Base Address register R/W
MXT3010 Reference Manual Verson4.1 191

Registers

TABLE 49. Hardwareregisters

Location Name Read/Write
R54 Programmable Interval Timer (PITO) R/W
R55 Programmable Interval Timer (PIT1) R/W
R56 The Fast Memory Data register R/W
R57-read Sparse Event/ICS register R
R57-write Sparse Event/ICS register Set/Clear
R58 Fast Memory Shadow register R/W
R59 Branch register R/W
R60 CSS Configuration register R/W
R61-read Scheduled Address register R

R62 UTOPIA Configuration register R/W
R63 System register R/W

192 Version 4.1 MXT3010 Reference Manual

R32 General Purpose - 0000

R32 General Purpose - 0000

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1
Genera Purpose register

Description: Thisisageneral purpose read/write register that isinitialized to
0x0000. Thisregister is also used during HEC generation (see
“HEC generation and check circuit” on page 25.)

Reset value: 0x0000
Bit definitions: N/A
Note: Restrictions apply to the use of LD, LDD instructions with this

register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 193

Registers

R33 General Purpose - FFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
Genera Purpose register

Description: Thisisagenera purpose read/write register that isinitialized to
OXFFFF. This register is also used during HEC generation (see
“HEC generation and check circuit” on page 25.)

Reset value: OxFFFF
Bit definitions: N/A
Note: Restrictions apply to the use of LD, LDD instructions with this

register. See “Register access rules” on page 22.

194 Version 4.1 MXT3010 Reference Manual

R34 General Purpose - FFOO

R34 General Purpose - FF00

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1
Genera Purpose register

Description: Thisisageneral purpose read/write register that isinitialized to
FFOO.

Reset value: OxFF00

Bit definitions: N/A

Note: Restrictions apply to the use of LD, LDD instructions with this

register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 195

Registers

R35 General Purpose - 0040

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
Genera Purpose register

Description: Thisisagenera purpose read/write register that isinitialized to
0040.

Reset value: 0x0040

Bit definitions: N/A

Note: Restrictions apply to the use of LD, LDD instructions with this

register. See “Register access rules” on page 22.

196 Version 4.1 MXT3010 Reference Manual

R36-write Bit Bucket register

R36-write Bit Bucket register

15 14 13 12 11 10 9 8 7 6

5

4

3

2

1

0

Description:

Reset value:

Bit definitions:

Notes:

MXT3010 Reference Manual

1
Bit Bucket register

The Bit Bucket register provides the SWAN processor with a
location that can be written without any possibility of functional
side effects. Information written to R36 is discarded. Thus, soft-
ware can specify R36 as a destination and discard the results of
any operation. R36 is used to emulate ano-op, as well asto
implement testing pseudo-ops, such as TSET and TCLR.

N/A

N/A

The Bit Bucket register should not be read or otherwise speci-
fied asasource register. Because of the special treatment of this
register location, aread operation can stall the SWAN processor
indefinitely.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Version 4.1 197

Registers

R37-R39

Description:

Reset value:

Bit definitions:

Note:

198

General Purpose registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
Genera Purpose register

Registers R37, R38, and R39 are 16-bit read/write genera pur-
pose registers. They are unchanged by deviceinitialization, and
therefore the contents are indeterminate at power-up.
Indeterminate

N/A

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Version 4.1 MXT3010 Reference Manual

R40-R41 Host Communication registers

R40-R41 Host Communication registers

R40 COMMIN_HIGH/COMMOUT_HIGH
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16

| | |
COMMIN/COMMOUT bits[31:16]

R41 COMMIN_LOW/COMMOUT_LOW
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| |
COMMIN/COMMOUT bits[15:0]

Description: TheHost Communication registers provide a32-bit datatransfer
path between the SWAN processor and the external host proces-
sor. These registers, combined with their associated status flags
and pins, form abi-directional command and response mecha-
nism for host communications.

Reset value: I ndeterminate
Bit definitions: N/A
Notes: 1. When the SWAN processor reads location R40, CIN_BUSY

(ESS6) is cleared. When the SWAN processor writes location
R40, COUT_RDY (ESS7) is set. Since reads or writes to R40
affect the flags, the programmer should read or write R41 before
reading or writing R40 to perform 32-bit communications with a
host processor.

2. For moreinformation on the Host Communications registers oper-
ation, see CHAPTER 8 "Communications" on page 177.

3. Redtrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 199

Registers

R42-read

Description:

Reset value:

Bit definitions:

Note:

200

External State Signals (ESS) register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
See “Bit Definitions” below

The SWAN processor can examine the state of certain internal
conditions and pins by examining the External State Signalsreg-

ister.

See “Initializing the Mode Configuration register” on page 408.

Bit

Read Definition Bit Read Definition

15
14
13
12
11
10

Unconditional branéh 7 COUT_RDY

DMAZ2 queue stage busy 6 CIN_BUSY

DMAL queue stage busy 5 CSS operation in progress
DMAZ2 out or queue stage busy 4 Assigned Cell flag register
DMAL1 out or queue stage busy 3 RXBUSY Countdr >
TXFULL Counter = full 2 TXFULL Counter 2
RXBUSY Counter = /0 1 ICSI B

Sparse Event register bit 8R 0 ICSI_Ae

a.

ESS15 is hardwired to the asserted state. If a Branch instruction does
not contain a specified value for the ESS field, the assembler codes that
field as 1111, and an unconditional branch is taken.

. After the SWAN processor writes the COMMOUT register, there is a

5-6 instruction delay before the COUT_RDY bit is set.

After the SWAN processor reads the COMMIN register, there is a 5-6
instruction delay before the CIN_BUSY bit is cleared.

. When an external event occurs that is being monitored by the Sparse

Events register, there is a 3-4 instruction delay between the external
event and the Sparse Events OR indication of that event.

. When an external event occurs that is being monitored by an ICSI bit,

there is a 3-4 instruction delay between the external event and the ICSI
indication of that event.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Version 4.1 MXT3010 Reference Manual

R42-write Mode Configuration register

R42-write Mode Configuration register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Target Bit
Reserved SF | Set| Reserved Selector
Description: The Mode Configuration register includes provision for mode 0
and mode 1 operations. The SWAN processor does not write to
the Mode Configuration register directly. Instead, it writes a
control byte to the Mode Configuration register to set and clear
certain bits. If bit 7 of the control byteis 0, the target bit is
cleared (unlessit istriggered simultaneously). If bit 7 is 1, the
target bit is set.
Reset value: See “Initializing the Mode Configuration register” on page 408.
Bit definitions:
Bit Name Function
159 Reserved Programs should write zeroes to these bits.
8 Special Features This bit enables special featuresin R43-write
and R43-read. (See page 204 and page 205)
0 Special features disabled (normal operation)
1 Special features enabled
7 Set The state of this bit determines whether the bit
selected by the Target Bit Selector is set or
cleared
0 The target bit is cleared
1 Thetarget bit is set
6:4 Reserved Programs should write zeroes to these hits.
3:0 Target Bit Selector These bits select which bit is set or cleared.
R42 Target Bit
Bit Selected Bit State and Function
0 0000 HEC Control
0 HECisgenerated and inserted
1 HECisomitted
1 0001 Cdll Length Control
0 52bytecells
1 56 bytecells
MXT3010 Reference Manual Verson4.1 201

Registers

R42 Target Bit

Bit Selected Bit State and Function

2 0010 Programs should write zeroes to these bits.
3 0011 Programs should write zeroes to these hits.
4 0100 Fast Memory Mode Control

0 Fast Memory isin Mode 0

1 FastMemoryisin Mode 1
5 0101 DMA Plus Control

0 DMA Plusdisabled

1 DMA Plus performs automatic rla
6 0110 Port1 Operation Control

0 Portl normal operation

1 Portl Early End enabled
7 0111 Port2 Operation Control

0 Port2 normal operation

1 Port2 Early End enabled

8 1000 Reserved

0 Reserved

1 Reservedfor PLL test mode
9 1001 R32 Control

0 R32innormal operation
1 HECS8circuit enabled on R32
10 1010 R55 Control
0 PITlisdisabled; R55isal16-bit R/W register
1 PITlisenabled; R55 operates as atimer
11 1011 R54 Control
0 PITOisdisabled; R54 isa16-bit R/W register
1 PITOisenabled; R54 operates as atimer
13,12 1100, 1101 Programs should write zeroes to these bits.
14,15 1110,1111 Reserved

Notes: Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

202 Version 4.1 MXT3010 Reference Manual

R43-read Fast Memory Bit Swap register (R42w[8]=0)

R43-read Fast Memory Bit Swap register (R42w[8]=0)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 |
Fast Memory Bit Swap register (Note bit order)

Description When bit [8] of R42-write is zero (0), this register contains the
same data as the Fast Memory Byte register (R56) with the bit
order reversed.

Reset value: Indeterminate

Bit definitions: N/A

Notes: R43 can be used to implement a Find First Set instruction by
loading a value into R56 and applying the Find Last Set (FLS)
instruction (page 242) to R43.

Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 203

Registers

R43-read Special Features register (R42w[8]=1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
Reserved‘ Port2 DMAS‘ Reserved URX Count UTX Count

Description When bit [8] of R42-write is one (1), this register implements
special configuration features.

Reset value: Indeterminate
Bit definitions:
Bit Name Function
15:14 Reserved Programs should write zeroes to these hits.
13:11 Port2 DMAs Port2 DMAs completed. This three-bit counter
isincremented on the last transfer of aDMA2
operation. It is decremented in software by a
branch instruction with the following syntax:
bi$label DMA count.
10:8 Reserved Programs should write zeroes to these hits.
7.4 URX Count Thisfour-bit counter can read either the current
state of the UTOPIA Receiver’s Busy or Full
Counter, depending upon R43-write [9].
3:.0 UTX Count This four-bit counter can read either the current
state of the UTOPIA Transmitter’s Busy or Full
Counter, depending upon R43-write [8].
Notes: Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

204 Version 4.1 MXT3010 Reference Manual

R43-write UTOPIA Control FIFO register

R43-write UTOPIA Control FIFO register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

R&eerveq Configlguration Options Rs/‘ I ‘CG‘ TXPHY

Description: Datawrittento the UTOPIA Control FIFO register provides cer-
tain characteristics for cells scheduled for transmission from
Cell Buffer RAM through the UTOPIA port. The datawrittento
this register is stored in a FIFO-like internal memory until an
actual cell transmission by the UTOPIA port controller removes
it. Up to eight control entries can be stored in the FIFO.

The upper byte of thisregister implements special configuration
features controlled by bit [8] of “R42-write Mode Configuration
register” on page 201.

Reset value: Indeterminate
Bit definitions
(Lower byte): Bit Name Function

Reserved Programs should write zero to this bit.
| Insert unassigned cell

CG Generate and insert a CRC10 for this cell
4.0 TXPHY Select the address of the target PHY in amulti-
PHY system

MXT3010 Reference Manual Version 4.1 205

Registers

Bit definitions If R42w [8] = 0, these bits are reserved, and programs should
(Upper byte): write zeroes to them. If R42w [8] = 1, these definitions apply:
Bit Name Function

15:14 Reserved Programs should write zeroes to theses bits

13 PIT1 Sel PIT1 External Select Pin
0=URX_CTRL4
1=ICS_C
12 PITO Sel PITO External Select Pin
0=UTX_CTRL4
1=ICSI_ D
1 PIT1 Mode PIT1 External Mode
0=Disabled
1=PIT1lisclocked by therising edge of the exter-
nal bit selected by bit [13]

10 PITOMode PITO External Mode
0=Disabled
1=PITOisclocked by therising edge of the exter-
nal bit selected by bit [12]

9 URX Count UTOPIA Receiver Count Select
Select 0=URX Count in R43read is Receiver Busy
1=URX Count in R43read is Receiver Full

8 UTX Count UTOPIA Receiver Count Select
Select 0=UTX Count in R43read is Transmitter Busy
1=UTX Count in R43read is Transmitter Full

Notes: 1. Software should write the control entry into the UTOPIA Control
FIFO before incrementing TXBUSY. For more information on
UTOPIA port operation, see CHAPTER 6 "The UTOPIA port" on
page 69.
2. The FIFO is ahardware-managed 8-deep circular list. Entries can
be re-used without writing new data.

3. CRC10 overwrites the last ten bits of the cell with the computed
CRC vaue.

4. Whenbit | isset, the MXT3010 hardware stuffs an unassigned cell
into the UTOPIA Control Byte FIFO without accessing the Cell
Buffer RAM.

5. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

206 Version 4.1 MXT3010 Reference Manual

R44-R47 CRC32PRX and CRC32PRY registers

R44-R47 CRC32PRX and CRC32PRY registers

R44 CRC32PRX [15:0], R46 CRC32PRY [15:0]
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 |
CRC Partia Result registers (bits [15:0])

R45 CRC32PRX [31:16], R47 CRC32PRY [31:16]]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 |
CRC Partia Result registers (bits [31:16])

Description: These registers contain the partial results of CRC32 calcula
tions. The CRCX and CRCY bitsin the DMA instruction or the
X and Y hitsin the Alternate Byte Count/ID register (R52)
determine which, if any, register set isused. Use of CRCX/
CRCY control or X/Y control depends on whether the DMA
instruction contains a BC/# instruction field option.

Reset value: 0x0000
Bit definitions: N/A
Notes: If R44-R47 are not used for CRC calculations, they can be used

as general purpose registers. When used as general purpose reg-
isters, register access rules apply. See Table 3 on page 23.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 207

Registers

R48-R51

Description:

Reset value:

Bit definitions:

Notes:

208

Local Address registers (rla)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Reserved S ‘ G ‘ MEM

ThelLoca Addressregistersprovidefour hardwareregistersthat
are used as address registers by local (internal) memory loads
and stores.

| ndeterminate

Bit Name Function

15:12 Reserved Read, and should be written, as zeroes.
1 S Scoreboard/Cell Buffer selection

0 Cell Buffer RAM access

1 Scoreboard access
For Cell Buffer RAM access, the following bit definitions apply:

10 G Cell Buffer RAM Address Method

0 Linear Address
1 Gather Address

9.0 MEM These 10 bits provide byte addressing for the 512
16-bit halfwords in the Cell Buffer RAM.

For Scoreboard access, the following bit definitions apply.

10:0 MEM These 11 bits provide byte addressing for the 512
32-bit words in the Scoreboard.

1. TheMXT3010 implements four fixed value registersthat can also
be used as address registers. These rla constants are GA, GB, GC,
and GD that are fixed at 0x400, 0x420, 0x440, and 0x460, respec-
tively.

2. For more information on the Load and Store instructions, see

“General information for Load and Store internal RAM instruc-
tions” on page 314.

3. Register access rules apply. See Table 3 on page 23.
4. Restrictions apply to the use of LD, LDD instructions with this

register. See “Register access rules” on page 22.

Version 4.1 MXT3010 Reference Manual

R52 Alternate Byte Count/ID register

R52

Description:

Reset value:

Bit definitions:

Note:

MXT3010 Reference Manual

Alternate Byte Count/ID register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

REV ‘ Reserved ‘x ‘ Y Court

Software can use the Alternate Byte Count/ID register to pro-
vide DMA instruction information to either the Port1 or Port2
interface when executing a DMA instruction. DMA operations
usethecontentsof R52 if aDMA instruction isexecuted without
aBC/# instruction field option.

0x0000

Bits Name Function

15:13 REV DeviceID field. On reads, returns a value of 000xb for
MXT3010 revision A, 001xb for MXT3010 revision B/
C.

12:10 Reserved Read, and should be written, as zeroes.

9 X CRCX hit

If set, a CRC32 partial result is generated based on
CRC32PRX register’s initial value and the result is
deposited into CRC32PRX

8 Y CRCY bit
If set, a CRC32 Partial Result is generated based on
CRC32PRY register’s initial value and the result is
deposited into CRC32PRY

7.0 Count DMA Byte Count
00 = Zero byte operation
FF = 255 byte operation

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Version 4.1 209

Registers

R53

Description:

Reset value:

Bit definitions:

Note:

210

Instruction Base Address register

15 14 13 12 11

0 9 8 7 6 5 4 3 2 1 O

Reserved | ‘Boot‘NC‘ ISegmentID

The SWAN processor supports an instruction space of 128K 32-
bit instructions, organized as 32 segments of 4K words each.
The lowest order 5 bits of this register provide the ability to
select any of the 32 segments for user code.

The Reset valueisinitially 0x0040, and then is dependent upon
the starting address of the bootstrap loader.

Bits Name Function

157 Reserved Read, and should be written, as zeroes.

6 Boot Thisflagis set by the SWAN processor during its
power-up initialization routine, and disables the exe-
cution of user instructions until the boot processis
finished. Thisbit is cleared by the SWAN processor at
the conclusion of power-up initialization.

5 NC Non-Cached. Instructions executed while this bit is

4.0 Segment ID

set will not be cached.

These bits are used as Fast Memory Address bits
[18:14] during instruction fetches from the Fast Mem-
ory, and thus select which of 32 segments of 4K
words will be addressed.

Restrictions apply

totheuseof LD, LDD instructions with this

register. See “Register access rules” on page 22.

Version 4.1

MXT3010 Reference Manual

R54-R55 Programmable Interval Timer registers

R54-R55 Programmable Interval Timer registers

R54 PITO[15:0], R55 PIT1[15:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 |
Programmable Interval Timer registers

Description: The MXT3010 contains two 16-bit programmable interval tim-
ers(PITs), PITO, and PIT1.

The present values of the PITs are mapped into the Programma-
ble Interval Timer registers R54 (PITO) and R55 (PIT1). The
SWAN processor can read the present value of aPIT by specify-
ing either R54 or R55 in an ALU operation.

Firmware setsaninitial value by writing into R54 (PITO) or R55
(PIT1). When firmwarewritesaninitialization value, that value
isimmediately transferred into the PIT. PITO decrements by one
on each rising edge of the external clock. PIT1 decrements by
one on each rising edge of the CPU clock, which operates at
twice the frequency of the external clock. When PITO timesout,
Bit 4 of the Sparse Eventsregister (R57) isset. When PIT1times
out, Bit 5 of the Sparse Eventsregister (R57) is set. Upon time-
out of aPIT, itisautomatically reloaded with its count initializa-
tion value and the count down process begins anew.

Reset value: 0x0000
Bit definitions: N/A
Notes: Firmware enables/disablesaPI T from counting, timing out, and

setting its bit in the Sparse Event register via enable bitsin
“R42-write Mode Configuration register” on page 201.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 211

Registers

R56

Description:

Reset value:

Bit definitions:

Notes:

212

Fast Memory Data register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
Fast Memory Data register

The Store Halfword to Fast Memory (SHFM) instruction writes

the contents of R56, the Fast Memory Dataregister, into the Fast
Memory location specified by registersrsaand rsb. The contents

of R56 are first entered into the Fast Memory Controller’s write
buffer before being written out to memory.

Indeterminate
N/A

An SHFM can immediately follow an instruction that modifies
R56.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Version 4.1 MXT3010 Reference Manual

R57-read Sparse Event/ICSregister

R57-read Sparse Event/ICS register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
See “Bit Definitions” below

Description: This register records events that occur infrequently. Hardware
performsalogical OR operation on bits (5:0) of thisregister and
providestheresult in ESS8. Hardware clears bits[9:6]when the
condition causing the bit to be set is no longer true. Other bits
(marked R/W) are cleared by the software via the “R57-write
Sparse Event/ICS register (Set/Clear)” on page 214.

Reset value: N/A

Bit definitions:
Bits Description R/W
15:12 ICSO_(D:A¥ R/W

These bits control the ICSO_(D:A) pins if the ICSO Ot
put Enable bit of the System register is set. The SWAI
can set and clear these bits to signal external devices

11 ICSO_A Select: 0 =1CSO_A_SEL; 1 = TX_IDLE_SO(R/W

10 ICSO_B_SEL: 0=1ICSO_B; 1=STALL_DLY. R/W

9 TXBUSY state indicator R

8 RXFULL state indicator R

7 CRC32X Error Indicator from Portl R
Test only at the completion of a DMA operation.

6 CRC32Y Error Indicator from Portl R
Test only at the completion of a DMA operation.

5 PIT1 Time Out R/W
Set when PIT1 counts down to O.

4 PITO Time Out R/W
Set when PITO counts down to 0.

3:0 ICSI_(D:AP R/W

Set if corresponding MXT3010 input is set and corre-
sponding SER enable bit is set in the System register.

a. When the SWAN processor changes the state an ICSO bit, there is a 3-
4 instruction delay before the new state appears at the ICSO pin.

b. When an external event occurs, there is a 3-4 instruction delay
between the external event and the ICSI indication of that event

c. LD, LDD restrictions apply. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 213

Registers

R57-write Sparse Event/ICS register (Set/Clear)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Reserved Set ‘ Reserved |Target Bit Selector
Description: The SWAN processor does hot write to the Sparse Event register

directly. Instead, it writes a control byte to the Sparse Event reg-
ister to set and clear certain bits. If bit 7 of the control byteisO,
thetarget bitiscleared (unlessheld set by hardware conditions).
If bit 7 is 1, the target bit is set (unless held clear by hardware

conditions).
Reset value: N/A
Bit definitions:
Bit Name Function
15:8 Reserved Programs should write zeroes to these bits.
7 Set The state of this bit determines whether the bit
selected by the Target Bit Selector is set or cleared
0 Thetarget hit is cleared
1 Thetarget bit is set
6:4 Reserved Programs should write zeroes to these bits.
3.0 Target Bit These hits select which bit is set or cleared. The tar-
Selector get bits are listed in “R57-read Sparse Event/ICS
register” on page 213.
Examples:
Bit To Set, Write To Clear, Write Bit To Set, Write To Clear, Write
0 0x80 0x00 10 Ox8A Ox0A
1 0x81 0x01 11 0x8B 0x0B
2 0x82 0x02 12 0x8C 0x0C
3 0x83 0x03 13 0x8D 0x0D
4 0x84 0x04 14 Ox8E Ox0E
5 0x85 0x05 15 Ox8F OxOF
Notes: 1. Bits[9:6] areread only.

2. Register accessrules apply. See Table 3 on page 23.

3. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

214 Version 4.1 MXT3010 Reference Manual

R58 Fast Memory Shadow register

R58

Description:

Reset value:

Bit definitions:

Notes:

Fast Memory Shadow register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 |
Reserved Branch Target Field

The Fast Memory Shadow register is automatically loaded with
the first 16-bit word returned from Fast Memory during a read
operation (LMFM instruction) that specifiesthe Link (LNK)
instruction field option. The Branch Fast Memory instructions,
BF and BFL, use the contents of this register as the target
address of the branch operation.

Indeterminate

The Branch Target Field specifies the absolute word address
within the current code segment (4096 words) at which execu-
tion isto continue when using the Branch Fast Memory instruc-
tions, BF and BFL. The reserved bits (15:12) are read, and
should be written, as zeroes.

1. Software can read and write the Fast Memory Shadow register in
the same fashion as the Branch register (R59). To avoid accessing
astale value, separate the BF or BFL instruction from a preceding
write to R58 by at least one instruction. See Table 3 on page 23

2. Software can use BF/BFL to gain fast access to a service address
contained in thefirst halfword of a Channel Descriptor. Execution
of aBF/BFL following execution of an LMFM instruction with
LNK causes a CPU stall until the first halfword is read from mem-
ory. When the first halfword is returned, the stall condition termi-
nates. Software can avoid a stall by separating the LMFM from
the BF/BFL by at least five instructions.

3. Redtrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 215

Registers

R59

Description:

Reset value:

Bit definitions:

Notes:

216

Branch register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 1
Reserved Branch Target Field

The Branch register instructions, BR and BRL, use the content
of thisregister asthetarget address of the branch operation. The
address in R59 represents an absol ute address to branch to
within the active segment.

I ndeterminate

The Branch Target Field specifies the absolute word address
within the current code segment (4096 words) at which execu-
tion is to continue when using the Branch Register instructions,
BR and BRL. Thereserved bits (15:12) are read, and should be
written, as zeroes.

Software can read and write the Branch register. To avoid
accessing astalevalue, separatethe BR or BRL instruction from
apreceding write to R59 by at least one instruction. See Table 3
on page 23

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Version 4.1 MXT3010 Reference Manual

R60 The Cell Scheduling System (CSS) Configuration register

R60 The Cell Scheduling System (CSS)
Configuration register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|
E ‘ CR ‘ sz CID Reserved
Description: The CSS Configuration register indicates the base addressin
memory of the Connection ID table. It also indicates the size of
the Scoreboard to be used.
Reset value: Ox00FF
Bit definitions:
Bits Name Description
15 E CSSerror flag
14 CR 0= No CCS Reset
1=CSS Reset
1312 <Z Scoreboard Section Size
00 = 2,048 bitg/entries per section; up to 8 sections
01 = 4,096 bitg/entries per section; up to 4 sections
10 = 8,192 hits/entries per section; up to 2 sections
11 = 16,384 hits/entries per section; 1 section
11:8 CID Connection ID Table Base Address:
Used as FADRS(18:15) on Connection ID Table
accesses for PUSHC and POPC.
7.0 Reserved Reserved. The bits are undefined on reads and should
be written as zeroes.
Notes: 1. Software must initialize the CSS Configuration register before

using the Cell Scheduling System.
Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

MXT3010 Reference Manual Version 4.1 217

Registers

R61-read Scheduled Address register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|

| |
R&eerved‘ Connection ID Table Address

Description: At the completion of a PUSHC operation (as indicated by the
clearing of ESS5 in R42), the SWAN processor can read the
selected Connection ID Table address (FADRS[18:1]). The
number presented in this register isthe 14-bit halfword address
offset (FADRS [14:1]) within the table, and the table base
address (FADRS [18:15]) is obtained from the CID bits in “R60
The Cell Scheduling System (CSS) Configuration register” on

page 217.
Reset value: Indeterminate
Bit definitions: Bits 13:0 are automatically loaded with the Connection ID Table

address selected by the Cell Scheduling System at the comple-
tion of a scheduled write operation, PUSHC and PUSHF. Bits 15
and 14 are reserved. They should be ignored.

Notes: For more information on the Cell Scheduling System (CSS), see
“The Cell Scheduling System” on page 27. For more informa-
tion on the PUSHC operation, see “PUSHC Schedule” on page
280.

Software must not check this register until an outstanding
PUSHC/PUSHF is complete. See “Scheduling” on page 32.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

218 Version 4.1 MXT3010 Reference Manual

R62 The UTOPIA Configuration register

R62 The UTOPIA Configuration register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 |
See “Bit Definitions” below
Description: The UTOPIA Configuration register determines the operating
characteristics of the UTOPIA port. In addition to the R62 reg-
ister, two target bits ([0] and [1]) from R42 (the Mode Configu-
ration register) are used to program the UTOPIA port.
Reset value: 0x0000
Bit definitions:
Bits Description
15:14 Number of Physical PHY devices present
This value tells the UTOPIA Port Receiver the number of phys-
ical PHY devices present. This in turn determines the number
of RXCLAV/TXCLAV and RXENB_/TXENB_ signals that
should be used. Please see the UTOPIA port chapter in Section
1 and Table 50 below.
00 Reserved
01 1-PHY mode
10 2-PHY mode
11 Reserved
13:9 UTOPIA Port Most Significant PHY Address
The UTOPIA Port Receiver polls PHY devices searching for
an RXCLAV by incrementing the polled address according to
the UTOPIA Level 2 specification. The UTOPIA Port Trans-
mitter knows that it has reached the last address and should
begin at zero again when it reaches this address. For examples
of the use of these bits, see Figure 37 on page 89 and Figure 38
on page 90.
8 UTOPIA Port Data Bus Width
0 16 Bits Wide
1 8 Bits Wide
Direction is determined by which device is not in Reset
Mode. (See “Selecting transmit or receive mode” on page 72.)
MXT3010 Reference Manual \ersion4.1 219

Registers

Note:

220

Bits Description

7 UTOPIA Port Operational / Output Clock Frequency Selection

0
1

TXCLK and RXCLK operateat 1/2 of internal CLK freguency.
TXCLK and RXCLK operate at 1/4 of internal CLK frequency.
Note: 1/2 theinterna CLK frequency is on the FN pin.

6:4 Transmit Cell Buffer Size in the Cell Buffer RAM

001
010
011
100
101
110
11

Transmitter Buffer Size in the Cell Buffer RAM = 2 cells
Transmitter Buffer Size in the Cell Buffer RAM = 3 cells
Transmitter Buffer Size in the Cell Buffer RAM =4 cells
Transmitter Buffer Size in the Cell Buffer RAM =5 cells
Transmitter Buffer Size in the Cell Buffer RAM = 6 cells
Transmitter Buffer Size in the Cell Buffer RAM =7 cells
Transmitter Buffer Size in the Cell Buffer RAM =8 cells

3:1 Receive Cdl Buffer Sizein the Cell Buffer RAM

000

001
010
011
100
101
110
11

UTOPIA Port Receiver in Reset Mode. All Rx outputs are
tristated. Thisincludes RXDATA (abidirectional signal), but
does not include RXCLK. All inputs are pulled to their inactive
states by the MXT3010.

Receiver Buffer Size in the Cell Buffer RAM = 2 cells
Receiver Buffer Size in the Cell Buffer RAM = 3 cells
Receiver Buffer Size in the Cell Buffer RAM =4 cells
Receiver Buffer Size in the Cell Buffer RAM =5 cells
Receiver Buffer Size in the Cell Buffer RAM = 6 cells
Receiver Buffer Size in the Cell Buffer RAM =7 cells
Receiver Buffer Size in the Cell Buffer RAM = 8 cells

0 UTOPIA Receiver Reduction Mode Enable Bit

0 Reduction Function Disabled (ATM Header bytes [2:3] written
into the Cell Buffer RAM unchanged)

1 Reduction Function Enabled (ATM header bytes [2:3] written
into the Cell Buffer RAM after reduction function performed
according to Reduction Mask Setting selected by R63[6:0]).

TABLE 50. Signal utilization for I-PHY and Z-PHY modes
Mode TX/RX CLAV TX/RX ENB ADRS
1PHY TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [3:0]
2PHY
PHY 0 TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [1:0]
PHY 1 TX/RXCTRL [3] TX/RX CTRL[2] TX/RX CTRL [1:0]

See “Register access rules” on page 22.

Version 4.1 MXT3010 Reference Manual

R63 The System register

R63 The System register
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oo‘oc‘ BS IMASK EN VPI/VCI
Description: The System register determines the operating characteristics of
the MXT3010.
Reset value: 0x0000
Bit definitions:
Bits Name Function
15:14 OD, OC Reflect the state of ICSO_(D:C) at reset
removal.
13:12 BS Boot These bits indicate the source that was used

Source to boot the MXT3010

00 ViaFast Memory (used only in simulation)
01 ViaPort1

10 ViaPort 2

11 ViaCOMMIN register

11:8 IMASK ICSl_(D:A) Sparse Event register enable

0 Bitin Sparse Event register is not set when
ICSI_x ishigh.

1 Bitin Sparse Event register is set when
ICSI_x ishigh.

7 EN ICSO_(D:A) Output Enable

0 Outputs Tristates (default at reset)

1 Outputs Actively Driving
Note:
The MXT3010 reads configuration informa-
tion from ICSO_(D:A) during reset. To
ensure that the MXT3010 does not drive
these pins at reset, the pins are reset in input
mode. The MXT3010 senses configuration
information from them asiit exits reset. Soft-
ware can enabl e these pins as outputs by set-
ting this bit to one.

MXT3010 Reference Manual Version 4.1 221

Registers

Bits Name Function

6.0 VPI/VCI UTOPIA Receiver Reduction Mask

Setting Value written into ATM Header lower
halfword in CBR

0000001 {0,0,0,0,0,0, vpi(0), vci(7:0), clp}
0000011 {0,0,0,0,0, vpi(1:0), vci(7:0), clp}
0000111 {0,0,0,0, vpi(2:0), vci(7:0), clp}
0001111 {0,0,0, vpi(3:0), vci(7:0), clp}
0000010 {0,0,0,0,0, vpi(0), vci(8:0), clp}
0000110 {0,0,0,0, vpi(1:0), vci(8:0), clp}
0001110 {0,0,0, vpi(2:0), vci(8:0), clp}
0011110 {0,0, vpi(3:0), vci(8:0), clp}

0000100 {0,0,0,0, vpi(0), vci(9:0), clp}
0001100 {0,0,0, vpi(1:0), vci(9:0), clp}
0011100 {0,0, vpi(2:0), vci(9:0), clp}
0111100 {0, vpi(3:0), vci(9:0), clp}
0001000 {0,0,0, vpi(0), vci(10:0), clp}
0011000 {0,0, vpi(1:0), vci(10:0), clp}
0111000 {0, vpi(2:0), vci(10:0), clp}
1111000 {vpi(3:0), vci(10:0), clp}
0010000 {0,0,vpi(0), vci(11:0), clp}
0110000 {O,vpi(1:0), vci(11:0), clp}
1110000 {vpi(2:0), vci(11:0), clp}
0100000 {0,vpi(0), vci(12:0), clp}
1100000 {vpi(1:0), vci(12:0), clp}
1000000 {vpi(0), vci(13:0), clp}
0000000 {vci(14:0), clp}

Note: Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

222 Version 4.1 MXT3010 Reference Manual

cuapter 10 Arithmetic LOgiC Unit
Ingtructions

The arithmetic and logical instructions of the SWAN processor
mani pul ate data contained in the register set.

Addressing modes

Two addressing modes are supported for arithmetic and logical
instructions: triadic register and immediate.

Triadic register

Triadic register addressing mode uses three fields in the instruc-
tion to specify two source registers (rsaand rsb) and adestination
register (rd). Thersaand rd registers might be any of the software
registers (R0-R31) or any of the hardware registers (R32-R63).
The rsb register can only be one of the software registers.

MXT3010 Reference Manual Version 4.1 223

Arithmetic Logic Unit Instructions

31

FIGURE 78.Triadic register operation

15 0 15 0

rsa| | rsb | |

[ALU Operation |

15 v 0

rd | |

FIGURE 79.Triadic instruction for mat
26 25 20 19 16 15 10 9 54 0

opcode

rd ‘ R ‘ ra | ----- b

224

- - - Instruction specific fields

Immediate

Immedi ate addressing mode usestwo bit fieldsin theinstruction
to specify one source register (rsa) and a destination register
(rd). The second operand is provided as an immediate value in
the instruction word.

The width of the immediate value and its format (signed,
unsigned) isinstruction dependent. Arithmetic instructions
(ADDI, SUBI) use a 6-bit unsigned immediate value. Logical
instructions (ANDI, CMPI, CMPPI, MAXI, MINI, ORI, XORI)
use a 10-bit sign-extended immediate value. Shift instructions
(SFTAI, SFTCI, SFTRI, SFTLI) use instruction-specific for-
mats similar to the 6-bit immediate field used in arithmetic oper-
ations.

Version 4.1 MXT3010 Reference Manual

Overflow flag

FIGURE 80.l mmediate 10-bit instruction for mat

15 0 n
rsa| | rsb|

s

[ALU Operation |

15 v 0
rd | |

31 26 25 20 19 16 15 10 9 0

opcode rd ‘ . ‘ rsa 10-hit signed immediate

- - - Instruction specific fields

FIGURE 81.Immediate 6-bit instruction format

31 26 25 20 19 16 15 10 9 6 5 0
opcode rd ‘ . ‘ rsa ‘ ce ‘6-bitunsignedim.

- - - Instruction specific fields

Overflow flag

Signed arithmetic is supported by an Overflow flag. During
addition operations, the Overflow flag is set when both source
operands have the same sign, and the sign of the result is differ-
ent. During subtraction operations, the Overflow flag is set
when the signs of the source operands differ, and the sign of the
result matches the sign of the second operand.

Instructions that Only add and subtract operations affect the Overflow flag. None

use this flag of the other ALU instructions can change the state of this flag,
nor can add and subtract operations that specify the use of mod-

MXT3010 Reference Manual Version 4.1 225

Arithmetic Logic Unit Instructions

ulo arithmetic. Other ALU instructions can test the state of this
flag that resulted from the last arithmetic operation by using the
Branch No Overflow ALU branching option.

Instruction options

Certain options are common to many of the ALU instructions.
These options include modulo arithmetic, automatic memory
updating, and ALU branching.

Modulo arithmetic

The ALU inthe SWAN processor supports modulo arithmetic.
With modul o arithmetic, the operation of an ALU instructionis
constrained to the number of bit positions specified in the
instruction word. Bits outside the specified operation width are
not affected. Source bits from rsa are simply copied to the cor-
responding destination bitsin rd.

Modulo arithmetic can be specified for any field width, from
one bit to fifteen bits. The width of the desired modulo arith-
metic is specified in ALU instructions with an instruction field
option. Full 16-bit operation isthe default width for ALU
instructions where no modulo arithmetic instruction field option
is specified. Table 51 on page 227 lists the modulo arithmetic
options.

226 Version 4.1 MXT3010 Reference Manual

Instruction options

Using modulo
arithmetic and
branch conditions

Modulo arithmetic
example

TABLE 51. Modulo arithmetic options

IFO Width rd IFO Width rd
MOD2 1 rsa[15:1] | MOD512 9 rsa[15:9] |
alu[0] au[8:0]
MOD4 2 rsg(15:2] | MODIK 10 rsa[15:10] |
au[1:0] au[9:0]
MOD8 3 rsa[15:3]| MOD2K 11 rsa[15:11] |
au[2:0] au[10:0]
MOD16 4 rsa[15:4] | MOD4K 12 rsa[15:12] |
au[3:.0] au[11:0]
MOD32 5 rsa[15:5]| MOD8K 13 rsa[15:13] |
alu[4:0] au[12:0]
MOD64 6 rsg(15:6] | MOD16K 14 rsa[15:14] |
au[5:0] au[13:0]
MOD128 7 rsa[15:7]| MOD32K 15 rsa[15] |
alu[6:0] au[14:0]
MOD256 8 rsa(15:8] | blank 16 alu[15:0]
au[7:0]

A modulo arithmetic operation does not affect the ALU flag reg-
isters or Overflow.

The Branch On Zero and the Branch On Non-Zero ALU branch
conditions are evaluated based on the bits within the modulo
field only. This alows oneto test, for example, for the occur-
rence of aboundary crossing by amemory pointer that has a
non-zero base address.

In the following example, two Load Immediate (LIMD) instruc-
tions are used to load the hex numbers 1234 and 1111 into reg-

istersrO and rl respectively. A modulo 16 addition of these two
registersis then performed, and the result is placed in r2. Note

that due to the modulo 16 addition, only bits[3:0] have been

affected by the addition process.
Address Instruction Result
0x0000 LIMD r0, 0x1234 r0 <- 0x1234
0x0001 LIMD r1, 0x1111 rl<- Ox1111
0x0002 ADD 10, r1, r2 MOD16 r2 <- 0x1235

MXT3010 Reference Manual

Version 4.1

227

Arithmetic Logic Unit Instructions

228

Automatic memory updates

When the automatic memory update feature is enabled, the Fast
Memory controller writesthe results of the ALU operation back
into the linked Fast Memory location associated with the desti-
nation register, rd. This feature eliminates the need for separate
store instructions to write results back to memory, thus saving
machine cycles and reducing latency.

The Update Memory field (UM)
All ALU instructions except the compare instructions (CMP,

CMPI, CMPP, CMPPI) can specify the automatic memory
update option by including the letters UM in the command line.

IFO Result
UM Cause automatic memory update
blank No memory update

For complete details on the operation of the automatic memory
update feature, see “Memory update protocol” on page 49 and
“Linking (the LNK bit)” on page 299.

ALU branching

The ALU in the SWAN processor provides all ALU instructions
with an integrated conditional branching capability. In one
instruction executing in a single machine cycle, the program can
modify a register, test the results of that operation, and use the
results to affect program flow.

The target address of an ALU branch operation is fixed in hard-
ware at four instructions past the ALU instruction. If the speci-
fied condition code evaluates as true, the SWAN executes the
instruction immediately following the ALU instruction (the

Version 4.1 MXT3010 Reference Manual

Instruction options

“committed slot”) and then branches to the target address. If the
specified condition code evaluates as false, the SWAN continues
with sequential program flow.

Address

Instruction Sequence

Branch

Contents Condition True

Branch

Condition False

N+1

N+2

N+3

N+4

N+5

ALU Instruction with Executed
branch

Committed slot, always Executed
executed

Instruction executed if Skipped
branch condition not me

Instruction executed if Skipped
branch condition not me

Branch target instruction Executed

Sequential flow continue Executed

Executed

Executed

Executed
(Note 1)
Executed
(Note 1)
Executed
(Note 1)
Executed
(Note 1)

Note 1:See“Example” on page 231 and “The Always Execute field (AE)”
on page 231 for further details on program flow when the branch con-
dition evaluates as false.

The SWAN core is optimized to take the ALU branch. Where
the results of an ALU branch operation can be predicted, the
programmer should write the code such that branches are taken
more often than not.

The ALU Branch Condition field (abc)

Theabc instruction field option (IFO) specifiesthe ALU branch
condition to be tested during an ALU instruction. The absence
of an abc IFO results in normal sequential program flow.

MXT3010 Reference Manual

Version 4.1

229

Arithmetic Logic Unit Instructions

230

TABLE 52. ALU Branch Conditionsfor all instructions except

Compare and Min/Max instructions

Condition Condition
IFO (branch if...) IFO (branch if...)
Blank No branch BLZ Less-than zero
BGEZ Greater-thanorequal BNZ Not equal zero

zero
BZ Equal zero BNO No overflow flag set
BLEZ Less-than or equal

zero

TABLE 53. ALU Branch Conditionsfor Compare and Min/Max

instructions
Condition Condition
IFO (branch if...) IFO (branch if...)
Blank No branch BALEB rsa<or =rsb
BAGB rsa>rsb BALB rsa<rsb
BAGEB rsa>or=rsh BANEB rsanot equal to rsb
BAEB rsa=rsb
Version 4.1 MXT3010 Reference Manual

Instruction options

Example Consider the following program:
Address Instruction
N-2 LIMD R2,0
N-1 LIMD R3,0
N ADD r0, r1 BNZ
N+1 (Note 1)
N+2 BIL $SERVICE_CMD1
N+3 (Note 1)
N+4 LIMD R4, 0
N+5 BIL $SERVICE_CMD2

Notes: 1. Locations N+1 and N+3 are the committed dotsfor the ADD and
BIL instructions respectively. Any instruction can be placed here
except a Branch instruction or any instruction that could generate a
branch (for example, an instruction containing a non-blank abc field).

2. The LIMD instructions are shown only for convenience in discuss-

ing possible rearrangement of the program. See “The Always Execute

field (AE)” on page 231.
In this program, the ADD instruction result is predicted to eval-
uate to non-zero more often than zero. Thus, amajority of times
through the ADD instruction, the SWAN executes the instruc-
tion at the committed slot (N+1), skips over the instructions at
locations N+2 and N+3, and goes directly to the LIMD R4, 0
instruction at location N+4. If the ADD instruction result is zero,
the SWAN executes the instruction at the committed slot (N+1)
and then executes the BIL instruction at location N+2 and the
instruction in its committed slot (N+3).

The Always Execute field (AE)

In the previous example, the ADD instruction result was pre-
dicted to evaluate to non-zero more often than zero. The result-
ing code sequence (N, N+1, N+4, N+5) executeswith maximum
efficiency. If the result of the ADD instruction evaluatesto zero
however, the SWAN processor instruction pipeline still fetches
the instructions at N+4 and N+5, but discards the instructions
before they are executed. Discarding these instructions (and

MXT3010 Reference Manual Version 4.1 231

Arithmetic Logic Unit Instructions

fetching the instructions at N+2 and N+3 instead) causes the
equivalent of atwo-cycle pipeline stall for the SWAN. The
resulting code sequenceis N, N+1, stall, stall, N+2, N+3.

To improve throughput, the MXT3010 provides an “Always
Execute” option. When this option is enabled (by setting the AE
bit in the branch instruction to 1), the SWAN processor always
executes the instructions gathered by the instruction pipeline,
rather than discarding them when the branch is not taken. If the
AE option is specified, the instructions at N+4 and N+5 are
always executed following the instruction in the committed slot
(N+1) of the ALU branch. Thus, when using the AE option, the
instructions placed at N+4 and N+5 must be instructions which
the programmer wants executed regardless of whether the
branch is taken.

To demonstrate use of the AE option, the previous example is
presented again, but with these two minor changes:

» The ADD instruction now has its Always Execute (AE) bit
set.

* The LIMD instructions for R2 and R3 have been moved
down into positions N+4 and N+5 respectively.

The changes are shown in italics for emphasis.

Address Instruction

N ADD 0, r1, BNZ, AE

N+1 (See Note 1 in “Example” on page 231)
N+2 BIL $SERVICE_CMD1

N+3 (See Note 1 in “Example” on page 231)
N+4 LIMDR2,0

N+5 LIMD R3,0

N+6 BIL $SERVICE_CMD2

N+7 LIMD R4, 0

232 Version 4.1 MXT3010 Reference Manual

Instruction options

Committed slot
restrictions

With the Always Execute option enabled, and the ALU branch
condition code evaluated as true, the branch is taken normally.
Thesequenceis: N, N+1, N+4, N+5, which isthe same asit was
without the Always Execute option enabled.

With the Always Execute option enabled, and the ALU branch
condition code evaluated asfalse, thebranchisnot taken, but the
instructions fetched by the pipeline process are executed rather
than being discarded, and no stalls occur. The sequenceis: N,
N+1, N+4, N+5, N+2, N+3.

In summary, by using the Always Execute option and using the
fourth and fifth locations beyond the branch instruction for
instructions that are needed regardless of the branch results, the
programmer can enjoy the performance advantages of the
SWAN instruction pipeline without paying a performance pen-
alty when the branch is not taken.

The ALU branch committed slot (N+1 in the example above)
should not contain another ALU branch instruction nor a condi-
tional branch instruction. ALU instructions without branch
options and unconditional branch instructions can be placed in
the committed slot.

If the Always Execute instruction field option is specified, the
instruction at the branch target address (N+4 in the example
above) and its following instruction should not contain another
ALU branch instruction nor a conditional Branch instruction.
ALU instructions without branch options and unconditional
Branch instructions can be placed in these dots.

MXT3010 Reference Manual Version 4.1 233

Arithmetic Logic Unit Instructions

ADD

Add Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 00000

U A
rd M abc rsa MODx E rsb

Format

Purpose

Description

Flags

Fields

234

ADD (rsa, rsb) rd [MODX] [abc] [AE] [UM]

« To add two registers together using modulo arithmetic.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The ADD instruction adds the contents of register rsa to the con-
tents of register rsh, placing the result in register rd.

If the source operands have the same sign, and the sign of the
result is different, the Overflow flag is set. Operations specify-
ing the modulo arithmetic option do not affect this flag.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

ADDI Add Register and Immediate

ADDI

Add Register and Immediate

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100100

rd n abc rsa MODx usi

Format

Purpose

Description

Flags

Fields

ADDI (rsa, us) rd [MODx] [abc] [UM]

» To add a register and a zero extended 6-bit immediate
together using modulo arithmetic.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The 6-bit unsigned immediate (usi) is zero extended and added
to the contents of register rsa using modulo arithmetic. The
result is placed in register rd.

If the source operands have the same sign, and the sign of the
result is different, the Overflow flag is set. Operations specify-
ing the modulo arithmetic option do not affect this flag.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
UM “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 235

Arithmetic Logic Unit Instructions

AND

And Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110000

rd

U
M

abc rsa MODx 'I: rsb

Format

Purpose

Description

Flags

Fields

236

AND (rsa, rsb) rd [MODX] [abc] [AE] [UM]

» To perform a Boolean AND function on two registers using
modulo arithmetic.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of rsa are AND’ed together with contents of rsb
using modulo arithmetic. The result is placed in register rd.

The Overflow flag is not affected by this operation.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
Verson 4.1 MXT3010 Reference Manual

ANDI And Register and Immediate

ANDI

And Register and Immediate

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110100

U .
rd M abc rsa Si

Format

Purpose

Description

Flags

Fields

ANDI (rsa, §) rd [abc] [UM]

» To perform a Boolean AND function on a register and a
immediate.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The 10-bitimmediate operand (si) is sign extended and AND’ed
with the contents of register rsa, bit for bit. The result is placed
in register rd.

The Overflow flag is not affected by this operation.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See
abc “The ALU Branch Condition field (abc)” on page 229
um “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 237

Arithmetic Logic Unit Instructions

CMP

Compare Two Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111010

0

00O0O0O0O|O0 abc rsa 11112 rsb

Format

Purpose

Description

Flags

Fields

238

CMP (rsa, rsh) [abc] [AE]

« To compare the contents of two registers.

» To alter program flow based on the result of the ALU oper-
ation (abc field).

The contents of register rsa are compared to the contents of reg-
ister rsb. Both registers are treated as unsigned integers. The
result can be used to alter program flow.

The results of the CMP instruction are produced without regard
for previous compare results.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See
abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52
AE “The Always Execute field (AE)” on page 231
Version 4.1 MXT3010 Reference Manual

CMPI Compare Register and Immediate

CMPI

31 30 29 28 27 26 25

Compare Register and Immediate

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111110|0

0 00O0O0O|O abc rsa usi

Format

Purpose

Description

Flags

Fields

CMPI (rsa, usi) [abc]

» To compare the contents of a register and a 10-bit sign
extended immediate.

» To alter program flow based on the result of the ALU oper-
ation (abc field).

The 10-bit unsigned immediate (usi) has the value of bit 9
extended through bits [31:10] and is compared to the contents of
the rsa register. Both operands are treated as unsigned integers.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52

MXT3010 Reference Manual Version 4.1 239

Arithmetic Logic Unit Instructions

CMPP

Compare Two Registers with Previous

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111010

1

00O0O0O0O|O0 abc rsa 11112 rsb

Format

Purpose

Description

Flags

Fields

240

CMPP (rsa, rsh) [abc] [AE]
« To compare the contents of two registers.

» To alter program flow based on the result of the ALU oper-
ation (abc field).

The contents of register rsa are compared to the contents of reg-
ister rsb. Both registers are treated as unsigned integers. The
result can be used to alter program flow.

The Compare with Previous instruction can be used to accom-
plish the compare operation on integers that are larger than 16
bits. With this instruction, the compare should begin with the
most significant halfwords and the simple CMP instruction.
Only use the abc IFO with the last CMPP. For example, to deter-
mine whether a 32-bit number stored in [R16, R17] is equal to a
32-bit number stored in [R18,R19]:

CWwP rl16, rl8

CWPP r17, r19, BAEB

The Overflow flag is not affected by this operation.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further I nformation, See
abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52
AE “The Always Execute field (AE)” on page 231
Version 4.1 MXT3010 Reference Manual

CMPPI Compare Register and Immediate with Previous

CMPPI Compare Register and Immediate with
Previous

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111110|1{0 000 0|0| abc rsa us

Format CMPPI (rsa, usi) [abc]

Purpose » To compare the contents of a register and a 10-bit sign

extended immediate

» To alter program flow based on the result of the ALU oper-
ation (abc field).

Description The 10-bit unsigned immediate (usi) has the value of bit 9
extended through bits [31:10] and is compared to the contents of
the rsa register. Both operands are treated as unsigned integers.

This instruction can be used to accomplish the compare opera-
tion on integers that are larger than 16 bits. With this instruction,
the compare should begin with the most significant halfwords
and the simple CMPI instruction. Only use the abc IFO with the
CMPPI. For example, to determine whether a 32-bit number
stored in (R16, R17) is equal to 0x012301FF:

CWPl r16, 0x0123

CWPPI r17, OxO1FF BAEB

Since usi is a 10-bit field, 1FF is the largest number that can be
used there, unless extension of bit 9 through bits [15:10] is

desired.
Flags The Overflow flag is not affected by this operation.
Fields A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52

MXT3010 Reference Manual Version 4.1 241

Arithmetic Logic Unit Instructions

FLS

Find Last Set

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111011

U A
rd M abc rsa 1111E00000

Format

Purpose

Description

Flags

Fields

Note

242

FLSrsa, rd [abc] [AE] [UM]

« To determine the bit position of the MSB bit of a 16-bit
halfword that is set to one.

» To alter program flow based on the result of the ALU oper-
ation (abc field).

The contents of register rsa are examined. The bit position of the
most significant bit that is set is placed into rd. If bit O is the last
bit set, the value 0x0000 is placed into rd. If bit position 15 is the
last bit set, the value 0x000F is written into rd. If no bitis set, the
value 0x8000 is placed into rd.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

A “Find First Set” instruction can be implemented by loading
the halfword to be examined into “R56 Fast Memory Data reg-
ister” on page 212 and performing an FLS instruction specifying
“R43-read Fast Memory Bit Swap register (R42w[8]=0)" on
page 203 as rsa.

Version 4.1 MXT3010 Reference Manual

LIMD Load Immediate

LIMD

Load Immediate

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111111

rd 5000 li

Format

Purpose

Description

Flags

Fields

LIMD rd, li [UM]

» To initialize a 16-bit register in a single instruction.

» To update a linked location in Fast Memory with the opeTa
tion result (UM field).

The contents of register rd are loaded with the 16-bit long imme-
diate (li) value.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See
UM “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 243

Arithmetic Logic Unit Instructions

MAX

Maximum of Two Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111000

U A
rd M abc rsa MODx E rsb

Format

Purpose

Description

Flags

Fields

244

MAX (rsa, rsb) rd [MODX] [abc] [AE] [UM]

« To choose the maximum of two registers.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa are compared to the contents of reg-
ister rsb. Both registers are treated as unsigned integers. The
maximum of the two registers is placed into rd.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

MAXI Maximum of Register and Immediate

MAXI

Maximum of Register and Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111100

U .
rd M abc rsa usi

Format

Purpose

Description

Flags

Fields

MAXI (rsa, usi) rd [abc] [UM]

» To choose the maximum of a register and an immediatg
value.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa are compared to the 10-bit unsigned
immediate (usi) after bit 9 of usi has been extended through bits

[31:10]. Both values are treated as unsigned integers. The max-
imum of the two registers is placed into rd.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52

um “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 245

Arithmetic Logic Unit Instructions

MIN Minimum of Two Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
U A

111001 rd M abc rsa MODxE rsb

Format MIN (rsa, rsb) rd [MODX] [abc] [AE] [UM]

Purpose « To choose the minimum of two registers.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa are compared to the contents of reg-
ister rsb. Both registers are treated as unsigned integers. The
minimum of the two registers is placed into rd.

Flags The Overflow flag is not affected by this operation.
Fields A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

246 Version 4.1 MXT3010 Reference Manual

MINI Minimum of Register and Immediate

MINI

Minimum of Register and Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111101

U .
rd M abc rsa usi

Format

Purpose

Description

Flags

Fields

MINI (rsa, usi) rd [abc] [UM]

» To choose the minimum of a register and an immediate
value.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa are compared to the 10-bit unsigned
immediate (usi) after bit 9 of usi has been extended through bits
[31:10]. Both values are treated as unsigned integers. The mini-
mum of the two registers is placed into rd.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 52

um “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 247

Arithmetic Logic Unit Instructions

OR Or Registers
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
110001 rd ; abc rsa MODx 'é rsb

Format

Purpose

Description

Flags

Fields

248

OR (rsa, rsb) rd [MODX] [abc] [AE] [UM]

« To perform a Boolean OR function on two registers using
modulo arithmetic.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of rsa and rsb are OR’ed together using modulo
arithmetic. The result is placed in register rd.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

ORI Or Register and Immediate

ORI

Or Register and Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110101

U .
rd M abc rsa s

Format

Purpose

Description

Flags

Fields

ORI (rsa, si) rd [abc] [UM]

» To perform a Boolean OR function on a register and an
immediate.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The 10-bit immediate operand is sign extended and OR’ed with
the contents of register rsa, bit for bit.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See
abc “The ALU Branch Condition field (abc)” on page 229
UM “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 249

Arithmetic Logic Unit Instructions

SFT Shift Signed Amount
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101001 rd ; abc rsa MODx |0 rsb

Format

Purpose

Description

Flags
Fields

250

SFT (rsa, rsb) rd [MODX] [abc] [UM]

» To shift a register to the right or left based on the sign and
magnitude of the shift amount contained in a second regis-
ter.

« To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa shift to the right or left based on the
contents of register bits rsb(4:0) using modulo arithmetic. The
result is placed in register rd. On a right shift, high-order bits are
zero-filled. On a left shift, low-order bits are zero-filled.

The value of rsh(4:0) is interpreted as a signed shift amount. A
negative number (bit 4=1) causes a shift to the right. A positive
number (bit 4=0) causes a shift to the left. If the number is neg-
ative, the shift amount to the right is represented in two’s com-
plement form. See “Shift amount chart for SFT, SFTLI, and
SFTRI” on page 414.

The Overflow flag is not affected by this operation.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

SFTA Shift Right Arithmetic

SFTA Shift Right Arithmetic
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101011 rd b abc rsa MODx |0 rsb

Format

Purpose

Description

Flags

Fields

SFTA (rsa, rsb) rd [MODX] [abc] [UM]

» To shift a register to the right in an arithmetic fashion bag
on the shift amount contained in a second register.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa shift to the right by the number of bit
positions specified in bits rsb(3:0). See “Shift amount chart for

SFTA” on page 415. The original value of bit rsa(15) is copied

into all MSBs made vacant by the shift operation, thus accom-
plishing a sign extension/arithmetic shift. The result is placed in
register rd.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
um “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 251

Arithmetic Logic Unit Instructions

SFTAI

Shift Right Arithmetic Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101111

rd ; abc rsa MODx |0 1 usa

Format

Purpose

Description

Flags

Fields

252

SFTAI (rsa, usa) rd [MODX] [abc] [UM]

< To shift a register to the right in an arithmetic fashion based
on the shift amount in an immediate value.

« To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa shift to the right by the number of bit
positions as specified in the usa field. See “Shift amount chart

for SFTAI” on page 415. The original value of rsa(15) is copied

into all MSBs made vacant by the shift operation, thus accom-
plishing a sign extension/arithmetic shift. The result is placed in
register rd.

The Overflow flag is not affected by this operation.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

SFTC Shift Left Circular

SFTC Shift Left Circular

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
U A

1 01010 rd M abc rsa MODx E rsb

Format

Purpose

Description

Flags

Fields

SFTC (rsa, rsb) rd [MODX] [abc] [UM]

» To shift a register to the left in a circular fashion based d
the shift amount contained in a second register.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa shift to the left in a circular fashion
based on the value in register rsb(3:0). See “Shift amount chart
for SFTC and SFTCI” on page 414. Bits shifted out of bit posi-
tion 15 are shifted into bit position 0.

The Overflow flag is not affected by this operation.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

um “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual

Version 4.1 253

Arithmetic Logic Unit Instructions

SFTCI

Shift Circular Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110

U A
rd M abc rsa MODx E 1 usa

Format

Purpose

Description

Flags

Fields

254

SFTCI (rsa, usa) rd [MODX] [abc] [UM]

« To shift a register to the left in a circular fashion based on
an immediate shift amount.

« To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa shift to the left in a circular fashion
based on the value in the usa field, using modulo arithmetic. See
“Shift amount chart for SFTC and SFTCI” on page 414. For
example, if MOD16 is specified, bits rd(15:4) are taken from
bits rsa(15:4) while bit rd(3:0), the modulo field, is taken from
the Arithmetic Logic Unit result. Bits shifted out of bit position

15 are shifted into bit position 0.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

SFTRI/SFTLI Shift Right or Left Immediate

SFTRI/SFTLI Shift Right or Left Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101101 rd b abc rsa MODx 'I: tcsa

Format SFTRI (rsa, usa) rd [MODX] [abc] [UM]

SFTLI (rsa, usa) rd [MODX] [abc] [UM]

Purpose » To shift the contents of register rsa to the right (SFTRI) or
to the left (SFTLI) by the amount specified in the unsigned
shift amount (usa). The assembler converts the unsigned
shift amount provided in the command line into a two’s
complement shift amount (tcsa) for compatibility with the
hardware.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa shift to the right or left based on the
contents of the usa field. See “Shift amount chart for SFT,
SFTLI, and SFTRI” on page 414. Bits made vacant by the shift
operation are filled with 0’s.

Flags The Overflow flag is not affected by this operation.
Fields A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

um “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 255

Arithmetic Logic Unit Instructions

SUB

Subtract Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100010

U A
rd M abc rsa MODx E rsb

Format

Purpose

Description

Flags

Fields

256

SUB (rsa, rsb) rd [MODX] [abc] [AE] [UM]

« To subtract one register from another using modulo arith-
metic.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsb are subtracted from the contents of
register rsa. The result is placed in register rd.

The Overflow flag is set when the signs of the source operands
differ, and the sign of the result matches the sign of the second
operand. Operations specifying the modulo arithmetic option do
not affect this flag.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

UBI Subtract Register and Immediate

SuUBI

Subtract Register and Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100110

rd ; abc rsa MODx usi

Format

Purpose

Description

Flags

Fields

SUBI (rsa, usi) rd [MODX] [abc] [UM]

» To subtract an immediate value from a register using m¢
ulo arithmetic.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The 6-bit unsigned immediate (usi) operand is zero extended
and subtracted from the contents of register rsa, using modulo
arithmetic. The result is placed in register rd.

The Overflow flag is set when the signs of the source operands
differ, and the sign of the result matches the sign of the second
operand. Operations specifying the modulo arithmetic option do
not affect this flag.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
UM “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 257

Arithmetic Logic Unit Instructions

XOR

XOR Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110010

U A
rd M abc rsa MODx E rsb

Format

Purpose

Description

Flags

Fields

258

XOR (rsa, rsb) rd [MODx] [abc] [AE] [UM]

« To perform a Boolean exclusive-OR function on two regis-
ters using modulo arithmetic.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The contents of register rsa are logically XOR’ed with the con-
tents of register rsb, bit for bit using modulo arithmetic. The
result is placed in register rd. For example, if MOD16 is speci-
fied, bits rd(15:4) are taken from bits rsa(15:4) while bit rd(3:0),
the modulo field, is taken from the Arithmetic Logic Unit result.

The Overflow flag is not affected by this operation.
A summary of all fields for ALU instructions appears on

page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228

Version 4.1 MXT3010 Reference Manual

XORI XOR Register and Immediate

XORI

XOR Register and Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110110

U .
rd M abc rsa Si

Format

Purpose

Description

Flags

Fields

XORI (rsa, si) rd [abc] [UM]

» To perform a Boolean XOR function on a register and a
immediate operand.

» To alter program flow based on the result of the ALU oper-
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

The 10-bitimmediate operand (si) is sigh extended and XOR’ed
with the contents of register rsa, bit for bit. The results are placed
in register rd.

The Overflow flag is not affected by this operation.

A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the sec-
tions cited in the following table.

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
UM “The Update Memory field (UM)” on page 228

MXT3010 Reference Manual Version 4.1 259

Arithmetic Logic Unit Instructions

260 Version 4.1 MXT3010 Reference Manual

cuarter 11 Branch Insructions

Thischapter describesthe suite of Branch instructionsprovidedin
the MXT3010. Branch instructions are one of two methods pro-
vided in the MXT3010 for altering the sequential execution

stream of the SWAN processor. The other method uses branch
condition fields in the ALU instructions to modify instruction
execution flow. For details on ALU branching, see “Arithmetic
Logic Unit Instructions” on page 223.

The first part of this chapter presents information common to all
branch instructions. This information includes target address,
condition codes, committed slot execution, subroutine linking,
and counter system operations. Following the general branch
information is a list of specific branch instructions, organized by
name. For each branch instruction, there is a description, its mne-
monic, purpose, and any information specific to that instruction.

MXT3010 Reference Manual Version 4.1 261

Branch Instructions

General Branch instruction information

Introduction

A simplified version of the basic MXT3010 Branch instruction
format is shown below:

FIGURE 82.Branch instruction format (simplified)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op Code ESS# ‘S‘C‘ cso ‘

Basic Branch instructions allow the programmer to specify con-
ditional branching decisionswhich will ater theinstruction exe-
cution sequence based on the state of the MXT3010’s internal
subsystems and certain external subsystems. The point to be
tested is specified by the ESS field, and the state (1 or 0) which
will cause a branch is specified by the s-bit. Branch instructions
can also be used to manipulate the UTOPIA port’s control
counters via the counter system operation (cso) field.

Target address

The brancharget addressis the address at which execution con-
tinues if the specified branch condition is satisfied. The full
branch target address within Fast Memory is formed from the
Segment ID in the Instruction Base Address register (R53) and
the branch target field.

FIGURE 83.Target addressformat in Fast Memory

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Segment 1D Branch Target Field ‘ 0 ‘ O‘

262 Version 4.1 MXT3010 Reference Manual

General Branch instruction information

Segment ID

Target Field

The SWAN processor supports an instruction space of 128K
instructions. This 128K instruction space consists of 32 seg-
mentsof 4K instructionseach. A typical user code set fitswithin
one segment. The current segment ID (5 bitsto represent one of
32 segments) is changed by writing a new segment number to
the Instruction Base Address register (R53).

Thebranchtarget fieldisal2-hbit field that specifiesthe absolute
word address within the current code segment (4096 words) at

which execution isto continue. The branch target field may be
specified in one of three manners, asindicated in the following
table:

TABLE 54. Methods of specifying the Branch target field

Method Instructions Using This Method

Asbits[11:0] of theinstruction ~ “Bl Branch Immediate” on page 272
and “BIL Branch Immediate and Link”
on page 273

As bits [11:0] of the Fast Mem- “BF Branch Fast Memory Shadow

ory Shadow register (R58). Register” on page 270 and “BFL

(Note 1) Branch Fast Memory Shadow Register
and Link” on page 271

As bits [11:0] of the Branch “BR Branch Register” on page 274 and
register (R59) “BRL Branch Register and Link” on
page 275

Note 1:The Fast Memory shadow register is|loaded with the first halfword
returned from memory during a Fast Memory read operation that
specifies the LNK Instruction Field Option. The target field in R58
represents an absolute address to branch to within the active segment.

Condition code (ESS Field)

When using a conditional branch, the programmer can specify
which bitinthe Externa State Signalsregister (R42) istested to
determine the outcome of the branch instruction. If no condition
codeis specified, the assembler codesthe ESSfield as 1111, the
unconditional branch.

MXT3010 Reference Manual Version 4.1 263

Branch Instructions

Execution

264

TABLE 55. External State Signalsregister (R42) bits

ESS Condition ESS Condition

ESSO ICSI_A ESS8 Sparse event register, bit OR

ESS1 ICSI_B ESS9 RXBUSY counter >0

ESS2 TXFULL counter <2 ESS10 TXFULL counter = full

ESS3 RXBUSY counter = 4 ESS11 DMAL1 Output or Queue
stage busy

ESS4 Assigned Cell Flag ESS12 DMAZ2 Output or Queue
stage busy

ESS5 CSSoperationinprogress ESS13 DMA1L Queue stage busy

ESS6 CIN_BSY ESS14 DMAZ2 Queue stage busy

ESS7 COUT_RDY blank Unconditional Branch

The logical state identifier (S-Bit)

In addition to specifying the condition code tested via the ESS
field, the programmer usesthe logical state identifier, S, to indi-
cate which state of the specified condition code resultsin the
branch being taken.

TABLE 56. Useof the S-bit

S Branch Result
0 Branch istaken if condition =0
1 Branch istaken if condition =1

If the programmer knows that a bit will usually be asserted or
will usually be de-asserted, he or she can optimize software for
the expected branch condition by carefully selecting the logical
state that will cause the branch to be taken.

Committed slot instructions

The SWAN processor implements a delayed branching tech-
nique in order to prevent pipeline delays during branch opera-
tions. When the SWAN processor encounters a branch

Version 4.1 MXT3010 Reference Manual

General Branch instruction information

The Nullify
operator

instruction, the instruction immediately following the branch,
referred to as the committed dlot instruction, is always fetched
and entered into the execution pipeline. The programmer can
control whether the committed slot instruction isexecuted or not
by specifying options in the branch instruction.

The Conditional operator (C-bit)

If aconditional branch operation is specified, and the tested con-
dition code is satisfied (branch is taken), the committed slot
instruction is executed, and the instruction at the branch target
address follows the committed slot instruction.

If aconditional branch operation is specified, and the tested con-
dition codeis not satisfied (branch is not taken), the execution

of the committed slot instruction is determined by the presence

of the Conditional operator, C, in the branch instruction. If the
Conditional operator is absent, the committed slot instructionis
executed. If the Conditional operator is present, the committed

dot instruction is not executed, that is, the committed slot

becomes “conditional” as well. In essence, this operator makes
the committed slot instruction part of the targeted branch code,
rather than part of the locally sequenced code.

If no ESS condition code is specified, the assembler codes the
ESS field as 1111 (the unconditional branch) and codes the S-bit
as zero (0). In this case, the execution of the committed slot
instruction is determined by the presence of the Nullify operator,
N, in the branch instruction. The absence or presence of the Nul-
lify operator codes the Conditional operator (C-bit) as absent or
present respectively. If the Nullify/Conditional operator is
absent, the committed slot instruction is executed. If the Nullify/
Conditional operator is present, the committed slot instruction is
not executed. Table 57 on page 266 summarizes the use of the
conditional and nullify operators.

MXT3010 Reference Manual Version 4.1 265

Branch Instructions

TABLE 57. Useof the Conditional and Nullify operators

Committed
Condition Slot
Type of Code Applicable Operator Instruction
Branch Satisfied? Operator Existence Executed?
Conditional Yes None N/A Yes
Conditional No Conditional Absent Yes
Conditional No Conditional Present No
Unconditional N/A Nullify Absent Yes
Unconditional N/A Nullify Present No
Committed slot The committed slot instruction of abranch should not be another
restrictions for branch unless the Nullify operator is specified with the first
Branch branch. In addition, the committed slot instruction of abranch
instructions should not contain an ALU instruction with an abc field.
Examples TABLE 58. Example - conditional branch, condition satisfied

Address Instruction Flow Description

0010 ADD rO,r1,r2 0010

0011 Bl Ox045 ESS1/1 0011 Branch to 0x045 if condition ESS1
= 1, assume success

0012 ADD r3,r4,r5 0012 Committed Slot instruction is exe-
cuted

0013 ADD r6,r7,r8

0045 ADD r9,r10,r11 0045 Execution continues at branch tar-
get address

266 Version 4.1 MXT3010 Reference Manual

General Branch instruction information

TABLE 59. Example - conditional branch, condition not met

Address Instruction Flow Description
0010 ADD r0,r1,r2 0010
0011 Bl 0x045 ESS1/1 0011 Branch to 0x045 if condition
ESS1 = 1, assume failure
0012 ADD r3,r4,r5 0012 Committed slot instruction is
executed
0013 ADD r6,r7,r8 0013 No branch occurs, sequentia
execution continues
0045 ADD r9,r10,r11
TABLE 60. Example - unconditional branch
Address Instruction Flow Description
0010 ADD r0,r1,r2 0010
0011 Bl 0x045 0011 Branch to 0x045, no condition code
specified
0012 ADD r3,r4,r5 0012 Committed slot instruction is exe-
cuted
0013 ADD r6,r7,r8
0045 ADD r9,r10,r11 0045 Execution continues at branch tar-

get address

TABLE 61. Example - conditional operator, conditional branch,
condition satisfied

Address Instruction Flow Description

0010 ADD r0,r1,r2 0010

0011 Bl 0x045 ESS1/1/C 0011 Branch to 0x045 if condition
ESS1 = 1, assume success

0012 ADD r3,r4,r5 0012 Committed slot instruction is
executed

0013 ADD r6,r7,r8

0045 ADD r9,r10,r11 0045 Sequential execution continues

at branch target address

MXT3010 Reference Manual

Version 4.1

267

Branch Instructions

TABLE 62. Example - conditional operator, conditional branch,
condition not satisfied

Address Instruction Flow Description
0010 ADD rO,r1,r2 0010
0011 Bl 0x045 ESSI/1/ 0011 Branchto 0x045 if condition
C ESSL1 = 1, assume failure
0012 ADD r3,r4,r5 Committed slot is nullified due to
C operator
0013 ADD r6,r7,r8 0013 Branch not taken, sequential exe-

cution continues

0045 ADD r9,r10,r11

Subroutine linking

The Branch Fast Memory (BF), Branch Immediate (Bl), and

Branch Register (BR) instructions are each available with a

return address linking option. If the linking form of the branch
instruction is specified (BFL, BIL, and BRL instructions), the
address of the instruction immediately following the branch’s
committed slot is saved in the Branch register (R59). To return
from the subroutine at a later time, the SWAN processor can
execute a Branch Register (BR) instruction that returns the flow
of execution to continue from the point where the linked branch
occurred.

The Branch register (R59) is only written if the branch is taken,
and is always written with the branch address instruction plus
two, even if the branch was an unconditional branch with the
nullify operator.

Restrictions for Whenever the Branch register (R59) is modified, whether by a
BFL,BIL, BR, load instruction directed to that register or by a branch instruc-
BRL, and the tion with linking, the modified value is not immediately avail-
Branch register able for use. Thus, any instruction which follows the

(R59) modification must have at least one intervening instruction

(after the modifier) to avoid using a stale Branch register value.

268 Version 4.1 MXT3010 Reference Manual

General Branch instruction information

TABLE 63. Example - Branch with link, and return
Address Instruction Flow Description
0010 ADD r0,r1,r2 0010

0011 BIL Ox0O45ESS1I/1 0011 Branchto 0x045 if condition
ESS1 = 1, assume success

0012 ADD r3,r4,r5 0012 Committed slot is executed,
0x013=>R59

0013 ADD r6,r7,r8

0045 ADD r9,r10,r11 0045 R59=0x013

0046 BR N 0046 Branch register specified return to
saved address
0047 FOO Committed slot not executed due

to N operator

0013 Sequential execution returns to
saved link address

Counter system operation

Branch instructions are used to implement all counter system
operations (CSO). These operations are used to increment and
decrement the UTOPIA port control counters TXBUSY,
TXFULL, RXBUSY, and RXFULL. A CSO can be specified as
an optional operator on any branch instruction.

If aconditional branch instruction is executed, any CSO speci-
fied isunconditional. That is, the counter manipulation is per-
formed without regard to whether the condition codeis satisfied
and the branch is taken.

TABLE 64. The CSO field

CSO Hex / Binary Value Operation

DRXBUSY EO / 1110 0000 Decrement RXBUSY counter
DRXFULL E1 / 1110 0001 Decrement RXFULL counter
ITXBUSY C2 / 1100 0010 Increment TXBUSY counter

ITXFULL C3 / 1100 0011 Increment TXFULL counter

MXT3010 Reference Manual Version 4.1 269

Branch Instructions

BF Branch Fast Memory Shadow
Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘000100‘

ESS# ‘s‘c‘ cs0 ‘oooooooooooo

Format

Purpose

Description

Fields

Restrictions

270

BF [ESS#/(0|1)/[C]] [cso] [N]

» To allow for changes in program flow using conditional
branching that tests the MXT3010's external state signals,
and to increment and decrement UTOPIA control counters

» To provide a service routine address as the first word in a
channel descriptor, and then branch to this service address.

Based on the result of a specified condition code, this instruction
can modify the SWAN processor’s sequential flow resulting in a
branch to the target address in the Fast Memory Shadow register.

Subsequent BF instructions will stall the SWAN processor until
the first word is read from Fast Memory and copied into the Fast
Memory Shadow (FMSR) register. If an LMFM instruction is
executed, the FMSR is loaded only if the LMFM specified the
LNK IFO with a non-zero halfword field. After the FMSR has
been loaded by the LMFM, software can read and write the
FMSR and use it as a second Branch register.

A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the sec-
tions cited in the following table

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

S “The logical state identifier (S-Bit)” on page 264
C “The Conditional operator (C-bit)” on page 265
Cso “Counter system operation” on page 269

See “Committed slot restrictions for Branch instructions” on
page 266.

Version 4.1 MXT3010 Reference Manual

BFL Branch Fast Memory Shadow Register and Link

BFL Branch Fast Memory Shadow

Register and Link
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘000101‘ ESS# ‘s‘c‘ cso ‘oooooooooooo
Format BFL [ESS#/(0]1)/[C]] [cs0] [N]
Purpose » To allow for changes in program flow using conditional

branching that tests the MXT3010’s external state signals,
and to increment and decrement UTOPIA control counts

» To provide a service routine address as the first word in
channel descriptor, and then branch to this service addr

Brancn
| nstructions

» To provide subroutine linking capability. (See “Subrouti
linking” on page 268.)

Description The BFL instruction is identical to the BF instruction, except
that the address of the instruction immediately following the
branch’s committed slot is saved in the Branch register (R59).
To return from the subroutine at a later time, the SWAN proces-
sor can execute a Branch Register (BR) instruction that returns
the flow of execution to continue from the point where the
linked branch occurred.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the sec-
tions cited in the following table

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264
C “The Conditional operator (C-bit)” on page 265
Ccso “Counter system operation” on page 269
Restrictions See “Committed slot restrictions for Branch instructions” on

page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

MXT3010 Reference Manual Version 4.1 271

Branch Instructions

Bl Branch Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘oooooo‘

ESS# ‘ s ‘ C‘ cs0 ‘ word address (wadr) ‘

Format

Purpose

Description

Fields

Restrictions

272

Bl wadr [ESS#(0|1)/[C]] [cso] [N]

« To allow for changes in program flow using conditional
branching that tests the MXT3010’s external state signals,
and to increment and decrement UTOPIA control counters.

Based on the results of the specified condition code, the BI
instruction can modify the SWAN processor’s sequential flow
resulting in a branch to the target address in the wadr field [11:0]
of the Bl instruction.

A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the sec-
tions cited in the following table

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264
S “The logical state identifier (S-Bit)” on page 264

C “The Conditional operator (C-bit)” on page 265

Cso “Counter system operation” on page 269

wadr “Target address” on page 262

See “Committed slot restrictions for Branch instructions” on
page 266.

Version 4.1 MXT3010 Reference Manual

BIL Branch Immediate and Link

BIL Branch Immediate and Link

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘0 0000 1‘ ESS# ‘S‘C‘ cso ‘ word address (wadr) ‘
Format BIL wadr [ESSH/(0[]1)/[C]] [cso] [N]

Purpose » To allow for changes in program flow using conditional

branching that tests the MXT3010’s external state signals,
and to increment and decrement UTOPIA control counte

» To provide subroutine linking capability. (See “Subrouti
linking” on page 268.)

Description The BIL instruction is identical to the Bl instruction, except thi
the address of the instruction immediately following the
branch’s committed slot is saved in the Branch register (R59).
To return from the subroutine at a later time, the SWAN proces-
sor can execute a Branch Register (BR) instruction that returns
the flow of execution to continue from the point where the
linked branch occurred.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the sec-
tions cited in the following table

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264
C “The Conditional operator (C-hit)” on page 265
Ccso “Counter system operation” on page 269
wadr “Target address” on page 262
Restrictions See “Committed slot restrictions for Branch instructions” on

page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

MXT3010 Reference Manual Version 4.1 273

Branch Instructions

BR Branch Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘000010‘ ESS# ‘s‘c‘ cs0 ‘oooooooooooo
Format BR [ESS#/(0|1)/[C]] [cso] [N]

Purpose « To allow for changes in program flow using conditional

branching that tests the MXT3010’s external state signals,
and to increment and decrement UTOPIA control counters.

« To branch to and return from subroutine operations.

Description Based on the results of the specified condition code, the BR
instruction can modify the SWAN processor’s sequential flow
resulting in a branch to the target addreghéBranch register
(R59).

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the sec-
tions cited in the following table

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

S “The logical state identifier (S-Bit)” on page 264
C “The Conditional operator (C-bit)” on page 265
€SO “Counter system operation” on page 269
wadr “Target address” on page 262
Restrictions See “Committed slot restrictions for Branch instructions” on

page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

274 Version 4.1 MXT3010 Reference Manual

BRL Branch Register and Link

BRL Branch Register and Link
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘000011‘ ESS# ‘s‘c‘ cso ‘oooooooooooo
Format BRL [ESS#/(0|1)/[C]] [cso] [N]
Purpose » To allow for changes in program flow using conditional

branching that tests the MXT3010’s external state signals,
and to increment and decrement UTOPIA control counte

» To branch to and return from subroutine operations.

» To provide subroutine linking capability. (See “Subrouti
linking” on page 268.)

Description The BRL instruction is identical to the BR instruction, excep
that the address of the instruction immediately following the
branch’s committed slot is saved in the Branch register (R59).
To return from the subroutine at a later time, the SWAN proces-
sor can execute a Branch Register (BR) instruction that returns
the flow of execution to continue from the point where the
linked branch occurred.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the sec-
tions cited in the following table

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264
C “The Conditional operator (C-bit)” on page 265
Ccso “Counter system operation” on page 269
wadr “Target address” on page 262
Restrictions See “Committed slot restrictions for Branch instructions” on

page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

MXT3010 Reference Manual Version 4.1 275

Branch Instructions

276 Version 4.1 MXT3010 Reference Manual

crarrer 12 Cdll Schedullng Ingtructions

This chapter describes the Cell Scheduling instructions, POPC,
POPF, PUSHC, and PUSHF. Each command reference page
includes the instruction name, its mnemonic, format, purpose,
descriptions, fields, and restrictions.

Cell Scheduling System target address

All Cdl Scheduling instructions utilize the rsb field to specify a
register that contains a 14-bit target address for the Cell Schedul-
ing operation. The target address specifies a location within the
Connection ID table, and vialogic within the MXT3010, acorre-
sponding hit position in the Scoreboard. The complete Fast Mem-
ory halfword address (FADRS[19:1]) used to access the
Connection ID table isformed using FADRS [19] hardwired to
zero (0), the base address information from bits[11:8] of the Cell
Scheduling System Configuration register(R60) as FADRS
[18:15] and the target address from rsb [13:0] as FADRS [14:1].
See Table 6 on page 44.

MXT3010 Reference Manual Version 4.1 277

Cell Scheduling Instructions

POPC Service Schedule

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘o 0100 1‘ rd ‘o‘ 000 ‘ 000000 ‘o‘o‘o‘o‘o‘ rsb

Format POPC rd @rsb

Purpose To identify the Connection ID associated with a specified loca
tioninthe Cell Scheduling System Scoreboard and to determine
whether a connection is scheduled for servicing at that location.

Description Thetarget address specified by register rsb istransated into a

Assigned Cell flag

Restrictions

278

Cell Scheduling System Scoreboard bit position. The state of
that bit is copiedinto the Assigned Cell flag (see below), and the
bit location is cleared. In addition, the Connection ID tableis
accessed in Fast Memory, and the associated Connection ID is
read into the destination register, rd.

The Assigned Cell flag output is connected to ESS4 (R42). The
SWAN processor can test to seeif a connection was scheduled
to become active in the current cell dot time by testing ES4. If
ESS4 isset to 1, then aconnection was scheduled for the current
cell time and the processor uses the Connection ID returned
from the Connection ID table to access the Channel Descriptor
for the connection. If the ES$4 is set to 0, no cell is scheduled
for transmission at the cell current time, and the Connection ID
showninrdisstaleinformation and should beignored. For more
information on the Cell Scheduling System, see CHAPTER 3
"The Cell Scheduling System" on page 27.

The instruction immediately following POPC must not access

the destination register, rd. If a subsequent instruction accesses
rd, the correct valueisread, but a stall may occur. See “Register
access rules” on page 22.

The MXT3010 does not support hardware registers (R32-R63)

as the destination of a POPC instruction.

Version 4.1 MXT3010 Reference Manual

POPF POP Fast

POPF POP Fast

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘o 0100 1‘ rd ‘o‘ 001 ‘ 000000 ‘o‘o‘o‘o‘o‘ rsb
Format POPF rd @rsb
Purpose To manipulate the Cell Scheduling System. Thisinstruction

manipulates the internal Scoreboards without accessing the
Connection ID Table in Fast Memory. POPF can improve the
speed of scheduling algorithms that scan multiple Scoreboard
entries before connecting. By eliminating unnecessary accesses
to Fast Memory, memory read/write latencies are avoided.

Description The target address specified by register rsbistrandated into a
Cell Scheduling System Scoreboard bit position. The state of
that bit is copied into the Assigned Cell flag (see below), and the
bit location is cleared. The Fast Memory is not accessed, and
location rd is not modified.

Assigned Cellflag ~ The Assigned Cell flag output is connected to ESS4 (R42). The
SWAN processor can test to seeif a connection was scheduled
to become active in the current cell slot time by testing ESS4. I
ESH isset to 1, then aconnection was scheduled for the current
cell time. If the ESS4 is set to 0, no cell is scheduled for trans-
mission at the cell current time. For more information on the
Cell Scheduling System, see CHAPTER 3 "The Cell Scheduling
System" on page 27.

Restrictions There must be at |east three instructions between one POPF
instruction and another POPF instruction.

MXT3010 Reference Manual Version 4.1 279

Cell Scheduling Instructions

PUSHC Schedule

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o[o]x[e]o]o]

000000 ‘o‘ 000 ‘ rsa ‘o‘o‘o‘o‘o‘ rsb

Format
Purpose

Description

Note

280

PUSHC rsa @rsbh
Todispatch ascheduling request to the Cell Scheduling System.

Thetarget address specified by register rsb istransated into a
Cell Scheduling System Scoreboard bit position. The Cell
Scheduling System searchesfor thefirst availablelocationinthe
Scoreboard at or after that bit position and sets the bit for that
location to reserveit. It also writes the 16-bit user-defined Con-
nection |D from the rsa register into the Connection ID table
location corresponding to the reserved Scoreboard bit. The
address contained in rsb is the earliest that the connection can
become active.

During aPUSHC instruction, if the Scoreboard isfull, the Cell
Scheduling System returns an error by setting bit 15 in the CSS
Configuration register (R60). For more information on the Cell
Scheduling System, see CHAPTER 3"The Cell Scheduling Sys-
tem" on page 27.

Execution of thisinstruction updates the Scheduled Address
register (R61).

Version 4.1 MXT3010 Reference Manual

PUSHF Push Fast

PUSHF Push Fast

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘001000‘

000000 ‘o‘ 001 ‘ rsa ‘o‘o‘o‘o‘o‘ rsb

Format

Purpose

Description

Note

PUSHF rsa @rsh

To manipulate the Cell Scheduling System. This instruction
manipulates the internal Scoreboards without accessing the
Connection ID table in Fast Memory. PUSHF can improve the
speed of scheduling algorithmsthat rely on reserved Scoreboard
locations when fixing bandwidth connections. By eliminating
unnecessary accessesto Fast Memory, memory read/write laten-
cies are avoided.

The target address specified by register rsb istrandated into a
Cell Scheduling System Scoreboard hit position. The Cell
Scheduling System searchesfor thefirst availablelocationinthe
Scoreboard at or after that bit position and sets the bit for that
location to reserveit. No new Connection ID iswritten into the
Connection ID table location corresponding to the reserved
Scoreboard bit. Rather, the existing Connection ID at that loca-
tion will be scheduled. The address contained in rsb is the earli-
est that the connection can become active.

During a PUSHF instruction, if the Scoreboard is full, the Cell
Scheduling System returns an error by setting bit 15 inthe CSS
Configuration register (R60). For more information on the Cell
Scheduling System, see CHAPTER 3 "The Cell Scheduling Sys-
tem" on page 27.

Execution of thisinstruction updates the Scheduled Address
register (R61).

MXT3010 Reference Manual Version 4.1 281

Cell Scheduling Instructions

282 Version 4.1 MXT3010 Reference Manual

chapter 13 Direct Memory Access
Ingtructions

Thischapter describesthe Direct Memory Access (DMA) instruc-
tions, beginning with information common to all DMA instruc-
tions. Thisinformation includes op codes, byte counts, and
control fields. Following the general information is alist of spe-
cific DMA instructions, organized by name. For each instruction,
thereisadescription, itsmnemonic, purpose, and any information
specific to that instruction.

MXT3010 Reference Manual Version 4.1 283

Direct Memory Access Instructions

General DMA instruction information

31 30 29 28 27 26 25

Introduction

A simplified version of the basic MXT3010 DMA instruction
format is shown below:

FIGURE 84.DMA instruction format (simplified)

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code ‘ i ‘

BC ‘ rla ‘ rsa ‘ Control ‘ rsb

284

Basic DMA instructions allow the programmer to add read or
write DMA transfer requests to either the Port1 or Port2 com-
mand queue by selecting the appropriate Op Code. Thelength of
the transfer and various control features are determined by the
Byte Count (BC) Instruction Field Option and the Control field.
In addition, afeature is provided which permits the Alternate
Byte Count register (R52) to provide control of the transfer
length and other features. Therla, rsa, and rsb fieldsidentify the
registers used in the transfer.

Op codes for DMA instructions

The following table applies:

TABLE 65. Op codesfor DMA instructions

Bits[31:29] Bits[28:27] Description

011 00 DMA Read, Portl (DMA1R instruction)
011 01 DMA Write, Portl (DMA1W instruction)
011 10 DMA Read, Port2 (DMAZ2R instruction)
011 1 DMA Write, Port2 (DMA2W instruction)
Verson 4.1 MXT3010 Reference Manual

General DMA instruction infor mation

Use of bit 26

Timing
considerations for
accessing rla

The RLA increment bit (i-bit)

The MXT3010 DMA instructions include an option that pro-

vides an automatic increment to the target rlaregister upon dis-
patch of the DMA instruction. The increment is 64 modulo 512

and saves the SWAN processor the code needed to advance the
rlaregister to the next cell buffer in the Cell Buffer RAM follow-

ing each DMA transfer. To makethisoption available, Target Bit
0101 (“DMA Plus Control”) in the Mode Configuration Regis-
ter (R42) must be setto 1. (See “R42-write Mode Configuration
register” on page 201.)

The instruction used and the status of the DMA Plus Control
affect how bit 26 is coded by the assembler. The possibilities are
shown in the table.

TABLE 66. Useof Bit 26

Instruction DMA Plus

Used Control Bits[26] Description

DMA1R Disabled X Thisbit is available as the highest
DMA1W order bit of the byte count field
DMAZ2R

DMA2W

DMAI1R Enabled 0 Do not increment the rlaregister
DMA1IW

DMA2R

DMA2W

DMA1R+ Enabled 1 Increment rlaregister upon com-
DMA1W+ pletion of DMA operation
DMA2R+

DMA2W+

If the instruction immediately following a DMA operation with

rla increment accesses the rla register, it will see the non-incre-
mented value. If the second following instruction accesses the
rla register, it will see the incremented or the non-incremented

MXT3010 Reference Manual Version 4.1 285

Direct Memory Access Instructions

value depending on the correlation of pipeline stalls and the
DMA commitment. After the second following instruction, all
further instructions will see the incremented rlavalue.

TABLE 67. Timing chart for accessing rla after aDMA

Instruction rlavalue

DMA instruction non-incremented value
Instruction following the DMA non-incremented value
Second instruction following the DMA indeterminate

Third instruction following the DMA incremented value

Subsequent instructions following the DMA incremented value

Note: Theinformation in thistable differsfrom that in Table 3 on page 23
and “Avoiding stale rla values” on page 315 because those refer to
simple read/write operation, whereas this table refers to DMA oper-
ation.

The Byte Count instruction field option (BC)

The Byte Count field indicates the Iength1 of the DMA transfer
in accordance with the following table:

TABLE 68. Useof theBC field

Without DMA Plus Enabled With DMA Plus Enabled
Bits[26:19] Description Bits[25:19] Description

0 Transfer O bytes. 0 Transfer O bytes.
1 Transfer 1 byte 1 Transfer 1 byte

2 Transfer 2 bytes 2 Transfer 2 bytes
3 Transfer 3 bytes 3 Transfer 3 bytes

127 Transfer 127 bytes 127 Transfer 127 bytes
| Transfers larger than 127 bytes are

255 Transfer 255 bytes not available when the DMA Plus
Transfers larger than 255 bytes afecontrol is enabled.

not available.

1. See “Use of odd BC values” on page 287.

286 Version 4.1 MXT3010 Reference Manual

General DMA instruction infor mation

The “Use Alternate Byte Count Register (R52)” Feature

If the programmer does not specify the BC/# Instruction Field

Option, thelength of the transfer and the CRC treatment will be
controlled by the Alternate Byte Count/ID register (R52) rather
than by the BC field, CRCX, and CRCY bitsin the instruction.

Use of odd BC values
Thefollowing restrictions apply to DMA operations using odd
BC values:
 DMAI1R using BC = odd# transfers BC bytes
« DMA1W, DMA2R, DMA2W using BC = odd# transfers
BC-1 bytes.

The Portl bus supports byte operations only on read operations.
The Port2 bus does not support byte operations at all, and will
always round down the BC field.

The Control instruction field option

Bits [9:5] of each DMA instruction are the Control field, which
has the following format:

FIGURE 85.Control field format)
9 8 7 6 5
IBI CRCX ‘ CRCY ‘ POD ST

Note:The CRCX, CRCY, and ST hits apply only to the DMA1R,
DMA1R+, DMA1W, and DMA1W+ instructions.

MXT3010 Reference Manual Version 4.1 287

Direct Memory Access Instructions

The bit definitions for the Control byte are given in the follow-
ing table:

TABLE 69. Use of the Control byte

Bit

Name

Function

9

IBI

CRCX

CRCY

POD

ST

The Instruction Byte count Indicator is an internal

flag used by the MXT3010. If the programmer has
specified a BC/# value, the MXT3010 sets IBI and
uses the BC/# and CRCX/CRCY values to control
the transfer. If the programmer has not specified a
BC/# value, the MXT3010 clears |BI and uses the
values in R52 to control the transfer.

If clear, CRC32 Partial Result registers are not modi-
fied. If set, aCRC32 Partial Result is generated based
on CRC32PRX register’s value and the result is
deposited into CRC32PRX (R44/R45).

If clear, CRC32 Partial Result registers are not modi-
fied. If set, a CRC32 Partial Result is generated based
on CRC32PRY register’s value and the result is
deposited into CRC32PRY (R46/R47)

If clear, no UTOPIA Port Post Operative Directive
(POD) is performed. If set, TXBUSY is incremented
upon the completion of DMA reads, and RXFULL is
decremented upon completion of DMA writes.

If clear, the DMA is performed in normal fashion. If
set, a “Silent Transfer” is performed. In a Silent
Transfer, a DMA is performed which includes CRC
calculation, but does not require data from the host or
other host intervention.

288

Version 4.1

MXT3010 Reference Manual

DMA1R Direct Memory Operation - Portl Read

DMALR Direct Memory Operation - Portl Read
DMA1R+ Direct Memory+ Operation - Portl Read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘0‘1‘1‘0‘0‘ ‘ BC ‘ rla ‘ rsa ‘ Control ‘ rso

Formats DMA1R rsalrsh, rla[BC/#][CRC { X,Y}][POD][ST]
DMA1R+ rsalrsh, rla[BC/#[CRC { X,Y}][POD][ST]

Purpose To initiate direct memory read operations on Port1

Description Execution of thisinstruction causesaDMA read operation to be
written into the Portl DMA command queue.

Fields Theregister selected by the rlafield contains the Cell Buffer
RAM address. See “Register load address (rla field)” on
page 314. The rsa and rsb fields determine the Portl memory
address as shown in Table 24 on page 111. A summary of all
fields for DMA instructions appears on page 417. Detailed
descriptions for each field appear in the sections cited in the fol-
lowing table.

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285
BC “The Byte Count instruction field option (BC)” on page 286
Control “The Control instruction field option” on page 287

Notes: For use of bit 26, see “Use of bit 26” on page 285.
To make the DMAL1R+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla register,
see “Timing considerations for accessing rla” on page 285.

MXT3010 Reference Manual Version 4.1 289

Direct Memory Access Instructions

DMAIW Direct Memory Operation - Portl Write
DMA1W+ Direct Memory+ Operation - Portl Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Lol [2]of2] |

BC ‘ rla ‘ rsa ‘ Control ‘ rsb

Format

Purpose

Description

Fields

Notes:

290

DMA1W rsalrsb, rla[BC/#][CRC { X,Y}][POD][ST]
DMA1W rsalrsb, rla[BC/#][CRC { X,Y}][POD][ST]

To initiate direct memory write operations on Portl

Execution of thisinstruction causes a DMA write operation to
be written into the Portl DMA command queue.

Theregister selected by the rlafield contains the Cell Buffer

RAM address. See “Register load address (rla field)” on

page 314. The rsa and rsb fields determine the Portl memory
address as shown in Table 24 on page 111. A summary of all
fields for DMA instructions appears on page 417. Detailed
descriptions for each field appear in the sections cited in the fol-
lowing table.

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285
BC “The Byte Count instruction field option (BC)” on page 286

Control “The Control instruction field option” on page 287

For use of bit 26, see “Use of bit 26” on page 285.

To make the DMA1W+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla register,
see “Timing considerations for accessing rla” on page 285.

Version 4.1 MXT3010 Reference Manual

DMAZ2R Direct Memory Operation - Port2 Read

DMA2R Direct Memory Operation - Port2 Read
DMA2R+ Direct Memory+ Operation - Port2 Read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘0‘1‘1‘1‘0‘ ‘ BC ‘ rla ‘ rsa ‘ Control ‘ rso

Format DMAZ2R rsalrsh, rla[BC/#][POD]
DMAZ2R+ rsalrsh, rla[BC/#][POD]

Purpose To initiate direct memory read operations on Port2

Description Execution of thisinstruction causesaDMA read operation to be
written into the Port2 DMA command queue.

Fields Theregister selected by the rlafield contains the Cell Buffer
RAM address. See “Register load address (rla field)” on
page 314. The rsa and rsb fields determine the Port2 memory
address as shown in Table 29 on page 137 and Table 31 on
page 139. A summary of all fields for DMA instructions appears
on page 417. Detailed descriptions for each field appear in the
sections cited in the following table.

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285
BC “The Byte Count instruction field option (BC)” on page 286
Control “The Control instruction field option” on page 287

Notes: For use of bit 26, see “Use of bit 26” on page 285.
To make the DMA2R+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla register,
see “Timing considerations for accessing rla” on page 285.

MXT3010 Reference Manual Version 4.1 291

Direct Memory Access Instructions

DMA2W Direct Memory Operation - Port2 Write
DMA2W+ Direct Memory+ Operation - Port2 Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘0‘1‘1‘1‘1‘ ‘ BC ‘ rla ‘ rsa ‘ Control ‘ rsb

Format DMA2W rsalrsh, rla[BC/#][POD]
DMA2W rsalrsh, rla[BC/#][POD]

Purpose To initiate direct memory write operations on Port2

Description Execution of thisinstruction causes a DMA write operation to
be written into the Port2 DMA command queue.

Fields Theregister selected by the rlafield contains the Cell Buffer
RAM address. See “Register load address (rla field)” on
page 314. The rsa and rsb fields determine the Port2 memory
address as shown in Table 29 on page 137 and Table 31 on
page 139. A summary of all fields for DMA instructions appears
on page 417. Detailed descriptions for each field appear in the
sections cited in the following table.

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285
BC “The Byte Count instruction field option (BC)” on page 286

Control “The Control instruction field option” on page 287

Notes: For use of bit 26, see “Use of bit 26” on page 285.
To make the DMA2W+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla register,
see “Timing considerations for accessing rla” on page 285.

292 Version 4.1 MXT3010 Reference Manual

cuarrer 14 LOAd and Sore Fagt Memory
Ingtructions

This chapter describesthe L oad and instructionsfor Fast Memory.
Each command reference page includes the instruction name, its
mnemonic, purpose, and any information specific to that instruc-
tion. The common information includes descriptions, fields, and
notes.

MXT3010 Reference Manual Version 4.1 293

Load and Sore Fast Memory Instructions

General information for Load and Store Fast Memory

instructions

Introduction

Simplified versions of the M XT3010 Load and Storeinstruction
formats for Fast Memory operations are shown below.

TABLE 70. Load Fast Memory instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ Op Code

rd ‘LNK‘ 00 ‘ Z ‘ rsa ‘ HHW ‘ rsh ‘

TABLE 71. SoreFast Memory instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ Op Code

000000000 ‘ rsa ‘ #HHW ‘ rsb ‘

Loading

294

The software tables and data structures stored in Fast Memory

are accessed by the SWAN processor through the LMFM (Load
Multiple from Fast Memory) instruction. The SWAN processor

uses the #HW field to specify the number of halfwords to be
fetched and the rsa and rsb fields to specify the Fast Memory

byte address at which the transfer will begin. In response to the
LMFM ingtruction, the Fast Memory interface controller will

write the halfwords returned from memory into the SWAN's
register file beginning with register rd and continuing with rd+1,
rd+2, etc. until the designated number of halfwords have been
transferred. Thus, the LMFM instruction allows the SWAN pro-
cessor to transfer up to 16 halfwords from the Fast Memory into
the register file in a single instruction.

If the LNK instruction field option is specified, the fast memory
interface controller links the loaded registers to the locations in
Fast Memory from which their contents were read. ALU instruc-
tions which modify these registers can force the modifications to
be written back to Fast Memory by specifying the UM (update
memory) option. Thus, the UM function allows the SWAN pro-

Version 4.1 MXT3010 Reference Manual

General information for Load and Sore Fast Memory instructions

Storing

Restrictions

cessor to update the data structure in Fast Memory without exe-
cuting adedicated Storeinstruction. In addition, use of the LNK
option also causes the first halfword read from memory to be

read into the Fast Memory Shadow Register (R58), whereit can

be used by BF/BFL instructions. (See “BF Branch Fast Memory
Shadow Register” on page 270 and “BFL Branch Fast Memory
Shadow Register and Link” on page 271.)

Fast Memory writes can be accomplished utilizing the memory
update function described above or by utilizing the Store half-
word to Fast Memory (SHFM) instruction. Execution of the
SHFM instruction causes the Fast Memory interface controller
to write the halfword contained in the Fast Memory Data regis-
ter (R56) into the halfword addressed by the byte address con-
tained in registers rsa and rsh. A more powerful store
instruction, Store Register Halfword (SRH) is also available.
Further details are provided in “SRH Store Register Halfword”
on page 312.

Transfer size (the #HW field)

The #HW field specifies the number of 16-bit halfwords to load
from, or store to, Fast Memory.

If the LNK instruction field option is enabled, there are some
restrictions to the values that can be used in this field. See “Lim-
itations on #HW when linking” on page 300. If the LNK instruc-
tion field option is not enabled, any 0-16 halfword transfer is
permitted, but the programmer must ensure that a multiple half-
word entity is aligned on a 4-byte boundary.

MXT3010 Reference Manual Version 4.1 295

Load and Sore Fast Memory Instructions

296

Fast Memory address (the rsa and rsb fields)

Bits[3:0] of the register specified in the rsafield contain bits
[19:16] of the Fast Memory Byte Address at which transfers
begin. Bits[15:0] of theregister specifiedinthersbfield contain
bits[15:0] of the Fast Memory Byte Address at which transfers
begin. Thisinformation is summarized in the following table:

TABLE 72. Useof thersaand rsb fields

Field Register Bits Used Function

rsa [3:0] Fast Memory Address (FADRS) [19:16]
rsb [15:0] Fast Memory Address (FADRS) [15:0]

Address masking (the Z-bit)

A masking option, the Z-bit, provides improved access for
aligned data structures. When set, this bit causesthe least signif-
icant bits of the indicated rsb register to be masked out during
the Fast Memory accesses, effectively forcing the transfer to
start on an aligned structure boundary. When the Z-bit is clear,
no masking is done.

The number of bits masked to zero is determined by the choice
of destination register rd, as shown in the following table.

TABLE 73. Useof the Z-bit

Z-bit Function

0 Data read from Fast Memory at rsa[3:0] | rsb [15:0]
1 Dataread from Fast Memory at rsa[3:0] | rsb [15:n+1] | O[n:0]

rd=16 masks rsb [4:0]

rd=24 masks rsb [3:0]

rd=28 masks rsb [2:0]

rd=30 masks rsb [1:0]

rd=31 masks rsb [0]

Verson 4.1 MXT3010 Reference Manual

General information for Load and Sore Fast Memory instructions

The Z-bit option permits an optimization to SWAN code for

accessing the Connection ID (CID)Table wherein CIDs may be
stored in such amanner that the retrieved CID val ue can be used
for both high and low Fast Memory addressasrsaand rsb. This
enhancement can save several instructionsin the critical PUSH/
POP code segments. Two examples are given to clarify the con-

cept.
Z-bit usage Assumeit is desired to access Fast Memory location 0x50000.
example 1 8 17 16 15 14 18 12 1 10 9 8 7 6 5 4 3 2 1 0
101 0000 0000 0000 0000
rsa rsb

Normally, this would require that rsa contain 0x0005 and rsb
contain 0x0000. However, performing:

LMFM rd @ rsalrsa 16HW Z

will produce the following address:

18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
101 0000 0000 ‘ 0000 ‘ 0101
rsa rsa

Use of the Z-bit option causes masking of [4:0], producing:
8 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101 0000 0000 ‘ 0000 ‘ 0000
rsa rsawith [4:0] masked

Thisisthedesired address. Thus, thisisasimplified example of
“CIDs may be stored in such a manner that the retrieved CID
value can be used for both high and low Fast Memory address
as rsa and rsb.”

Z-hit usage Channel descriptors are organized in Fast Memory in 32-byte
example 2 aligned data structures starting at 0x20000 and ending at
0x7FFEO. Due to the 32-byte alignment, bits [4:0] of the first

MXT3010 Reference Manual Version 4.1 297

Load and Sore Fast Memory Instructions

entry in achannel descriptor are always zero. Thus, sixteen bits
[20:5] uniquely definethefirst entry of each channel descriptor.
The MXT3010 constructs a Connection ID (CID) for each
descriptor by using bits [15:5] from the descriptor address as
CID bits[15:5] and using bits [20:16] from the descriptor
address as CID bits[4:0Q]. This creation of a unique 16-bit Con-
nection ID is important for use with the POPC instruction.

When a POPC instruction is used to determine whether a con-
nection has been scheduled at a particular scoreboard location,
and a connection has been scheduled, the Connection ID will be
returned in the rd register specified in the POPC instruction.

A typical channel descriptor address, the Connection ID created
from it, and the results of a POPC instruction are shown in Fig-
ure 86.

FIGURE 86.Z-bit usage example

Channel Descriptor Address in Fast Memory
Example: 0x3CAEQ

| 0000 | 0000 | 0000 | 0011 | 1100 | 1010 | 1110 | 0000 |

| |
MXT3010 hardware creates the | 1130 | 10v10 | 11!0 | 00v11 |
Connection ID by concatenating ¢

address [15:5]|[20:16]

POPC rd@rsb
This instruction loads rd with the
Connection ID from the table

| 1200 | 1010 | 111 0] 0011 |

mask
LMFM r16@rd/rd 16HW Z

This instruction uses rd for both rsa and)rsy 0 0000

but Z option zeroes the lower five bits

[xxxx | xox | xxx0 | 0011 | 1200 | 1010 | 1110 | 0000 |

298 Version 4.1 MXT3010 Reference Manual

General information for Load and Sore Fast Memory instructions

Example of LNK
usage

When an LMFM instruction isissued with the Z option enabled,

the contents of rd can be used for both the rsa and rsb registers.

Asshowninthefigure, specifying rdfor both rsaand rsb, in con-
junction with the masking action caused by the Z option, re-cre-
atesthe original channel descriptor address.

Destination register (the rd field)

The rd field specifies the destination register for theinitial half-
word transfer. Subsequent halfwordswill betransferred to rd+1,
rd+2, etc. The register specified in therd field can be any regis-

ter, subject to the restrictions in “Choice of rd register” on
page 300 and “Limitations on #HW when linking” on page 300

Linking (the LNK bit)

If this bit is set, the linking option is enabled. As indicated
above, if the LNK option is enabled, the fast memory interface
controller links the loaded registers to the locations in Fast
Memory from which their contents were read. ALU instructions
which modify these registers can force the modifications to be
written back to Fast Memory by specifying the UM (update
memory) option. In addition, use of the LNK option also causes
the first halfword read from memory to be read into the Fast
Memory Shadow Register (R58), where it can be used by BF/
BFL instructions.

Two very simplified channel descriptors are shown in Figure 87.
In this example, P1_Hl and P1_LO form a pointer to where the
next received cell on that VC should go, and CRC_HI and
CRC_LO are the accumulated CRC. Upon arrival of a cell for
this particular VC (VCO for example), the program performs a
Load Multiple Fast Memory (LMFM) instruction, loading four
halfwords into four locations starting at rd= R28. If the LNK

MXT3010 Reference Manual Version 4.1 299

Load and Sore Fast Memory Instructions

Choice of rd
register

Limitations on
#HW when linking

300

instruction field option is specified in the LMFM instruction,
and the contents of R29 are subsequently changed using an
instruction with an Update Memory (UM) option, the va ue of
P1 L O will be changed. This provides a convenient way to
update the pointer in response to arrival of anew cell.

FIGURE 87.Simplified Channel Descriptors

Address Contents Loaded to VC
xxx00 P1_HI R28

xxx02 P1LLO R29

xxx04 CRC_HI R30 0
XXx06 CRC_LO R31

Xxx08 P1 HI

XXX0A P1LLO

xxx0C CRC _HI !
XXX0E CRC_LO

While the linking option can be used with any register desig-
nated as the destination register rd, registers R16, R24, R28,
R30, and R31 are most commonly used, asthe MXT3010 logic
is optimized for memory updates using these registers. When a
hardware register (R32-R63) is used as the destination of an
LMFM instruction, loading takes an additional cycle compared
to loading a software register (RO-R31).

The choice of rd has an effect on the number of subsegquent loca-
tions that can be linked, and hence places alimit on the size of
the transfer (#HW). The following table applies:

TABLE 74. Limitson #HW when linkingtord

rd Permissible Values of #HW
R16 16 or less

R24 8orless

R28 4o0rless

R30 2o0rless

R31 1lorless(Note 1)

Note 1: 0HW isalegal transfer size. An LMFM operation specifying O
HW can establish alink without actually loading information
from memory.

Version 4.1 MXT3010 Reference Manual

General information for Load and Sore Fast Memory instructions

Generation of UM
addresses

UM update
example

Asan aid to understanding the Update Memory feature when
used in conjunction with the LMFM instruction, and to under-
stand the data structure alignments required to make best use of
this feature, the following section provides a detailed explana
tion of the logic used by the MXT3010 to accomplish the mem-
ory update function.

In order to do a memory update to alinked location in the chan-
nel descriptor table! in Fast Memory, the MX T3010 |ogic needs
to know thelocation of the desired channel descriptor withinthe
table, and the offset of the location to be updated within the
desired channel descriptor.

Theleast significant four bits of the destination register number

(in binary) are inverted and saved in hardware as a mask,
“Ifm_adrs_mask [3:0]". In addition to the mask, the linked
address is also saved in hardware as “Ifm_linked_adrs [19:1]".
Masking is performed on the linked address to ensure that it fol-
lows the memory alignment requirements shown in Table 75 on
page 304. The masking equation is as follows:

Ifm_linked adrs[19:1] ={rsa[3:0], rsb [15:5], (rsb [4:1] & rd [3:0])}

When a subsequent instruction with the UM option enabled is
performed, the MXT3010 computes the address linked to the
register “exe_reg_dest[5:0]" as follows:

Ifm_write_adrs[19:0] ={[Ifm_linked_adrs [19:5],
(Ifm_linked_adrs[4:1]|(exe_reg_dest[3:0]&lfm_adrs_mask)),0
}

Let us assume that a channel descriptor has been stored in Fast
Memory beginning at location 0x08010, and let us further
assume that an LMFM instruction has been issued to transfer

1. While this section specifically describes the channel descriptor table, the
principlesinvolved apply to alinked location in any table in Fast Memory.

MXT3010 Reference Manual Version 4.1 301

Load and Sore Fast Memory Instructions

302

four halfwords, with rd = R24. Example code to set up this situ-
aionis:

LI MD rsa, 0x0000

LI MD rsb, 0x8010

LMFM R24, rsal/rsb 6HW LNK

Presented as afigure, theresult is:

FIGURE 88.Channel Descriptor for LMFM and UM example

Address Contents Loaded to
8010 STATUS A R24
8012 STATUS B R25
8014 P1_HI R26
8016 P1 LO R27
8018 CRC_HI R28
801A CRC LO R29

Bits[19:0] for 0x8010 are 0000 1000 0000 0001 0000, so
“Ifm_linked_adrs [19:1]” is 0000 1000 0000 0001 000-. The
destination register (rd) is R24, which in binary is 11000. The
least significant four bits (1000) invert to be 0111 or 0x0007,
which is stored as “Ifm_adrs_mask [3:0]". With these humbers
saved in hardware, the MXT3010 is ready for subsequent
instructions that manipulate any of these registers and specify
the Update memory (UM) option. An example of such an
instruction is the following:

ADDI R27, 1, R27 UM

In response to this instruction, the MXT3010 must not only
increment the value in R27, it must also update the correspond-
ing Fast Memory location with the new incremented value.

Version 4.1 MXT3010 Reference Manual

General information for Load and Sore Fast Memory instructions

Memory
alignment
requirements

Theregister that was updated is referred to in the hardware as
“exe_reg_dest[5:0]". For R27, the binary value [5:0] is: 011011.
Bits [3:0] are 1011. The equation to be solved is:

Ifm_write_adrs[19:0} = [Ifm_linked_adrs [19:05],
(Ifm_linked_adrs[4:1]|(exe_reg_dest[3:0]&lfm_adrs_mask)),0
}

The information known is:

Ifm_linked_address [19:0] 0000 1000 0000 0001 0000
Ifm_linked_address [19:1] 0000 1000 0000 0001 000
Ifm_linked_address [19:5] 0000 1000 0000 000
Ifm_linked_address [4:1] 1000

exe_reg_dest[3:0] 1011

Ifm_adrs mask 0111

And-ing exe_reg_dest[3:0] with Ifm_adrs_mask gives 0011; or-
ing that with Ifm_linked_address [4:1] gives 1011; concatenat-
ing that result with Ifm_linked_address [19:5] and concatenat-
ing an LSB of 0 gives 0000 1000 0000 0001 0110 = 0x8016.
Reference to Figure 88 on page 302 will confirm that the Fast
Memory location to updated when R27 is updated is indeed at
address 0x8016.

The various and-ing, or-ing, inverting, and masking functions
performed by the MXT3010 hardware to correctly generate
addresses for the Update Memory function place requirements
on the alignment of data structures constructed in Fast Memory.
Specifically, to use the LMFM instruction with the LNK option
enabled, the following memory alignment requirements are rec-
ommended:

MXT3010 Reference Manual Version 4.1 303

Load and Sore Fast Memory Instructions

TABLE 75. Memory alignment requirements

rd FADRS[4:0]

R16 00000

R24 X 0000

R28 X X000

R30 XXX00

R31 XXXX0
Memory If the LMFM instruction isto be used with the LNK option
alignment enabled, and the size of the transfer (#HW) isto be greater than
example 8 half-words, rd must be R16 (see “Limits on #HW when linking

to rd” on page 300). If R16 is used, and subsequent use of the
UM feature is desired, the data structure being copied from Fast
Memory should be aligned to a 32-byte boundary.

304 Version 4.1 MXT3010 Reference Manual

Instructions for accelerating CRC operations

Instructions for accelerating CRC operations

The Store Register Halfword (SRH) instruction greatly acceler-
ates the handling of partial CRC results during AALS packet
segmentation or reassembly. Because DMA operationsfunction
independently of SWAN code execution once they have been
started, firmware is able to start processing the next channel
descriptor in parallel with the DMA transfer (and CRC accumu-
lation) of the previous channel as soon as the DMA operation
has been committed for that previous channel. This parallelism
provides processing time to the SWAN that might otherwise be
wasted waiting for the transfer to complete. However, it is still
necessary to save the results of the partial CRC accumulation at
the conclusion of a DMA transfer. These partial results must be
saved inwhat isnow the previously serviced channel descriptor.

If the SRH instruction is not used, the SWAN processor must
save the address of the channel descriptor in which the partia
results were to be stored, recover that address upon completion
of the DMA operation, and finally store the partial results at the
appropriate offset within the channel descriptor. Thissaving and
recovering process requires seven instructions per cell timein
each direction. Hence, use of the SRH instruction is highly rec-
ommended, as it eliminates the need for saving and recovering
the partial CRC address information.

At thetime that aDMA read or write operation with CRCX or
CRCY indicated isinitiated to Port 1, the M XT3010 automati-

cally storesthe address contained in theinternal FAST Memory

Link Address register into atemporary holding register. There

are two holding registers — one for CRCX operations and one for
CRCY operations. Typically the FAST Memory Link Address
register (within the MXT3010 logic) will have the current Chan-
nel Descriptor address. Thus, as a DMALR with CRC or a
DMA1W with CRC is executed, the address of the current
Channel Descriptor is automatically set aside.

MXT3010 Reference Manual Version 4.1 305

Load and Sore Fast Memory Instructions

306

Upon completion of the DMA transfer, the SRH instructionis
used to write the contents of the partial CRC registers (R44/ R45
or R46/ R47) to FAST Memory using the address contained in
either the CRCX holding register or the CRCY holding register
as the base address for the transfer. An offset can be specified
with the SRH instruction, allowing the partial results to be
placed at the appropriate field within the Channel Descriptor.

The SRH instruction is based on the Store Halfword to Fast
Memory (SHFM) instruction, and the SHFM instruction is now
avalid subset of the more flexible SRH instruction. In addition
tothersaandrsb fieldsfound in the SHFM instruction, the SRH
instruction has three special fields:

Alternate address (the adr field)

The adr field (bits [20:19] of the SRH instruction) specifies the
location from which the Fast Memory addressis obtained. The
following table applies:

TABLE 76. Useof theadr field

Bits[20:19] Function (Target Fast Memory Addressis:)

00 rsa/rsb (same as SHFM instruction)

01 rsalrsb with Isbs field substituted for address bits [4:0]
10 CRCX holding register with Isbs field appended

1 CRCY holding register with Isbs field appended

Thevalid entries for thisfield are CRCX and CRCY. If neither
is specified, the assembler codes bits[20:19] as 00 if no Isbs
field is specified, or as 01 if an Isbsfield is specified. The lsbs
field is described on page 307.

Version 4.1 MXT3010 Reference Manual

Instructions for accelerating CRC operations

Hardware register (reg field)

Thereg field selects one of eight hardware registersthat can be
written to Fast Memory. Thisisin contrast to the more limited
SHFM, where only the contents of the Fast Memory Dataregis-
ter (R56) can be written to Fast Memory. The following table

applies:

TABLE 77. Useof theregfield

Bits[20:19] Function (Register to be Written to Fast Memory)

000 Register R56 (same as SHFM instruction)
001 Register R37
010 Register R38
011 Register R39
100 Register R44
101 Register R45
110 Register R46
111 Register R47

Least significant bits (the Isbs field)

In adr mode 00 (SHFM compatibility mode), thisfield is
unused. In the other adr modes (01,10,11), Isbs contains the five
least significant bits of the target Fast Memory address. Thisis
not an index field; rather, it is abit substitution field.

MXT3010 Reference Manual Version 4.1 307

Load and Sore Fast Memory Instructions

LMFM Load Multiple from Fast Memory

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘0‘1‘0‘1‘0‘1‘ rd ‘LNK‘OO‘Z‘ rsa ‘ #HW ‘o‘ rsb
Format: LMFM rd @rsalrsb #HW [LNK]

Purpose e To initiate a burst transfer of data from Fast Memory

directly into the SWAN processor’s register file.

» To automatically link the data structure and the registers to
reflect register modifications back to memory through the
Update Memory options with ALU instructions that modify
the loaded registers.

Description With the LMFM instruction, the Fast Memory interface control-
ler can initiate a block fetch operation to transfer #HW half-
words from Fast Memory directly into the CPU’s register file.
The transfer begins at the address specified in registers rsa and
rsb.

Restrictions When an LMFM instruction is executed, a sequential update to
registers rd, rd+1, and subsequent registers, takes place. As a
result, instructions following an LMFM must not access regis-
ters that are in the process of being updated. Table 78 shows the
register updating process for the following LMFM instruction:

LMFM r2 r15/r16 4HW

In the example, move instructions are shown as typical instruc-
tions that might be used to access registers R2, R3, R4, and R5.

308 Version 4.1 MXT3010 Reference Manual

LMFM Load Multiple from Fast Memory

TABLE 78. Restrictionson accesstord registersafter LMFM

Status at time of instruction execution

Address Instruction rd (R2) rd+1 (R3) rd+2 (R4) rd+3 (R5)
0000 LMFM r2r16/r17 4HW Changing Undefined Undefined Undefined
0004 MV r2r17 New? Changing Undefined Undefined
0008 MV r3r18 New New® Changing Undefined
000C MV r4r19 New New? New? Changing
0010 MV r5r20 New NewP New? NewP

a. The MXT3010EP stalls for four internal clock cycles before executing the MV r2 r17 instruc-
tion to ensure that register rd has valid data. If desired, four instructions that do not accessr2
through r5 can be inserted between the LMFM and the MV r2 r17 instruction.

b. Availability of new data at this time requires that access to rd has occurred since the LMFM.

For registers RO:R15, the programmer must follow the sequen-
tia order shown or undefined results will occur. For example,
attempting to accessregister rd+1 immediately after the LMFM
will produce erroneous resullts.

For registers R16:R31, aregister control scoreboarding system,
implemented in hardware, protects registers rd+1 and beyond.
This system introduces stalls if the access restrictions are not
followed. Since registers R16:R31 are intended for the manipu-
lation of channel descriptors, the register control scoreboarding
system simplifies the programming model.

Without LNK, any 0-16 halfword transfer islegal, but make sure
the burst transfer does not cross a 32-byte boundary.

Stalls Hardware interlocks stall the CPU if it tries to access aregister
the Fast Memory Interface Controller is changing. The CPU
remains stalled until the Fast Memory Interface Controller
writes a new value into the register.

%)
c
o

B
S
.

%2
c

:
p=
g

MXT3010 Reference Manual Version 4.1 309

Load and Sore Fast Memory Instructions

Fields Detailed descriptions for each field appear in the sections cited
in the following table.
Field For Further I nformation, See
#HW “Transfer size (the #HW field)” on page 295
rsa “Fast Memory address (the rsa and rsb fields)” on page 296
rsb “Fast Memory address (the rsa and rsb fields)” on page 296
Z-bit “Address masking (the Z-bit)” on page 296
rd “Destination register (the rd field)” on page 299

LNK-bit ~ “Linking (the LNK bit)” on page 299

310 Version 4.1 MXT3010 Reference Manual

SHFM Sore Halfword to Fast Memory

SHFM Store Halfword to Fast Memory

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘0‘1‘0‘1‘1‘1‘ 000000000 ‘ rsa ‘ 00000 ‘ rsb

Format SHFM @rsalrsb

Purpose » To store a halfword to Fast Memory.

Description SHFM causes the Fast Memory interface controller to write the
halfword contained in the Fast Memory Data register(R56) into
the halfword addressed by the byte address contained in regis-
ters rsa and rsb.

The Fast Memory interface controller writes the halfword into a
write buffer first so the SWAN processor can continue execut-
ing.

Stalls A write buffer full stall occurs if the four deep write buffer is full
when the SHFM instruction is executed.

Fields Detailed descriptions for each field appear in the sections cited

in the following table.

Field For Further Information, See

#HW “Transfer size (the #HW field)” on page 295

rsa “Fast Memory address (the rsa and rsb fields)” on page 296
rsb “Fast Memory address (the rsa and rsb fields)” on page 29

I nstructions

Fast Memory

MXT3010 Reference Manual Version 4.1 ik

Load and Sore Fast Memory Instructions

SRH Store Register Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘0‘1‘0‘1‘1‘1‘ 00000 ‘adr‘ reg ‘ rsa ‘ Isbs ‘ rsb ‘
Format: SRH @reg [CRCXADR, CRCYADR, rsalrsb] [Isbs/#]

Purpose: « To store a halfword to Fast Memory, using any of several

registers as a direct source.

» To greatly accelerates the handling of partial CRC results
during AAL5 packet segmentation or reassembly.

Description: In typical use, upon completion of the DMA transfer, the SRH
instruction is used to write the contents of the partial CRC reg-
isters (R44/ R45 or R46/ R47) to FAST Memory using the
address contained in either the CRCX holding register or the
CRCY holding register as the base address for the transfer. An
offset can be specified with the SRH instruction, allowing the
partial results to be placed at the appropriate field within the
Channel Descriptor.

Fields Detailed descriptions for each field appear in the sections cited
in the following table.

Field For Further Information, See

adr “Alternate address (the adr field)” on page 306

reg “Hardware register (reg field)” on page 307

rsa “Fast Memory address (the rsa and rsb fields)” on page 296

Isbs “Least significant bits (the Isbs field)” on page 307

rsb “Fast Memory address (the rsa and rsb fields)” on page 296
Note By setting adr=00 and reg=000, the SRH instruction becomes

the original SHFM instruction.

312 Version 4.1 MXT3010 Reference Manual

cuarter 15 LOad and Sore Internal RAM
Instructions

This chapter describesthe Load and Storeinstructionsfor internal
RAM, beginning with information common to all Load and Store
instructions. Following thegeneral informationisalist of specific
Load and Store instructions, organized by name. For each instruc-
tion, there is adescription, its mnemonic, purpose, and any infor-
mation specific to that instruction.

MXT3010 Reference Manual Version 4.1 313

Load and Sore Internal RAM Instructions

General information for Load and Store internal RAM
instructions

Introduction

Simplified versions of the M XT3010 Load and Storeinstruction
formats for interna RAM operations are shown bel ow.

TABLE 79. Load internal RAM instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Op Code rd ‘o‘ rla ‘ 0000 ‘3Nap‘ IDX 00000

TABLE 80. Soreinternal RAM instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code 0000 ‘Slvap‘O‘ rla ‘ rsa IDX 00000

The Load and Store internal RAM instructions move data
between the SWAN register set and memory internal to the
MXT3010. Theinternal memories addressable by theseinstruc-
tions are the Cell Buffer RAM and the Cell Scheduling System
Scoreboard. The load and store (LD, ST) instructions move one
16-hit halfword between a specified register and a target half-
word address. The load and store double (LDD, STD) instruc-
tions move two 16-bit halfwords between two consecutive
registers and two consecutive target addresses. Load and Store
instructions that swap bytes and/or half-words are also avail-
able.

Register load address (rla field)

Choices for the Four hardware registers and four fixed value registers can be

rla register specified asthe rlaregister. The hardware registers are R48,
R49, R50, and R51. The fixed value registers are GA, GB, GC,
and GD. The compiler codes the choice of rlainto the 3-bit rla
field. The G registers point to different 64-byte blocksin gather
space (page 317). In many instances, this allows software to

314 Version 4.1 MXT3010 Reference Manual

General information for Load and Soreinternal RAM instructions

access gather space without modifying one of the hardware reg-
isters.

TABLE 81. Useof therlafield

rlavalue Register selected Register content

000 R48 Variable
001 R49 Variable
010 R50 Variable
011 R51 Variable
100 GA 0x0400
101 GB 0x0420
110 GC 0x0440
11 GD 0x0460

Avoiding stale rla To prevent a stale value of the rlaregister from being used to

values generate the internal RAM address, separate aload or store
instruction that uses R48, R49, R50, or R51 from a preceding
instruction that modifies the register by at least one instruction.
Thisintervening instruction cannot bean LD or LDD instruction
to a hardware register - see “Register access rules” on page 22.

The index field (IDX)

This field can be used to index into a table from a base address.
Using IDX to calculate the target address

The target address is formed from the content of the specified rla
register and an immediate index value contained in the index
field of the instruction. The index field, IDX, is exclusive-or-ed
with the rla content; see Figure 89.

MXT3010 Reference Manual Version 4.1 315

Load and Sore Internal RAM Instructions

316

FIGURE 89.XOR operation between IDX and rla

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
| |r|a

<« . |o|Dxm#

| O| Target

The upper bits[15:06] of the rla content are unchanged, and bit
Oisforced to zero. Asaresult of this XOR function, theload or
store instruction can access any 16-hit halfword within the 64-
byte block addressed by therlaregister by changing thevaluein
the IDX field and leaving the contents of the rlaregister
unchanged.

Note that although the index field is treated as a five-bit half-
word index, the value used in the SWAN assembler (IDX/#) is
always specified as a byte index and is transformed into aword
by the assembler. The IDX/# field can take even values from
IDX/0to IDX/62. The assembler insertsthe appropriate five-bit
value into the instruction field.

Selecting the Cell Buffer RAM or the Scoreboard

Thetarget address selects the 16-bit halfword for aload or store
instruction, or thefirst of two consecutive 16-hit halfwords for
aload or store double instruction. The two internal RAMs that
can be accessed with theseinstructions arethe Cell Buffer RAM
and the Cell Scheduling System Scoreboard. Bit 11 of therla
register selects the RAM to be accessed.

Bit 11 Internal RAM selected

0 Cell Buffer RAM
1 Cell Scheduling System Scoreboard
Version 4.1 MXT3010 Reference Manual

General information for Load and Soreinternal RAM instructions

Selecting an
access method

Linear method
accesses

Gather method
accesses

Cell Buffer RAM accesses

The Cell Buffer RAM can be accessed with linear or gather
access methods. Bit 10 of the rlaregister selects the access
method of the Cell Buffer RAM; it does not affect the access
method for the Cell Scheduling System Scoreboard.

Bit 10 Cell Buffer RAM method selected
0 Linear
1 Gather

In linear method accesses, the Cell Buffer RAM istreated as a
simple contiguous memory 1024 bytes in length. Bits[9:1] of
the target address select the 16-bit halfword within this space.

Sincethe cells stored in the Cell Buffer RAM are 52 or 56 bytes
in length, the last eight bytes of each 64-byte section of the Cell
Buffer RAM are normally unused. In gather method accesses,
the last eight bytes of each 64-byte section appear as a contigu-
ous 128-byte block of memory. Thefirst 16-bit halfword of this
block is at address 0x0400 of the gather address method. The
last 16-bit halfword is at address 0x047E. Figure 90 illustrates
this addressing method. Thus, gather access recovers discontin-
uous regions of Cell Buffer RAM memory into one continuous
address space. Thisis not additional space, but rather a method
of making use of small pieces of existing space.

MXT3010 Reference Manual Version 4.1 317

Load and Sore Internal RAM Instructions

318

FIGURE 90.Gather method accesses

0x0000 0x0400
0x0408
0x0410

Cell Store 0

0x0038
0x0040

Ox047E
0x0480

Cell Store 1

0x0078
0x0080

0x03B8
0x03C0

Cell Store 15

Cell Scheduling System Scoreboard accesses

The Cell Scheduling System Scoreboard is a 16K bit memory
accessed as 512, 32-bit words. With two exceptions, do not
modify the Scoreboard content with these instructions. Rather,
use the Cell Scheduling System instructions (PUSHC, POPC,
PUSHF, POPF) to maintain coherency of the Scoreboard con-
tent with other Cell Scheduling System mechanisms. The two
exceptionswhen load (LD, LDD) and store (ST Dl) instructions
can be used are:

1. When initially clearing the scoreboard

1. Thereisno support for 16-bit writes to the Scoreboard. Use only STD
instructions when writing to the Scoreboard. Do not use ST.

Version 4.1 MXT3010 Reference Manual

Byte swap support

2. When using portions the scoreboard space for applications
other than call scheduling

Byte swap support

The load and store instructions provide a programmable func-
tion for swapping bytes in half-word and word data structures
for systemswith mixed big-endian and little-endian entities. The
instructions perform byte swapping on either half-words (16-
bit) or words (32-hit) asthe dataisread from Cell Buffer RAM
memory (load) or written to Cell Buffer RAM memory (store).

The Swap field

Bits[11:10] of Load instructions and bits [21:20] of Store
instructions provide a Svap field. Two swap byte and swap half-
word functions can be asserted for any LD, LDD, ST, or STD
instruction that accesses the Cell Buffer RAM. These functions
are not defined for the internal Scoreboard memory. Although
all combinations of swap byte and swap halfword functions are
valid in the SWAN core, not al combinations are useful. The
syntax and instruction fields are the same for the byte swapping
instructions as for the ordinary load and store instructions.

MXT3010 Reference Manual Version 4.1 319

Load and Sore Internal RAM Instructions

Thefollowing tableslist the most useful byte-swappingload and

store instructions.

TABLE 82. Byte-swapping Load instructions

Bits Source Dest Source Dest
Instruction [11:10] addr addr data data Function
LD r0OGA 00 0x400 rO aab5 aab5 Normal regis-
ter load
LDSB rOGA 01 0x400 r0 aab5 55aa Byteswap 16-
bit operand and
load register
LDD rOGA 00 0x400 rO aab5 aab5 Normal double
0x402 rl bb66 bb66 register load
LDDSBH rOGA 11 0x400 rl aab5 66bb Byte swap 32-
0x402 r0 bb66 55aa bit operand and
load register
LDDSBrOGA 01 0x400 r0 aab5 55aa Byteswaptwo
0x402 rl bb66 66bb 16-bit operands
and load regis-
ters
TABLE 83. Byte-swapping Storeinstructions
Bits Source Dest Source Dest
Instruction [21:20] addr addr data data Function
ST r0GA 00 r0 0x400 aab5 aab5 Normal register
store
STSB rOGA 01 r0 0x400 aab5 55aa Byte swap 16-bit
operand and reg-
ister store
STD rOGA 00 r0 0x400 aab5 aab5 Normal double
rl 0x402 bb66 bb66 register store
STDSBHrOGA 11 rl 0x400 aab5 66bb Byte swap 32-bit
r0 0x402 bb66 55aa operand and store
register
STDSBrOGA 01 r0 0x400 aab5 55aa Byte swap two
rl 0x402 bb66 66bb 16-bit operands

and store regis-
ters

320 Version 4.1

MXT3010

Reference Manual

LD Load Register

LD Load Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EEEEEE rd |o] ra [0000 [swap| DX 00000
Format LD rd @rla[IDX/#]

Purpose Use LD to read a 16-bit halfword from an internal memory.
Description The content of register rlaand the Index field are used to form a

target source address in internal memory. The memory is read
and register rd is loaded with the result.

Notes IDX/# must be specified as abyte index value even though bit O
isignored.

LD instructions which perform byte-swaps and/or half-word-
swaps are also available. See “Byte swap support” on page 319.

Restrictions apply to the use of LD instructions with hardware
registers. See “Register access rules” on page 22.

Stalls If the Cell Buffer RAM is unavailable due to concurrent Port1,
UTOPIA Port, and Port2 Cell Buffer RAM accesses, the CPU
stalls if it tries to access the destination register of the LD before
its data is returned. The CPU can continue executing instruc-
tions as long as it does not try to access rd before rd is returned
from the Cell Buffer RAM. To guarantee the best overall
throughput, separate Cell Buffer RAM loads and instructions
that access the loaded data by two or more instruction slots.

Fields Detailed descriptions for each field appear in the sections cited
in the following table.

Field For Further Information, See
Swap “The Swap field” on page 319
IDX “The index field (IDX)” on page 315

%)
c
o

B
S
.

%2
c

=
&
®©
c
g
=

MXT3010 Reference Manual Version 4.1 321

Load and Sore Internal RAM Instructions

LDD Load Double Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o]2[0fofo]1

rd ‘o‘ rla ‘ 0000 ‘3Nap‘ IDX 00000

Format
Purpose

Description

Notes

Stalls

Fields

322

LDD rd @rla[IDX/#]
Use LDD to read two 16-bit halfwords from internal memory.

The content of register rlaand the Index field are used to form a
target source address in internal memory. The memory isread
and register rd is loaded with the result. Register rd+1 isalso
loaded with a 16-bit halfword read from internal memory. The
internal memory address for this halfword is obtained by exclu-
sive-or-ing 0x0002 with the calculated target address.

IDX/# must be specified as abyte index value even though bit 0
isignored.

Instructions that perform byte-swaps and/or half-word-swaps
are also available. See “Byte swap support” on page 319.

Restrictions apply to the use of LDD instructions with hardware
registers. See “Register access rules” on page 22.

If the Cell Buffer RAM is unavailable due to concurrent Port1,
UTOPIA Port, and Port2 Cell Buffer RAM accesses, the CPU
stalls if it tries to access the destination register of the LD before
its data is returned. The CPU can continue executing instruc-
tions as long as it does not try to access rd before rd is returned
from the Cell Buffer RAM. To guarantee the best overall
throughput, separate Cell Buffer RAM loads and instructions
that access the loaded data by two or more instruction slots.

Detailed descriptions for each field appear in the sections cited
in the following table.

Field For Further Information, See
Swap “The Swap field” on page 319
IDX “The index field (IDX)” on page 315
\ersion 4.1 MXT3010 Reference Manual

ST Sore Register

ST Store Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘0‘1‘0‘0‘1‘0‘ 000000 ‘SNap‘O‘ rla ‘ rsa IDX 00000
Format STrsa @rla[IDX/#]

Purpose Use ST to write a 16-bit halfword to internal memory.
Description The content of register rlaand the Index field are used to form a

target address in internal memory. The content of register rsais
written to this memory location.

Notes IDX/# must be specified as abyte index value even though bit O
isignored.

ST instructions which perform byte-swaps and/or half-word-
swaps are also available. See “Byte swap support” on page 319.

Stalls All Cell Buffer RAM writes are written into a write buffer. If the
Cell Buffer RAM is unavailable due to concurrent Portl, UTO-
PIA port, and Port2 Cell Buffer RAM accesses, the CPU stalls
if it tries to write to the Cell Buffer RAM while the write buffer
is busy. The CPU can execute instructions as long as it does not
try to write to the Cell Buffer RAM while the write buffer is
busy. The write buffer can hold a single ST or STD instruction.

Fields Detailed descriptions for each field appear in the sections cited
in the following table.

Field For Further Information, See

Swap “The Swap field” on page 319
IDX “The index field (IDX)” on page 315

Restrictions Since this is a 16-bit instruction, it should not be used to ac
space in the Scoreboard RAM unless the program performg
save and restore operations necessary to access a 32-bit qu
Use STD instead.

Internai RAM
Instructions

MXT3010 Reference Manual Version 4.1 323

Load and Sore Internal RAM Instructions

STD Store Double Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘0‘1‘0‘0‘1‘1‘ 0000 ‘Slvap‘O‘ rla ‘ rsa IDX rsb
Format STD rsalrsb @rla[IDX/#]

Purpose Use STD to write two 16-bit halfwords into internal memory.
Description The content of register rlaand the Index field are used to form a

target address in internal memory. The content of register rsais
written to this memory location. The content of register rsbis
also written to internal memory. The memory address for this
halfword is obtained by exclusive-or ring 0x0002 with the cal-
culated target address.

Notes IDX/# must be specified as abyte index value even though bit 0
isignored.

Versions of thisinstruction which perform byte-swaps and/or
half-word-swapsare also available. See “Byte swap support” on
page 3109.

Stalls All Cell Buffer RAM writes are written into a write buffer. If the
Cell Buffer RAM is unavailable due to concurrent Portl, UTO-
PIA port, and Port2 Cell Buffer RAM accesses, the CPU stalls
if it tries to write to the Cell Buffer RAM while the write buffer
is busy. The CPU can execute instructions as long as it does not
try to write to the Cell Buffer RAM while the write buffer is
busy. The write buffer can hold a single ST or STD instruction.

Fields Detailed descriptions for each field appear in the sections cited
in the following table.

Field For Further Information, See

Swap “The Swap field” on page 319
IDX “The index field (IDX)” on page 315

324 Version 4.1 MXT3010 Reference Manual

cuapTER 16 SVAN INSruction Reference
Exanples

This chapter provides examples for the following instructions:
* Add and Subtract
* Branch
» Logical
* Load and Store

* Shift

Also provided is a section of miscellaneous examples.

MXT3010 Reference Manual Version 4.1 325

Swan Instruction Reference Examples

Add and Subtract examples

Formats

16-hit arithmetic

Modulo arithmetic

326

The Add and Subtract examples include:
» 16-bit arithmetic » ALU branching
* Modulo arithmetic

The examplesin this section usethe ADD, ADDI, OR and SUB
instructions, which have the following formats:

ADD (rsa rsb) rd [MODXx][abc][UM]
ADDI (rsa usi) rd [MODx][abc][UM]
OR (rsa rsb) rd [MODx][abc][UM]
SUB (rsa, rsb) rd [MODXx][abc][UM]

ADDI (R12, 23) R4

The unsigned immediate, 23 decimal, is zero extended and
added to the contents of R12. Theresult is placed into R4. The
Overflow flag register isset if an overflow results from the oper-
ation.

ADD (R8, R9) RLO MOD64, UM

The contents of R8 are added to the contents of R9. Theresultis
placed into R10. Since MOD®64 arithmetic is specified, the
results are a combination of the ALU result and R8 source bits.
R10(15:6) are taken from R8(15:6) while R10(5:0) are taken
from the ALU result bits(5:0). The final result of the operation
updates Fast Memory because the update memory (UM) option
is specified. The Overflow flag register remains unchanged
when modulo arithmetic is used.

Version 4.1 MXT3010 Reference Manual

Add and Subtract examples

ALU branching

.l oc 0x0000
ADDI (R11, 0x001A) R18 MoD32, BZ
OR (RO, Rl) R2

Bl $RECOVER
NOP

R (R5, R6) R7
OR (R5, R6) R7

The constant 0x001A is added to the contents of R11. Since
MOD32 arithmetic is specified, the result is a combination of
the ALU result and R11 source bits. R18(15:5) are taken from
R11(15:5) while R18(4:0) are taken from the ALU result (4:0).
If bits (4:0) of R18 are zero, the branch is taken, regardless of
the state of R18(15:5). The branch resultsin program flow of
0x0000, 0x0001, 0x0004, 0x0005. If bits (4:0) of R18 are not
zero, the branch is not taken and program flow proceeds as
0x0000, 0x0001, 0x0002, 0x0003. The instructions at 0x0004
and 0x0005 are fetched but not executed. The Overflow flag reg-
ister remains unchanged when modulo arithmetic is used. If the
always execute (AE) instruction field option (IFO) wasincluded
with the ADDI instruction, 0x0004 and 0x0005 are executed
even if the branch condition isfalse.

MXT3010 Reference Manual Version 4.1 327

Swan Instruction Reference Examples

Branch examples

Formats

Branching and
the committed
slot

Branch with link

328

The Branch examples include:
» Branching and the commi < Branch with counter

ted slot control
« Branch with link « Branch with shadow
address

The examplesin this section usethe ADD, BFL, BI, BIL, BRL,
LIMD, and OR instructions, which have the following formats:

ADD (rsa, rsb) rd [MODXx][abc][UM]
BFL [ESS#/(0[1)/[C]][(cs0)][N]

Bl wadr [ESS#/(0[1)/[C]][(cs0)][N]

BIL wadr [ESS#/(0|1)/[C]][(cso)][N]
BRL [ESS#/(0[1)/[C]][(cs0)][N]

LIMD rd, li [UM]

OR (rsa, rsb) rd [MODXx][abc][UM]

Bl 0x024A ESS10/1/C
ADD RO, R1, R2

Branch to address 0x024A if External State Signal ESS10is set
to “1.” Execute the committed slot instruction (ADD) only if the
branch is taken (/C).

BIL $SCHEDULE ESS10/1/C
ADD RO, R1, R2
R R2, R3, R4

Version 4.1 MXT3010 Reference Manual

Branch examples

Branch with
counter control

Branch with
shadow address

Branch to the subroutine $SCHEDULE if External State Signal
ESS10is set to “1.” Execute the committed slot instruction only

if the branch is taken. Save the return address (the address of the
OR instruction) in register R59, but only if the branch is taken.

BI 0x0333 | TXBUSY
ADD RO, Rl, R2

Branch to address 0x0333. Execute the committed slot instruc-
tion. The ITXBUSY operation increments the UTOPIA Port's
TXBUSY counter.

BFL
ADD RO, R1, R2
OR R2, R3, R4

Branch to the address contained in the Fast Memory Shadow
Register, unconditionally following execution of the committed
slot instruction. Stall if a LMFM with the LNK IFO specified is
active or pending but has yet to return the first word to the First
Word Shadow Register. Save the return address (the address of
the OR instruction) in register R59.

BIL $SERVICE ESS1/0 DRXFULL
ADD RO, R1, R2
OR R2, R3, R4

Branch to the subroutine $SERVICE if External State Signal
ESS1 is set to “0.” Execute the committed slot instruction
whether or not the branch is taken. Save the return address (the
address of the OR instruction) in register R59, but only if the
branch is taken. Decrement the UTOPIA Port's RXFULL
counter.

.1 oc 0x0000

LIMD R59, 0x0010

LIMD R59, 0x0020

BRL

NOP

MXT3010 Reference Manual Version 4.1 329

Swan Instruction Reference Examples

330

.l oc 0x0004
V.Y R59, R1

.1 oc 0x0010
BRL
\Y4 R59, RO

Thefirst BRL branches to address 0x0010 because the second
LIMD hasnot updated R59 by the timethe branch accesses R59.
Consecutive LIMD and BRL instructions must be separated by
one instruction for the modification to take effect in time. The
BRL at location 0x0010 causes R59 to be loaded with the return
address, which is location 0x0004. therefore, the BRL at loca-
tion 0x0010 branches to locations 0x0004. RO contains 0x0004
because the second BRL has not updated R59 by the time the
MYV isexecuted. R1 contains 0x0012 because R59 has been
updated by the BRL by thetimethe MV instruction at 0x0004 is
executed.

Version 4.1 MXT3010 Reference Manual

Load and Sore Fast Memory examples

Load and Store Fast Memory examples

Formats

Loading from
Fast Memory

Storing into Fast
Memory

The examples in this section use the LMFM, SHFM, and SRH
instructions, which have the following formats:

LMFM rd @ras/rsb #HW [LNK]
SHFM @ rsalrsb
SRH @rsalrsb [adr] [reg] [Isbs]

LMFM R16 @R10/ R11 16HW LNK

Sixteen 16-hit halfwords are copied from Fast Memory to regis-
ters R16 through R31. Bits[19:16] of the Fast Memory address
come from R10 bits[3:0], and bits[15:0] comefrom R11[15:0].
Links are created such that any change to one of these registers
is subsequently replicated in the corresponding Fast Memory
location if the change was made by an instruction utilizing the
Update Memory (UM) option.

SHFM @ R16/ R17

The Fast Memory controller writes the halfword contained in
the Fast Memory byte register (R56) into the halfword
addressed by the byte address contained in registers R16 and
R17.

SRH R44 CRCXADR LSBS/ 10

The Fast Memory controller writes the CRC partial result half-
word contained in R44 into the halfword 10 bytes beyond the
address contained in the CRCX address holding register.

MXT3010 Reference Manual Version 4.1 331

Swan Instruction Reference Examples

Load and Store Internal RAM examples

Formats

Loading from
Internal RAM

332

The examplesin this section usethe LD, LDD, ST, and STD
instructions, which have the following formats:

LD rd @rla[IDX/#]

LDD rd @rla[IDX/#]

ST rsa @rla[IDX/#]

STD rsalrsb @rla[IDX/#]

LD R13 @48 |1DX/ 10

The contents of register R48 and the Index field (in this case 10
bytes) are used to form the source address in internal memory.
R13 isloaded with the contents of the memory location pointed
to by R48, offset by 10.

IDX/# must be specified as abyte index value even though bit 0
isignored. Register rd must be a software register (RO-R31).

LDD R13 @48 | DX/ 10

The contents of register R48 and the Index field (in this case 10
bytes) are used to form the source address in internal memory.
The memory isread and register R13 is loaded with the resuilt.
Register R14 is also loaded with a 16-bit halfword read from
internal memory because thisis a Load double instruction. The
internal memory address for this halfword is obtained by exclu-
sive-or-ing 0x0002 with the calculated target address.

ST R10 @49 |1 DX 20

The content of register R49 and the Index field (in this case 20
bytes) are used to form atarget addressin internal memory. The
content of register R10 is written to this memory location.

Version 4.1 MXT3010 Reference Manual

Load and Sore Internal RAM examples

STD R10/R11 @49 |1 DX 20

Description The content of register rlaand the Index field are used to form a
target addressin internal memory. The content of register R10is
written to this memory location. The content of register R11is
also written to internal memory because thisis a Store Double
instruction. The memory address for this halfword is obtained
by exclusive-or ring 0x0002 with the cal culated target address.

MXT3010 Reference Manual Version 4.1 333

Swan Instruction Reference Examples

Logical examples

Formats

Using the AND
Instruction

Using the OR
instruction

Using the XORI
instruction

Using the AND
instruction with
MOD and abc
fields

334

The examples in this section use the AND, OR, and XORI
instructions, which have the following formats:

AND (rsa, rsb) rd [MODx][abc][AE][UM]
OR (rsa, rsb) rd [MODx][abc][AE][UM]
XORI (rsa, si) rd [abc][UM]

AND R8, R9, R16 UM

The contents if R8 are AND’ed with the contents of R9. The
result is placed into R16. The result is also written back into the
Fast Memory location linked to R16.

R R12, R13, R4

The contents if R12 are OR’ed with the contents of R13. The
result is placed into R4.

XORI R12, 0x007F, R4 BZ

The contents if R12 are XOR’ed with 0x007F. The result is
placed into R4. If the result is zero, program control is passed to
the instruction four instruction slots away. If the result is not
zero, sequential program flow occurs although a stall penalty of
two cycles is incurred due to the incorrect branch prediction.

AND R8, R9, R16 MOD64 BZ

The contents if R8 are AND’ed with the contents of R9. The
result, MODG64, is placed into R16. This implies that R8[15:5] is
combined with the ALU result bits [5:0] and written into R16.
More importantly, the conditional branch is then only based on
bits[5:0] of the result rather than on the entire result.

Version 4.1 MXT3010 Reference Manual

Shift examples

Shift examples

The Shift examples include:
 Shift right
 Shift left

Formats The examplesin this section usethe SFT, SFTA, SFTC, SFTCI,
SFTLI, and SFTRI instructions, which have the following for-
mats:

SFT (rsa, rsb) rd [MODx][abc][UM]
SFTA (rsa, rsb) rd [MODx][abc][UM]
SFTC (rsa, rsb) rd [MODx][abc][UM]
SFTCI (rsa, usa) rd [MODXx][abc][UM]
SFTLI (rsa, usa) rd [MODXx][abc][UM]
SFTRI (rsa, usa) rd [MODX][abc][UM]

General case SFT R8, R9, R10

The contents of R8 shiftsto the either theright or the | eft, based

on thevalue of R9[4:0]. Theresult isplaced in R10. All vacated
bit positions are filled with O's. The Overflow flag registers is
not modified.

Shift right if R9[4:0] = 10011xb, R8is shifted to the right by 13 positions.

Right shift amount calculation:

Absolute Value of 10011 is: 01100xb + 1 = 1101xb = 13

Shift left if R9[4:0] =00011xb, R8 is shifted to the left by three positions.

Circular shifts SFTC R3, R9, R10

MXT3010 Reference Manual Version 4.1 335

Swan Instruction Reference Examples

Arithmetic shifts

Immediate shifts

336

The contents of R8 shiftsin a circular/rotational fashion to the
left by the amount specified in R9[3:0]. The shift direction/sign
bit R9[4] isignored because the SFTC and SFTCI instructions
shift only to the left. Bits shifted out of R8[15] are shifted into
bit position 0, and so on. The result is placed into R10.

SFTA R8, R9, R10

The contents of R8 shiftsto the right, based on the contents of
bits [3:0] of R9. The shift direction/sign bit R9[4] isignored
becausethe SFTA and SFTAI instructions shift only to theright.
The beginning value of R8[15], the sign bit, is copied into al
vacated positions.

SFTLI R16, 7, R17

The contents of R16 shift to the left by seven positions, with all
vacated bits are filled with O’s. To accomplish a left shift by
seven positions, the assembler places 00111xb into the SSA
field.

Shift Amount = 7 = 00111xb
The assembler places 00111xb into the SSA field

SFTRI R16, 7, R17

The contents of R16 shift to the right by seven positions, with all
vacated bits are filled with 0’s. However, to accomplish a right
shift by seven positions, the assembler must place the two’s
complement representation into the SSA field. Therefore, the
assembler converts seven into its two’s complement value and
places that value in the SSA field as follows:

Shift Amount = 7 = 00111xb
Two’s complement representation is 11000xb + 1 = 11001xb.

11001xb is placed by the assembler into the SSA field

Version 4.1 MXT3010 Reference Manual

Shift examples

SFTCl RO, 7, R10

The contents of R8 shiftsin acircular/rotational fashion to the
left by the seven positions. Bits shifted out of bit position 15 are
shifted into bit position 0, and so on. Theresult is placed into
R10.

MXT3010 Reference Manual Version 4.1 337

Swan Instruction Reference Examples

Miscellaneous examples

Formats

Using CMP and
CMPP

32-bit compare
operation example

338

The examplesin this section use the CMP, CMPP, FLS, LIMD,
MAX, and MIN instructions, which have the following formats:

CMP (rsa, rsb) [abc][AE]

CMPP (rsa, rsh) [abc][AE]

FLSrd [abc][UM]

LIMD rd, li [UM]

MAX (rsa, rsb) rd [MODXx][abc][AE][UM]
MIN (rsa, rsb) rd [MODX][abc][AE][UM]

CWPP R6, R7, BAGB

The contents of R6 are compared to the contents of R7. The
resultsfrom the previous compare (CMPP) arealso factored into
the A>B? decision. If the previous compare operation indicated
A>B, the branch is taken regardless of the results of the present
compare operation. If the previous compare operation indicated
A < B, the branch is not taken regardless of the results of the
present compare operation. If the previous compare operation
indicated A=B, the decision to branch is made based on the
results of the current compare operation.

CW R4, RS

The contents of R4 are compared to the contents of R5. Since no
Branch Condition was specified, theresultsarelogged for future
use.

CMP #RARRI VAL_TIME_HI, #REARLI EST_ALLOAD HI
CMPP #RARRI VAL_TI ME_LO, #REARLI EST_ALLOAD_LO BAGEB
BI $DI SCARD_CELL
NOP

Version 4.1 MXT3010 Reference Manual

Miscellaneous examples

64-bit compare
operation example

Using FLS

Using LIMD

Using MAX and
MIN

CMP #RARRI VAL _TI ME_64, #REARLI EST_ALLOAD_64
CMPP #RARRI VAL_TI ME_48, #REARLI EST_ALLOAD 48
CMPP #RARRI VAL_TI ME_32, #REARLI EST_ALLOMD 32
CMPP #RARRI VAL_TI ME_16, #REARLI EST _ALLOAD 16 BAGEB

FLS R9, R10, BCGEZ

The 2"e (exponential) position of the last bit set in R9 iswritten
into R10. For example, if bit 15 of R9is set (the MSB), FLS
writes 0X000F into R10. In the example above, the state of bits
14:0 does not affect the result. If bit0 of R9 isthe only bit set,
0x0000iswritteninto R10. If no bit isset, 0x8000 iswritten into
R10 allowing for atest of anegative result to determine whether
or not abit was set. The test is performed by the BGEZ, which
branches only if the result is greater or equal to zero.

LI MD R8, Ox67FC

Load Register R8 with the 16-bit value Ox67FC.

MAX R8, R9, R17

For the purpose of the MAX and MIN instructions, R8 and R9
aretreated as unsigned numbers. The maximum of R8and R9is
placed into R17.

MN R8, R9, R17, UM

For the purpose of the MAX and MIN instructions, R8 and R9
aretreated as unsigned numbers. The minimum of R8 and R9 is
placed into R17 and is written back into the memory location
linked to R17 by aprevious LMFM instruction.

MXT3010 Reference Manual Version 4.1 339

Swan Instruction Reference Examples

340 Version 4.1 MXT3010 Reference Manual

Sction3 Sgnal Descriptionsand
Electrical
Characteridics

This section of the manual describes the signal descriptions and
electrical characteristics of the MXT3010. The chaptersincluded
in this chapter are:

e Timing
* Pin information
» Electrical parameters

* Mechanical and thermal characteristics

MXT3010 Reference Manual Version 4.1 341

342

Version 4.1

MXT3010 Reference Manual

cHAPTER 17 [T Nng

MXT3010EP timing - general information

Definition of switching levels

FIGURE 91.Switching level voltages

Vi

/’ ‘\ 2.0V
0.8V
Vi

— -

Thefollowing switching level information has been used in the
generation of the MXT3010EP device timing.

» For a low-to-high transition, a signal is considered to no
longer be low when it reaches 0.8 V and is considered to be
high upon reaching 2.0 V.

» For a high-to-low transition, a signal is considered to no
longer be high when it reaches 2.0 V and is considered to be
low upon reaching 0.8 V.

MXT3010 Reference Manual Version 4.1 343

Timing

Input clock details

FIGURE 92.Input clock waveform (pin FN)

':\TC(FN) —— et Thieny TreEny™ = > =Trey

2.0V
/ < Ty ™
— \ 0.8V

TABLE 84. Input clock timing parameters

100MHz
Parameter Min Max Description
TC(FN) 19.98 @ Input clock period
TH(FN) A4TC 6TC Input clock high duration
TL(FN) ATC 6TC Input clock low duration
TR(FN) - 15 Input clock risetime (2)
TF(FN) - 15 Input clock fall time (2)

1. With the exception of the PLL circuit, the MXT3010isa
fully static design and can operate with /TC(FN) = 0. The
deviceis characterized for operation approaching 0 Hz, but
is not tested under this condition.

2. In order to maintain low jitter, pay close attention to the
input clock edge rate. One primary component of jitter
occurs only during the input clock state transition. To
reduce thisjitter component, Maker recommends that the
FN pin bedriven directly from the output of apart designed
for clock tree distribution. Maker’s reference design uses
an FCT3807 device from IDT. Other designs that require a
clock driver with an integrated PLL use the CDC586 clock
driver from Texas Instruments.

344 Version 4.1 MXT3010 Reference Manual

MXT3010EP Fast Memory interface timing

MXT3010EP Fast

Memory interface timing

This section includes a Fast Memory timing table and abbrevi-
ated timing diagrams that show only enough signals to identify
all of thetiming parameters. For amore compl ete explanation of
the signalling used in various transfers, see “Fast Memory
sequence diagrams” on page 56.

These notes relate to Fast Memory timing issues:

MXT3010 Reference Manual

During cycles in which Fast Memory is IDLE, the
MXT3010EP sources the CPU’s Instruction fetch address
onto FADRS(17:2) so that one can view the SWAN proces-
sor’s instruction execution flow on a logic analyzer. The
MXT3010EP performs Fast Memory reads during these
cycles but discards the data read from the SRAMs.

In a dual bank system, the bank accessed by the Fast Mem-
ory controller during IDLE cycles is determined by the
ICACHE address. If the ICACHE address maps to bank 0,
bank 0 is read during IDLE cycles. If it maps to bank 1,

bank 1 is read during IDLE cycles.

All address and control lines should be series terminated.

At the boundary of the chip, the MXT3010EP guarantees
that FOEOQ _ is de-asserted before asserting FOE1_, and
similarly that FOE1_ is de-asserted before asserting
FOEO_.

Version 4.1 345

Timing

TABLE 85. Fast Memory timing for the Maker M XT3010EP
100 MHz Fast Memory timing (in nanoseconds)

Par |Min Max |Pins Description
T1 17.0 |FADRS[17:2] Clk to address output valid
T, 113 FADRS[17:2] Hold time provided by MXT3010
T3 38 FDAT[31:0] Input setup time to rising clk
Ty 1.0 FDAT[31:0] Input hold time from rising clock
Tg 17.0| FCS0_, FCS1 , Clk to output valid
FWE[0:3]_
Te 11.3 FCSO_, FCS1 , Hold time provided by MXT3010
FWE[0:3]_

T7 13 25|FOEO_, FOE1_ CLK to FOE

Tg 7.0 10.0|FOEO_, FOEl_ CLK toFOEx_

Tg 5.8 15.0| FDAT[31:0] CLK tooutputinlow Z state

T10 18 8.0|FDAT[31:0] CLK to output in high Z state
T 8.5%| FDAT[31:0] CLK to FDAT[31:0] output vaid
Tio 18 FDAT[31:0] Hold time provided by MXT3010

a For thefirst word of data, Tq isthe critical timing parameter.

346 Version 4.1 MXT3010 Reference Manual

MXT3010EP Fast Memory interface timing

FIGURE 93.Timing for Fast Memory reads

e T1]
FADRS[17:2] AO Al ><:>< A2 >
> =T,
> =T,
FDAT in [31:0] DO D1 >
« Ts » =Ty
e |/ J [\ [
Il

FIGURE 94.Timing for Fast Memory writes

e Ty
FADRS[17:2] A0 Al X
> <—T2
"Tg <—Tlo
FDAT Out [31:0] - DO D1
<—Tu—> e TlZ
l
FOEO_ _JL |
= =Ty « Tg >
e T5»\j
S W W A
> Ts
MXT3010 Reference Manual Version 4.1

347

Timing

MXT3010EP UTOPIA interface timing

This section includes a UTOPIA timing table and abbreviated

timing diagrams that show only enough signalsto identify all of

the timing parameters. For a more compl ete explanation of the
signalling used in various transfers, see “UTOPIA port sequence
diagrams” on page 94.

All timing shown in Table 86 is relative to either RX_CLK or
TX_CLK as shown in Figure 97 or Figure 98 respectively. The
relationship between the MXT3010EP input clock (FN) and a
half-speed RX_CLK/TX_CLK is shown in Figure 95 (also see
Figure 26 on page 73). The relationship between the
MXT3010EP input clock (FN) and a quarter-speed RX_CLK/
TX_CLK s shown in Figure 96 (also see Figure 27 on page 73).
The values of and T, are shown in Table 87.

FIGURE 95.FN and half-speed RX_CLK/TX_CLK
g 1/ZTC(FN) Ty 4=
FN (Input Clock)

—

L
RX_CLK \ oINS
. s

> | Tw

TX_CLK

FIGURE 96.FN and quarter-speed RX_CLK/TX_CLK

—» <+ Ty

FN (Input Clock) _/_ _/_
RX_CLK N

| |4 T Tio—»

TX_CLK

R

—»| €& Ty

348 Version 4.1 MXT3010 Reference Manual

MXT3010EP UTOPIA interface timing

TABLE 86. UTOPIA timing for Maker M XT3010EP

100 MHz UTOPI A timing (in nanoseconds)
Par |Min Max |Pins Description
T, 6.0| TXSOC, TXENB_, TX_CLK tooutput valid
RXENB_,
TXCTRL,
RXCTRL
To 13 TXSOC, TXENB_, Hold time provided by
RXENB_, MXT3010
TXCTRL,
RXCTRL
T3 7.0| TXDATA[7:0] TX_CLK to output valid
Ty 13 TXDATA[7:0] Hold time provided by
MXT3010
Ts 40 RXSOC, RXCLAV Input setup timeto TX_CLK/
RX_CLK
4.0 TXCLAV Input setup timeto TX_CLK/
RX_CLK
Te 13 RXSOC, RXCLAV Input hold time from TX_CLK/
RX_CLK
13 TXCLAV Input hold time from TX_CLK/
RX_CLK
T 40 RXDATA[7:0] Input setup time to RX_CLK
Tg 13 RXDATA[7:0] Input hold time from RX_CLK

Notes:1. Adrg/Chip Selects/Write Enables are driving at 100 MHz edge cor-
responding with falling edge of 50 MHz chip clock.

2. All maximum timing is specified with 30 pF loads (Adrs/Ctrl), 25
pF (Data). All minimum timing is specified with 5 pF loads.

3. A circuit stretches the minimum time-on time of the data on read
followed by write cycles.

4. Currently the FOE of one bank is guaranteed to be de-asserted
before the second bank is asserted. Thisis not actually required
since the RAMs are designed to allow back-to-back bank operation.

MXT3010 Reference Manual Version 4.1 349

Timing

350

TABLE 87. Delay of UTOPIA clocksrelativeto MXT3010EP internal
clock (CLK)

100 MHz UTOPIA TIMING

Par Min Max |Pins Description

Tg 13 55 RX_CLK/TX_CLK Risetime (r-min/r-max)
T1io 13 60 |RX_CLK/TX_CLK Faltime (f-min/f-max)

Notes:1. The hold time for datadn control is reduced on the MXT3010EP at
the expense of the setup time. This was doneto allow an easier
interface to PHY devices when guaranteeing hold time.

2. Multi-PHY designs must ensure that no bus fight exists on the
CLAV lines.

3. All maximum timing is specified with 15 pF loads. All minimum
timing is specified with 5 pF loads.

FIGURE 97.UTOPIA port receivetiming

RXCLK \ \ \

RXSOC /;
<-T5—>

¢

> Tl
RXDATA [7:0] >O< pag X X 1 Ho >
<-T5-> > T6 -

RXCLAV

Version 4.1 MXT3010 Reference Manual

MXT3010EP UTOPIA interface timing

FIGURE 98.UTOPIA port transmit timing

TXCLK \ \ \ '__/
> '|'6
TXSOC /7,7 |
o T, e
TXENB_
> '||'1 - ! "
O
TXDATA [7:0] >O< Pa8 X 1 Ho >
> =T,
7o - Tope

TXCLAV

MXT3010 Reference Manual Version 4.1

351

Timing

MXT3010EP Portl timing

This section includes a Port1 timing table and abbreviated tim-

ing diagramsthat show only enough signalsto identify all of the
timing parameters. For a more compl ete explanation of the sig-
nalling used in various transfers, see “Portl basic protocol” on
page 110.

These notes relate to Portl timing issues:

 If the external controller requires the MXT3010EP to drive
the P1AD(31:0) and P1 control buses when no other master
owns the bus, the external controller should select address
cycles.

» For exact timing numbers for CIN_BSY and COUT_RDY
assertion and deassertion, see “MXT3010EP miscellaneous
control signal timing” on page 359.

» Add Wait States during COMMIN register writes and
COMMOUT register reads by extending COMMSEL and
P1RD for one or more additional cycles (beyond those
shown). For COMMIN register writes, COMMIN data
MXT3010EP samples the final write clock cycle (the cycle
in which COMMSEL is sampled low at the end of the
cycle). For COMMOUT register reads, MXT3010EP
sources the contents of the COMMOUT register through-
out the extended cycle.

352 Version 4.1 MXT3010 Reference Manual

MXT3010EP Portl timing

TABLE 88. Portltimingtable

100 MHz Portl read and write timing (in nanoseconds)
Par | Min Max | Pins Description
T, 7.0 | PLQRQ_, PIRQ, CLK to output valid
P1RD, P1IEND_,
P1IRDY _,
PIHWEJ0:1]
P1AD[31:0]
Ty 13 P1QRQ_, P1IRQ_, Hold time provided by
P1RD, PIEND_, MXT3010
P1IRDY _,
PIHWEJO0:1],
P1AD[31:0]
T3 7.0 PITRDY _, Input setup timeto rising clock
P1ASEL _
Ty 1.0 PITRDY _, Input hold time from rising
P1ASEL _ clock
Tg 13 75 |PIRD,P1END_, Clock to output in low Z state
P1IHWEJO0:1],
P1IRDY_
Te 1.3 105 | PIRD, P1IEND_, Clock to output in high Z state
PIHWEJO0:1],
P1IRDY_
T, 13 7.3 | PlAD[310] Clock to output in low Z state
Tg 1.3 105 | P1AD[31:0] Clock to output in high Z state
Tg 1.3 88 |PlAD[31(] Clock to PIAD(31:0) vaid
Tio |40 P1AD[31:0] Input setup timeto rising clock
Ty |10 P1AD[31:0] Input hold time from rising
clock
Ty, | 6.0 COMMSEL, P1IRD Input setup timeto rising clock
T3 |10 COMMSEL, PIRD Input hold time fromrising
clock

Note: All maximum timing is specified with 15 pF loads. All minimum

timing is specified with 5 pF loads.

MXT3010 Reference Manual

Version 4.1

353

Timing

CLK

P1RQ_

PITRDY _

P1END_

P1AD Out [31:0]

P1AD in [31:0]

FIGURE 99.Port1 read timing

*‘RTz > T2
o =T > =Ty
> T4 > |- T4
{'_T3_. <-T3—>
*t% ”‘Tz T, T T2
[
. A\
> Tg =
| T1le > T1I<- - Tqte 6
> <-T7 > <—T2
A
> T9 ~ > T8 < -DTlod—
OX

FIGURE 100.Port1 writetiming

o /N)])
> <_TZ > |- T2
PIRQ_ |
> |<-T1 > -T,
> T4 > |- T4
PITRDY_ |
{'_T3_. <-T3—>
> <—T5 > ‘4—T2 - |- ™ "-Tl
P1END_ m | |
> T6
- Tl o 3 > Tll<- > Tl [
> T7 > <—T2
> Tg | ‘ ’ ,l T8
354 \ersion 4.1 MXT3010 Reference Manual

MXT3010EP Portl timing

FIGURE 101.COMMIN register write, COMMOUT register read timing

e /N A) L
*T12™ T2
P1RD in ‘”
+ l«T13 > =T
> Ty =
P1AD in [31:0] coMM N
Ty
-
P1AD Out [31:0]
-

MXT3010 Reference Manual Version 4.1 355

Timing

MXT3010EP Port2 timing

356

This section includes a Port2 timing table and abbreviated tim-

ing diagramsthat show only enough signalsto identify all of the
timing parameters. For a more compl ete explanation of the sig-
nalling used in various transfers, see “Port2 basic protocol” on
page 137.

This note relates to Port2 timing issues:

« If the external controller requires the MXT3010EP to
actively drive the P2AD(15:0) and P2 control buses when
no other master owns the bus, it should do so by selecting
address cycles.

Version 4.1 MXT3010 Reference Manual

MXT3010EP Port2 timing

TABLE 89. Port2timingtable

100 MHz Port2 read and write timing (in nanoseconds)
Par |[Min Max |[Pins Description
T, 8.0 P2QRQ_P2QBRST, CLK to output valid
P2RQ_, P2RD,
P2END_, P2IRDY _
P2AD[15:0]
To 13 P2QRQ_, P2OBRST, Hold time provided by
P2RQ _, P2RD, MXT3010
P2END_, P2IRDY _,
P2AD[15:0]
T3 8.0 P2TRDY_, P2ASEL _ Input setup timeto rising
clock
Ty 1.0 P2TRDY_, P2ASEL _ Input hold timefromrising
clock
Tg 20 8.0 P2RD, P2END _, Clock to output in low Z
P2AI1[3:0], P2IRDY_ dtate
Te 20 11.0 |P2RD P2END_, Clock to output in high Z
P2AI1[3:0], P2IRDY_ state
T; 13 8.0 P2AD[15:0] Clock to output in low Z
State
Tg 20 10.0 |P2AD[15:0] Clock to output in high Z
State
Tg 13 8.0 P2AD[15:0] Clock to P2AD(15:0) valid
Ti9 |40 P2AD[15:0] Input setup time to rising
clock
Tn 1.0 P2AD[15:0] Input hold timefromrising
clock

Note: All maximum timing is specified with 15 pF loads. All minimum
timing is specified with 5 pF loads.

MXT3010 Reference Manual

Version 4.1

357

Timing

FIGURE 102.Port2 read timing

ax /N A) S [
> |- T2 > |- T2
P2RQ_ |
> - Tl > <—T1
> 4'T4 > |- T4
P2TRDY_
{'_T3_. <-T3—>
> <—T5 > ‘4—T2 > |- ™ "-TZ
P2END_ m [|
> TG
] Tile > T1I<- - Tqte
> T7 > <—T2
P2AD Out [15:0] A
T
> 9 - T8 < -DTlO -
P2AD in [15:0] O(DI O X
FIGURE 103.Port2 writetiming
ax /N A)))
> <-T2 > |- T2
P2RQ_ |
> =Ty > Ty
> <—T4 > - Ty
P2TRDY_ w
i"Tg* <—T3->
> <—T5 > “'TZ - <_T2 > ’d-Tl
P2END_ A\‘ | |
> T6
> Tl - > Tll<- - Tl -
> T7 > <—T2
P2AD Out [15:0] A DO O m DO1 -
> Tg = ’ ‘ *\ Tg
358 Verson 4.1 MXT3010 Reference Manual

MXT3010EP miscellaneous control signal timing

MXT3010EP miscellaneous control signal timing

Thissection includes amiscellaneous control signal timing table
and a miscellaneous contral signal timing diagram.

Note that the M X T3010EP drives CIN_BUSY within two clock
cycles of a COMMIN Register write operation. Therefore, the

host should wait at least two system clock cycles from the com-
pletion of aCOMMIN register write beforetesting CIN_BUSY.

TABLE 90. Miscellaneous control signal timing

100 MHz | Misc. control signal timing (in nanoseconds)

Par |Min Max |Pins Description

T, 8.0 |ICSO_(D:A) CLK to output valid

Ty 13 ICSO_(D:A) Hold time provided by
MXT3010

T3 35 ICSI_(D:A) Input setup time to rising
clock

Ty 1.0 ICSI_(D:A) Input hold time from rising
clock

Ts 85 |CINBUSY, COUTRDY CLK to output valid

Te 13 CINBUSY, COUTRDY Hold time provided by
MXT3010

FIGURE 104.Timing of CIN_BUSY and COUT_RDY

ST N AN I I AN I/
> Tt
ISCO_[D:A] _C YOO OCOOC 00
2 ->T3<-
sl YO XX)OO 00
> Tsle "T4 ’,T5

; Q‘
CIN_BUSY ™ " Tﬁ Tole > T>6 Tj<
COUT_RDY - }V‘/‘Te l\< "

MXT3010 Reference Manual Version 4.1 359

L

Timing

360

MXT3010EP Reset timing

This section includes aM X T3010EP reset timing table and dia-
gram.

These notes relate to MXT3010EP reset timing issues:

1. When RESET _ is de-asserted, two events occur: a) the
MXT3010EP fetches boot code from the designated port,
and b) the MXT3010EP begins a cache initialization rou-
tine which takes 1028 input clock cycles.

2. The MXT3010EP does not actively drive ICSO_(D:A) dur-
ing reset. Therefore, these pins float unless actively driven
or pulled up or down externally. The values sensed on these
pinsat RESET _removal provide configuration information
to the MXT3010EP. For more information, see “Device Ini-
tialization” on page 401.

Version 4.1 MXT3010 Reference Manual

MXT3010EP miscellaneous control signal timing

TABLE 91. MXT3010EP reset timing
100 MHz Reset timing (in nanoseconds)

Par |Min Max [Pins Description
T, (10,000 clock |CLK, aso Minimum number of clock cycles that
cycles called FN reset must be held low for to allow
internal PLL to lock.
T, |13.0 RESET Input setup time to rising CLK for

removal of reset signal. Reset may be
asserted asynchronously but must be

deasserted synchronousto CLK.
Toa |15 RESET RESET hold time
T3 |5 ICSO_[D:A] Input setup timeto rising CLK. This

setup requirement need only be met for
therising edge of CLK for which
RESET is sampled high for the first
time.

Ty |3 ICSO_[D:A] Input hold time from rising CLK. This
hold requirement need only be met for
therising edge of CLK following the
rising edge of CLK for which RESET
is sampled high for thefirst time.

FIGURE 105.M XT3010EP reset timing

INPUT CLK __ #/_ __ __ __/__/

Asynchronous
Assertion ‘4/L Ty }‘TZ*
/[

RESET_ | \\ m

High impedanjce ; ; (see Note 1 above)

1SCO_[D:A] out

ISCO_[D:A] in Configuration X
- information
| | | | T]

MXT3010 Reference Manual Version 4.1 361

Timing

362

Asindicated in Figure 105, the de-assertion of RESET _must be
done within certain timing constraints. These timing constrains
occur because the MXT3010EP samples the RESET _ pin with
aninterna clock that operatesat twicetherate of theinput clock.
Thisis doneto establish a phase relationship with the input
clock. For example, if the input clock operates at 50 MHz, the
MXT3010EP samples RESET _ with a100 MHz internal clock.
The system designer must meet the timing requirements shown
in Figure 106 and Table 92.

FIGURE 106.Reset trailing edge timing

INPUT CLK

INTERNAL
CLK

RESET_

el

T, |

.

- T, e T, >

]

| |7,

B
N\

T4’<->
I

LT5+

TABLE 92. MXT3010EP RESET_timing parameters

100 MHz Reset timing (in nanoseconds)
Par Min Max Description
T1 20 Input clock period
T, 10 Internal clock period
T3 3 Setup to internal clock edge
Ty 15 Hold from internal clock edge
Tg 13 Setup to input clock edge (Note 1)

Notes: 1.Parameter Tgin Table 92 isthe same as parameter T, in Table 91.

2. Unless otherwise specified, al timesin thistable are relative to
the input clock.

Version 4.1

MXT3010 Reference Manual

MXT3010EP miscellaneous control signal timing

Given the 20ns period of the 50Mhz input clock, thisleaves a
5.5ns (20-13-1.5=5.5) window in which RESET _ can be
removed. Although care must be taken to meet these require-
ments, it can be routinely accomplished.

Several methods of achieving this timing are possible. Current

ASIC technology meetsthistiming. FPGA implementations are
more difficult, but possible. On the MXT3015 Evaluation Card,
Maker uses afast external flip-flop to constrain timing to within
this window. Figure 107 shows this circuit.

FIGURE 107.Reset timing circuit

RST RESET_
FPGA |— | FCT823C|—— | MXT3010

50 MHz

MXT3010 Reference Manual Version 4.1 363

Timing

MXT3010EP Fast Memory interface operation

This example shows a Fast Memory connection using Samsung
KM718B90 Synchronous SRAMs. Connections are shown for a
single bank system using two SRAM.

SRAM with bits
(31:16) of Fast SRAM with bits

MXT3010EP Data. (15:0) of Fast Data. Comments

FADRS(17:2) A(15:0) A(15:0) The MXT3010EP provides aword address
and individual byte write enablelines. For a
64K x32 Control Memory, FADRS(17:2)
are connected to A(15:0) of each of the
SRAMS. For a32Kx32 Control Memory,
FADRS(17) is unconnected and
FADRS(16:2) are connected to A(14:0) of
each of the SRAMs.

FDAT(15:0) N/C 1/0(15:0)

FDAT(31:16) 1/0(15:0) N/C

TiedtoGND 1/0O(17:16) 1/0(17:16) If x18 devices are used, tie [/O(17:16) to

through 10K ground through dedicated 10K Ohm resis-

Ohm resistors tors.

FCS0 CS ,ADSC CS ,ADSC In asingle bank system, FCSO_istied to
the CS_and ADSC _ of each of the SRAM
devices.

FOEO_ OE_ OE_ In asingle bank system, FOEQ_istied to
the output enable of each of the SRAM
devices.

TiedtoPWR ADV_,ADSP_ ADV_, ADSP_ The MXT3010EP does not use these con-
trol signals.

FWEOQ_ uw_ FWEQ_ controls byte FDAT(31:24)

FWEL_ LwW_ FWEL_ controls byte FDAT(23:16)

FWE2_ Uw_ FWE2_ controls byte FDAT(15:8)

FWE3_ LW_ FWES3_ controls byte FDAT(7:0)

FN (CLK) K K Tied to system clock. Thisisthe same clock
that is connected to the MXT3010EP’s
clock input (FN).

364 Verson 4.1 MXT3010 Reference Manual

MXT3010EP JTAG operation

MXT3010EP JTAG operation

For JTAG SCAN chain connection information contact M aker
Communications.

The MXT3010EP provides apin, TRI_, that places all output

driversin the high impedance state except RXCLK, TXCLK,
and the outputs associated with the PLL.

MXT3010 Reference Manual Version 4.1 365

Timing

366 Version 4.1 MXT3010 Reference Manual

cuarter 18 PIN INformation

This chapter provides information on the MXT3010EP pinouts.
The information includes pin diagrams, signal descriptions, and
pin listings.

MXT3010 Reference Manual Version 4.1 367

Pin Information

MXT3010EP pinout

Figure 108 provides a diagram of the MXT3010EP pinout.

FIGURE 108.M XT3010EP package/pin diagram

o
3 l > o | A
doyg—- 2>~ ITNDd OVARO ©NITO ANO o~ 4 = o Wx>
2ern Aol 58 A998 SQI] QN3 e Do wotd ooN Fyeda) 3
00050 ,00200,080,00500,0000,0000,000,00080,00080,0E2,38
0<I332IIE 3023233339310 II0III9IIIII93I<IxQIQLWOTE
S e N e e I s g e Fe e e e e e e e e e e e e e R e F E R e R]
aanOaol®aoaoacana>a0000a0a0an®aoaonocadaonoaono>a000ancoocadooaooao>000000
il
N O T MO RE NN AR T NN IR eI el 8n TR NESR]N
SRR R EREREERE RERE RE RS AR SR R R R R KRR
TXDATA2
TXDATA3
TXCTRL2
TXDATA4
TXDATA6
GND
ICSO_C
TXDATA7
TXCTRL1
TXCTRL3
VDD
N T INON RO O NN T NON RO AN T NONRAOINNTVOR RN AN M T 0 Q
Aot worooaddaSddndAQlICRNRAABRH ORISR nBIIITIITIISITIRLIOIBR
[RERRNRR NN RANN RN NANNNNRNNRNNRRR NN RRRRRRRR
PR a9 9 eng P] o
4 | =~ - - o
EEES. X Sof Eoffz zi2<iz z o 203 ug o0 8 808 [NQYT
SEIES 0 EO0X IZIIE JIoIEFE o B 0% 2RO ENRRR
2830879,10880300800000000000582880 52705,19_ 809505 88 s
OFZXerloroxrEe>rErrrorelerorrl>elaeraeloSnoi>oroclu>Saooooo

368 Version 4.1

FDAT17
LSSD_TEST
FDAT19
GND

MXT3010 Reference Manual

MXT3010EP signal descriptions

MXT3010EP signal descriptions

MXT3010 Reference Manual

Portl

Port2

UTOPIA port

Fast Memory controller

Inter-chip and communication registers
Miscellaneous signals, such as clock, control and test

Power and ground pins

Version 4.1 369

Pin Information

TABLE 93. MXT3010EP Portl signal descriptions

pm-

h

=0

m-

=~

B an

Pin #2 Symbol 1/0 | Name Description
179, 178, 174, P1AD[31:0] 1/0 | Portl Thisisamultiplexed, bi-directional 32-bit bus.
173, 171, 160, Address/Data Dataisread into and out of the MXT3010EP dur-
170, 168, 157, [31:0] ing DMA and COMM operations; see “The Port]]
153, 166, 155, and Port2 Interfaces” on page 97. and see “C
164, 161, 147, munications” on page 177.
158, 163, 156,
148, 152, 144,
151, 138, 132,
146, 150, 143,
141, 142, 136,
140, 137
126 P1RQ_ O Portl This signal indicates that commands are in th
Request active stage of the Portl DMA command queye.
131 P1QRQ_ (0] Portl DMA This signal indicates that commands are in th
Queue Request | queue stage of the Portl DMA command que
134 P1RD /0| Portl Read/ The MXT3010EP drives this signal during a
Write select DMA transfer, and the host drives the signal d|
ing a communication register transfer. In either
case, this signal indicates a read (1) or a write| (0)
transfer.
130 P1END_ O Portl This signal indicates the last cycle of a DMA
End operation.
128 P1HWE1 (@] Portl During data cycles, PAHWE[1:0] act as Half
125 P1HWEO (@] Halfword Enable | Word Enables. If PLHWE[O0] is asserted,
[1:0] P1AD[31:16] should contain valid data. If
P1HWEJ1] is asserted, P1AD[15:0] should co
tain valid data.
127 P1IRDY_ (0] Portl During DMA write data cycles, the MXT3010E
Interface asserts P1IRDY_ while it is sourcing valid dat
Initiator on P1AD[31:0]. During DMA read data cycles
Ready the MXT3010EP asserts P1IRDY_ if it can sal
ple P1AD[31:0] on the next rising edge of clog
135 P1ABRT_ | Portl Transfer | The host drives this signal to abort burst DMA
Abort operation.
116 PITRDY_ | Portl The host drives this signal and the host insert
Target wait states. With PLASEL _, the host deselect
Ready (i.e., tri-state) MXT3010EPs.
112 P1ASEL_ | Portl The host drives this signal and the host select
Address address or data cycle. With PITRDY_ the hos
Select deselects (tri-state) MXT3010EPs.

a. Pin numbersin thistable, and in al subsequent tables, are listed in descending order (for
example, P1IAD31 to P1ADO).

370

Version 4.1

MXT3010 Reference Manual

MXT3010EP signal descriptions

TABLE 94. MXT3010EP Port2 signal descriptions
Pin # Symbol I/0 | Name Description
185, 187, | P2AD 1/0 | Port2 Thisis amultiplexed, bi-directional 16-bit bus.
196, 192, | [15:0] Address/Data | Dataisread into and out of the MXT3010EP during
194, 197, [15:0] DMA operations. For operational details see “The
201, 190, Portl and Port2 Interfaces” on page 97.
204, 206,
203, 195,
210, 212,
200, 208
198, 211, | P2AI[3:0] | O Port2 Address These signals are multi-purpose. In burst mode
216, 202 Index Bus P2AI[3:0] represent an address index consisting of
the lower four bits of an address. In non-burst mpde
P2AI[3:2] represent the two most significant
address bits. P2AI[1] represents P2RD_. P2AI[0]
represents Address Latch Enable.
186 P2RQ (@] Port2 This signal indicates that commands are in the
Request active stage of the Port2 DMA command queue
183 P2QRQ_| O Port2 This signal indicates that commands are in the
DMA Queue | queue stage of the Port2 DMA command queue.
Request
191 P2RD (0] Port2 The MXT3010EP drives this signal during a DMA
Read / Write | transfer. This signal indicates a write (0) transfef or
Select aread (1) transfer.
188 P2END_ (@] Port2 On DMA operations, the MXT3010EP asserts
End P2END_ to indicate the last cycle of the transfer.
182 P2QBRST| O Port2 This signal indicates burst (1) or non-burst (0)
Burst transfer mode. For operational details see “The
Portl and Port2 Interfaces” on page 97.
184 P2IRDY_| O Port2 During DMA write data cycles, the MXT3010EP
Interface asserts P2IRDY_ while it is sourcing valid data on
Initiator P2AD[15:0]. During DMA read data cycles, the
Ready MXT3010EP asserts P2IRDY_if it can sample
P2AD[15:0] on the next rising edge of clock.
172 P2TRDY_| | Port2 The host drives this signal and inserts wait states.
Target With P2ASEL _ the host can deselect [i.e., tri-state]
Ready MXT3010EPs.
176 P2ASEL_| | Port2 AddresssThe host drives this signal and selects address pr
Select data cycle. With P2TRDY_ the host can deselegt

(tri-state) MXT3010EPs.

MXT3010 Reference Manual

Version 4.1

371

Pin Information

TABLE 95. UTOPIA port signal description

D

=
]

data

a

ick.

sed
Dit
Dr

2

D

t

Pin # Symbol /O | Name Description
237,234, | TXDATA /0 | UTOPIA Trans- | In 8-bit bi-directional mode, these pins send
2,233, [7:0] mit Data datato the PHY device. In 16-bit uni-direc-
231, 230, [7:0] tional mode, these pins are byte 0 or byte 1 of
221,218 the bus. For operational details see “The UTO-
PIA port” on page 69.
239, 232,| TXCTRL I/O | UTOPIA Trans- | These signals provide multi-PHY control inf
238, 220 | [3:0] mit Control mation. For operational details see “The UT!
PIA port” on page 69.
224 TXCLAV Transmit Cell This signal indicates to the MXT3010EP tha
Available the PHY is ready to accept a cell.
223 TXENB_ @) Transmit Enable This signal indicates to the PHY that valid
is on the bus.
222 TXSOC 0 Transmit Start Qf This signal indicates to the PHY the start of
Cell cell.
226 TX_CLK (0] Transmit Clock | The MXT3010EP provides the transmit clof
17, 16, RXDATA /O | UTOPIA In 8-bit bi-directional mode, these pins are u
21,23, |[7:0] Receive Data | to receive data from the PHY device. In 16-
12, 14, [7:0] uni-directional mode, these pins are byte 0
30,4 byte 1 of the bus. For operational details se
“The UTOPIA port” on page 69.
26, 3, 24,| RXCTRL /O | UTOPIA These signals provide multi -PHY control
18 [3:0] Receive Control| information. For operational details see “The
UTOPIA port” on page 69.
20 RXCLAV Receive Cell This signal indicates to the MXT3010EP tha
Available the PHY has a cell ready to send to the
MXT3010EP.
15 RXENB_ (0] Receive Enablel This signal indicates to the PHY that the
MXT3010EP is ready to receive data.
11 RXSOC | Receive Start of This signal indicates to the MXT3010EP the
Cell start of a cell.
8 RX_CLK (0] Receive Clock | The MXT3010EP provides the receive clo

372

Version 4.1

MXT3010 Reference Manual

MXT3010EP signal descriptions

TABLE 96. MXT3010EP Fast Memory controller signal description

Pin # Symbol /0 | Name Description

80, 90,98, | FADRS (0] Fast Memory Byte address.

87,91, 94, |[17:2] Address Bus

93, 97, 95, [17:2]

70, 66, 72,

74,71, 76,

75

44, 46, 50, FDAT I/0 | Fast Memory Fast Memory data bus.

48,51-54, | [3L.0] DataBus

57-59, 56, [31:0]

62, 67, 64,

68, 104,

102, 100,

103, 106,

108, 107,

110, 113,

111, 117,

114, 118,

119, 122,

124,

82 FCSs1 (0] Fast Memory These signals select the bank of SRAM

84 FCS0_ Control Signals | addressed during Fast Memory operations.

[2:0] FCS0_low =bank 1

FCS1_low = bank 2
When operating in Mode 1, these Chip
Select pins are used as Fast Memory
Address lines 18 and 19.
FCS1_=FADRS[19]
FCSO_=FADRSY[18]
See Figure 16 on page 55.

86 FOEL (0] Fast Memory These signals enable bank 1 and bank 2 of

78 FOEQ_ Output Enable SRAM.

[2:0] FOEQ_low =bank 1

FOEL_low = bank 2

88 FWE3_ (0] Fast Memory These signals sel ect the byte target during a

83 FWE2_ Write Enable Fast Memory write operation:

77 FWE1_ [3:0] FWEOQ_ low = byte 0 FDAT[31:24]

81 FWEO_ FWEL_ low = byte 1 FDAT[23:16]
FWE2_ low = byte 2 FDAT[15:8]
FWE3_ low = byte 3 FDAT[7:0]

MXT3010 Reference Manual Verson4.1 373

Pin Information

TABLE 97. MXT3010EP inter-chip and communication registerssignal description

Pin# | Symbol /0 | Name Description

167 CINBUSY (0] COMMIN Busy | COMMIN Busy signals the status of the COM-
MIN Register. The MXT3010EP drives thispin
high when the Host writes to the COMMIN
Register. The MXT3010EP clears the signal
when it readsthe COMMIN Register. Aslong as
CINBUSY is high, the COMMIN Register is

full.
177 COUTRDY | O COMMOUT Thissignal signalsthe status of the COMMOUT
Ready Register. The MXT3010EP asserts this signal

(1) when it writesto the COMMOUT Register.
When the host reads the COMMOUT register,
the MXT3010EP clears the signal (0). Aslong
as COUTRDY is 1, the COMMOUT Register is
full.

162 COMMSEL | | Comm Select When the Comm Select signal is asserted (1)
and the P1RD signal islow (0), the COMMIN
register is atarget of awrite operation (Host to
MXT3010EP). When the Comm Select signal is
asserted (1) and the P1RD signal ishigh (1), the
COMMOUT register is the source of aread
operation (MXT3010EP to Host).

42 ICSI_D ICS Input The MXT3010EP uses these signalsto poll the
47 ICSI_C [D:A] state of external devices. They also control the
35 ICSI_B Sparse Event Register.

6 ICSI_A

31 ICSO_D (0] ICS Output These signals are used by the MXT3010EP to
236 ICSO_C [A:D] signal the state of the MXT3010EP to external
28 ICSO_B devices. The SWAN processor sets the state of
22 ICSO_A these signals by setting or clearing bitsin the

Sparse Event Register. These signals are also
used during deviceinitialization.

374 Version 4.1 MXT3010 Reference Manual

MXT3010EP signal descriptions

TABLE 98. MXT3010EP miscellaneous clock, control, and test signal descriptions

Pin# | Symbol 1/0 | Name Description

40 FN I Input Clock Thissignal provides the MXT3010EP device
clock.

123 RESET _ I Reset Device reset.

217 OSC_EN I Oscillator Enable | Oscillator enableis used for testing of ring oscil-
lator.

63 LSSD_TEST || Thispinis used for scan test.

34 RANGE I Operation Range | The RANGE pin affects the operating range of

select the PLL VCO:

High = Output frequency 50-100 mHz
Low = Output frequency 100-400 mHz
This pin is customarily left floating, thus allow-
ing theinternal pull up to keep the pininthehigh
State.

38 BP_ Bypass Pin This pinisused during production testing of the
PLL.

213 TRI_ I Tri-State Test Thissigna placesall of thetri-state and bi-direc-
tional 1/Osinto tri-state.

27 TCK I Test Clock JTAG Test Clock input

33 TDI I Test Dataln JTAG Test Datainput

227 TDO (0] Test Data Out JTAG Test Data output

207 T™MS I Test Mode Select | JTAG Test Mode Select input

215 TRS I Test Reset JTAG Reset input

5, 10, RESRVD 1/0 | Reserved These pins are reserved for future functionality

32,101, and should be | eft floating.

228

MXT3010 Reference Manual

Version 4.1

375

Pin Information

TABLE 99.

Power and ground pin descriptions

Pin #

Symbol

/0

Name

Description

13, 29, 41,
49, 60, 65,
73, 89, 96,
109, 120,
133, 149,
169, 180,
193, 209,
229, 240

VDD

3.3volt
power supply

These pins each require a +3.3 VDC (x 5P0)
power supply input. They supply current to the
3.3-volt output buffers and the core logic of the

device.

37

VAA

PLL power
supply

This pin requires a +3.3 VDC (z+ 5%) power sU
ply input. It is used to supply current to the PL
Please refer to the section on the PLL for pra
decoupling strategy.

1,7,9,19,
25, 36, 39,
43, 45, 55,
61, 69, 79,
85, 92, 99,
105, 115,
121, 129,
139, 145,
154, 159,
165, 175,
181, 189,
199, 205,
214, 219,
225, 235

GND

Ground

These pins provide ground return paths fon
various power supply inputs.

376

Version 4.1

MXT3010 Reference Manual

p_

per

the

MXT3010EP JTAG/PLL pin termination

MXT3010EP JTAG/PLL pin termination

Table 100 indicates how test and reserved pins on the
MXT3010EP should be terminated for normal operation.

TABLE 100. M XT3010EP pin ter minations

Pin Name Pin # Termination

BP_ 38 Externa pull up (1 K ohms) to +3.3V
RANGE 34
OSC_EN_ (217
TRI_ 213

Externa pull up (4.7K ohms) to +3.3V
TCK 27
TDI 33
T™MS 207
LSSD_TEST |63

External pull down (120 ohms) to GND
TRS 215
RESERVED |5, 10, 32, |Leave floating

101, 228

MXT3010 Reference Manual Version 4.1 377

Pin Information

MXT3010EP pin listing

Thissection providesthe pin listingsfor the M XT3010EP. Table
102 provides descriptions of the pin types listed in Table 101.

TABLE 101. MXT3010EP pin listing

Pin [PinLabel |Pad |Pin JPin |PinLabel |[Pad |Pin JPin |PinLabe |Pad |Pin
1 GND 30 RXDATA1 102 |1/0 59 FDAT21 104 |1/0
2 TXDATAS 102 (1/0 31 ICSO_D 104 [1/0 60 VDD

3 RXCTRL22 [103 |OUT J32 RESRVD 61 GND

4 RXDATAO 102 (1/0 33 TDI IN1 |IN 62 FDAT19 104 |1/0
5 RESRVD 34 RANGE 104 |PLL 63 LSSD_TEST |IN2 |IN

6 ICSI_A IN1 |IN 35 ICSI_B IN1 |IN 64 FDAT17 104 |1/0
7 GND 36 GND 65 VDD

8 RX_CLK 102 (1/0 37 VAA 66 FADRS7 106 |OUT
9 GND 38 BP_ 67 FDAT18 104 | 1/0
10 |RESRVD 39 GND 68 FDAT16 104 | 1/0
11 | RXSOC 103 |[IN 40 FN 69 GND

12 | RXDATA3 102 |1/0 41 VDD 70 FADRS8 106 |OUT
13 |vDD 42 ICSI_D IN1 |IN 71 FADRHA 106 |OUT
14 | RXDATA2 102 (1/0 43 GND 72 FADRS6 106 |OUT
15 | RXENB 103 |OUT j44 FDAT31 104 |1/0 73 VDD

16 | RXDATAG6 102 (1/0 45 GND 74 FADRS5 106 |OUT
17 | RXDATA7 102 |1/0 46 FDAT30 104 |1/0 75 FADRS2 106 |OUT
18 | RXCTRLO 103 |OUT Q47 ICSI_C IN1 |IN 76 FADRS3 106 |OUT
19 |GND 48 FDAT28 104 |1/0 7 FWEL_ 106 |OUT
20 |RXCLAV 103 |IN 49 VDD 78 FOEO_ 106 |OUT
21 | RXDATAS 102 (1/0 50 FDAT?29 104 [1/0 79 GND

22 |ICSO_A 104 (1/0 51 FDAT27 104 [1/0 80 FADRS17 106 |OUT
23 | RXDATA4 102 |1/0 52 FDAT26 104 |1/0 81 FWEO_ 106 |OUT
24 | RXCTRL1 101 |OUT j53 FDAT25 104 |1/0 82 FCS1 106 |OUT
25 | GND 54 FDAT24 104 |1/0 83 FWE2_ 106 |OUT
26 | RXCTRL3 102 |OUT J55 GND 84 FCSO_ 106 |OUT
27 | TCK IN1 |IN 56 FDAT20 104 [1/0 85 GND

28 |ICSO B 104 |1/0 57 FDAT23 104 |1/0 86 FOEL 106 |OUT
29 |vDD 58 FDAT22 104 [1/0 87 FADRS14 106 |OUT

378 Version 4.1 MXT3010 Reference Manual

MXT3010EP pin listing

TABLE 101. M XT3010EP pin listing

88 |FWE3_ 106 |OUT J126 |P1RQ_ 104 |OUT j164 |PlAD19 104 |1/O0
89 |(VvDD 127 |P1lIRDY_ 104 |OUT j165 |GND

90 |FADRSI16 106 [OUT Q128 |PIHWEL 104 |OUT j166 |PlAD21 104 |1/O
91 | FADRS13 106 |OUT Q129 |GND 167 | CINBUSY 105 |OUT
92 |GND 130 |P1END_ 104 |OUT g168 |PlAD24 104 |1/0
93 | FADRSI1 106 |OUT §131 |PIQRQ_ 104 |OUT g169 |VDD

94 | FADRSI12 106 [OUT j132 |P1ADS8 104 |1/O 170 |P1AD25 104 |1/O
95 |FADRS9 106 [OUT §133 |VvDD 171 | P1AD27 104 |1/O
96 (VDD 134 |P1RD 104 |1/O 172 | P2TRDY_ 102 |IN
97 | FADRS10 106 |OUT J135 |P1ABRT_ 104 |IN 173 | P1AD28 104 |1/O0
98 | FADRS15 106 |OUT Q136 |P1AD2 104 |1/0 174 | P1IAD29 104 |1/O0
99 |GND 137 | P1ADO 104 |1/0 175 | GND

100 | FDAT13 104 |1/0 138 | P1AD9 104 | 1/O 176 | P2ASEL_ 102 [IN
101 | RESRVD 139 |GND 177 |COUTRDY [IO5 |OUT
102 | FDAT14 104 |1/O0 140 |P1AD1 104 |1/O 178 | P1AD30 104 |1/O
103 | FDAT12 104 [1/O0 141 | P1AD4 104 |1/0 179 | P1AD31 104 |1/0
104 | FDAT15 104 [1/O0 142 | P1AD3 104 |1/0 180 |VvDD

105 [GND 143 | P1ADS 104 |1/O0 181 |GND

106 | FDAT11 104 |1/0 144 | P1AD11 104 | 1/O 182 | P2ZOBRST 104 | OUT
107 | FDAT9 104 |1/O 145 |GND 183 | P2QRQ_ 104 | OUT
108 | FDAT10 104 |1/O 146 |P1AD7 104 (1/O 184 |P2IRDY_ 104 | OUT
109 [vDD 147 | P1AD17 104 |1/0 185 | P2AD15 104 |1/0
110 | FDATS8 104 |1/0 148 |P1AD13 104 |1/0 186 | P2RQ_ 104 |OUT
111 | FDAT6 104 |1/O0 149 |VvDD 187 | P2AD14 104 |1/O0
112 | PIASEL _ 104 |IN 150 |P1AD6 104 |1/O 188 |P2END_ 104 | OUT
113 | FDAT7 104 |1/O0 151 |P1AD10 104 |1/O 189 |GND

114 | FDAT4 104 |1/0 152 | P1AD12 104 |1/O 190 |P2ADS8 104 |1/O
115 [GND 153 | P1AD22 104 |1/O 191 |P2RD 104 |OUT
116 | PITRDY_ 104 |IN 154 | GND 192 | P2AD12 104 |1/O
117 | FDATS 104 |1/O 155 | P1IAD20 104 (1/O 193 |VvDD

118 | FDAT3 104 |1/O0 156 |P1AD14 104 |1/O 194 |P2AD11 104 |1/O
119 | FDAT2 104 |1/0 157 |P1AD23 104 |1/O 195 | P2AD4 104 |1/O
120 | vDD 104 158 |PlAD16 104 | 1/0 196 |P2AD13 104 |1/O
121 [GND 159 |GND 197 | P2AD10 104 |1/O
122 | FDAT1 104 |1/O 160 |P1AD26 104 (1/O 198 | P2AI3 104 |OUT
123 | RESET_ IN1 |IN 161 |PlAD18 104 |1/O 199 |[GND

124 | FDATO 104 |1/O 162 |COMMSEL [IO5 |IN 200 |P2AD1 104 |1/O
125 | PIHWEO 104 |OUT J163 |PlAD15 104 |1/O 201 | P2AD9 104 |1/O

MXT3010 Reference Manual Version 4.1 379

Pin Information

TABLE 101. MXT3010EP pin listing

202 | P2AI0 104 |OUT Q215 |TRS IN2 |IN 228 | RESRVD

203 | P2ADS 104 |1/0 216 | P2AIl 104 |OUT g229 |VDD

204 | P2AD7 104 | 1/0 217 | OSC_EN_ IN1 |IN 230 | TXDATA2 |102 |1/O
205 | GND 218 | TXDATAO |102 |I/O 231 | TXDATA3 |102 |1/O
206 | P2AD6 104 |1/0 219 | GND 232 | TXCTRL2 103 |OUT
207 | TMS IN1 |IN 220 |[TXCTRLOP [102 |ouT [233 |TXDATA4 [102 |I/O
208 | P2ADO 104 | 1/0 221 | TXDATAl 102 |1/O 234 | TXDATA6 |102 |1/O
209 | VDD 222 | TXSOC 102 |OUT g235 |GND

210 | P2AD3 104 | 1/0 223 | TXENB_ 102 |OUT j236 |ICSO_C 104 (1/O0
211 | P2AI2 104 |OUT Qg224 |TXCLAV 103 |IN 237 | TXDATA7 102 |1/0
212 | P2AD2 104 |1/O0 225 | GND 238 | TXCTRL1 103 |OUT
213 | TRI_ IN1 |IN 226 | TX_CLK 102 |OUT g239 |TXCTRL3 103 |OUT
214 | GND 227 | TDO 102 |OUT Q240 |VvDD

a. The RXCTRL signals use differing pad types due to their varying use in multi-PHY configura-
tions. RXCTRL [3:0] are 102, 103, 101, and 103 respectively.

b. The TXCTRL signals use differing pad types due to their varying use in multi-PHY configura-
tions. TXCTRL [3:0] are 103, 103, 103, and 102 respectively.

380 Version 4.1 MXT3010 Reference Manual

MXT3010EP pin listing

/0 pad reference

Thetable below cross-maps an 1/0 pin to the actual CMOS5S
I/0 pad. SPICE models for these devices can be obtained by
contacting support@maker.com.

TABLE 102.1/0 pad types

TYPE | PAD DESCRIPTION

I01 |BT520PU_A_G |5V Tolerant Bi-direct buffer, A-slew, 20 ohm, 3-
state 10 with pullup resistor.

102 BT520PU_B_G | 5V Tolerant Bi-direct buffer, B-slew, 20 ohm, 3-
state 10 with pullup resistor.

I03 |BT520PD_B_G |5V Tolerant Bi-direct buffer, B-slew, 20 ohm, 3-
state 10 with pulldown resistor.

104 |BT520PU_C G |5V Tolerant Bi-direct buffer, C-slew, 20 ohm, 3-
state 10 with pullup resistor.

105 |BT520PD_C_G |5V Tolerant Bi-direct buffer, C-slew, 20 ohm, 3-
state 10 with pulldown resistor.

106 BT520 C G 5V Tolerant Bi-direct buffer, C-dew, 20 Ohm, 3
state 10.

IN1 [IT5PUT_G 5V Tolerant LVTTL Input, with internal pull up.

IN2 [ITSPDT_G 5V Tolerant LVTTL Input, with internal pull
down.

MXT3010 Reference Manual Version 4.1 381

Pin Information

382 Version 4.1 MXT3010 Reference Manual

cuapter 10 Electrical Paramaters

This chapter providesinformation about the el ectrical parameters
of the MXT3010EP. The following topics are included:

» MXT3010EP Operating conditions and maximum ratings
* MXT3010EP Power sequencing
» MXT3010EP Phase Lock Loop (PLL) implementation

MXT3010 Reference Manual Version 4.1 383

Electrical Parameters

MXT3010EP maximum ratings and operating conditions

TABLE 103. Absolute maximum ratings (Vss = 0V)

Symbol | Parameter Min | Max Units

VDD 3.3 volt supply -0.3 (7.0 \%

VIN Input voltage -0.3 (7.0 \%

TA Operating free-air temperatuf O See Note 2 |°C
range

TstG Storage temperature range |-65 150 °C

Notes 1: Stresses beyond the “Absolute maximum ratings” may cause per-
manent damage to the device. These are stress ratings only.
Operation at conditions beyond the indicated “Recommended
operating conditions” is not recommended and may adversely
affect device reliability.

2: Refer toApplication Note 27, MXT3010EP Thermal Test Report

TABLE 104.Recommended oper ating conditions

Symbol | Parameter Min Max Units
VDD 3.3 volt supply 3.14 3.47 \%
VIH High-level input voltage 2 \%
ViL Low-level input voltage 0.8 \%
IoH High-level output current 0 11.4 mA
loL Low-level output current 11.4 mA
TJ Operating junction temperature| 0 110 °C

Notes 1: See “Adjustments to Idc” on page 388.
2. Refer toApplication Note 27, MXT3010EP Thermal Test Report

384 Version 4.1 MXT3010 Reference Manual

MXT3010EP maximum ratings and operating conditions

DC electrical characteristics

TABLE 105. DC Electrical characteristics

Symbol | Parameter Min Max Units
ICC 3.3 volt supply current (100 970 mA
MHz)

VOH VDD = min, IOH = max 2.4 \Y
VoL VDD = min, IOH = max 04 \Y
Cio Typ 7 pF
Rio 1/0 Output Impedance (nominal) 20 Ohms
Pd Power Dissipation @3.3/3.47V

@ 66 MHz 1921 W

@ 80 Mhz 2326 W
@ 100 Mhz 29/32|W

AC electrical characteristics

I/0 performance levels

With the exception of the TDO scan output, all MXT3010EP

outputs utilize either amedium or fast speed I/O pad. Thetable
below summarizesthe slew rate of each pad at nominal process,
25°c and 3.3V supply. For more accurate analysis, SPICE mod-
els of the I/O pads are available.

Performance Level Slew Rate (di/dt) Driver Speed
A 30 mA/ns Slow
B 60 mA/ns Medium
C 100 mA/ns Fast
MXT3010 Reference Manual Version 4.1 385

Electrical Parameters

MXT3010EP power sequencing

386

Overview

The MXT3010EP uses a single voltage, +3.3 VDC +5%. There-
fore, there is no need to follow multiple voltage power sequenc-
ing rules. There are, however, two concerns regarding the
application of power to CMOS devices such as the
MXT3010EP. Both concerns relate to current flowing from an I/
O pin into the chip’s VDD rail when the I/O pin of the device is
powered, and VDD to the device is not present.

« Damage to I/O pad metal

When current flows into the 1/0O pad of the unpowered chip,
the current flows from the 1/0 pad to the ESD diodes and
from there to the VDD pad. This metal is rather thin and can
be damaged from a high instantaneous inrush current. In this
case, the metal connection fuses. Another way the metal can
be damaged is through electromigration. When electromi-
gration occurs, the metal erodes due to a moderate current
flowing for an extended period of time.

e Latch-up

The second major concern during power sequencing is a
condition known as latch-up. Latch-up is a destructive event
that can be induced in CMOS devices. The term refers to the
'turning on' of the parasitic PNPN structure that exists as a
normal part of the CMOS gate structure. The PNPN struc-
ture is ‘connected' between VDD and ground and has posi-
tive feedback. As this structure begins to conduct current
from VDD to ground, it is turned on harder, presenting a
lower impedance. The lower impedance causes more cur-
rent to flow, and the process reinforces itself until the device
overheats and is destroyed.

Version 4.1 MXT3010 Reference Manual

MXT3010EP power sequencing

Current can flow from the I/O pin to the VDD rail through

the I/O pad’s ESD structure. The existence and magnitude
of the current (Ipad) generally depends on the 1/O type and
the electro-static discharge (ESD) protection device it
contains. The ESD structure is a set of series diodes from
the 1/O pin to VDD. In the case of the BT520 I/O pad used
in the MXT3010EP, the ESD structure consists of a chain of
5 series diodes.

The two problems outlined above are analyzed in greater detail,
with specific application to the MXT3010EP, in the sections
which follow.

Damage to I/0 pad metal

To determine whether damage to the 1/0O pad metal will occur
from fusing or metal migration, one must first analyze how
much current will flow into the pad. When powered down, the
large capacitance associated with VDD (chip, package, card,
other card components) could be modeled as a short circuit to
ground (GND). Thus, the maximum current from a pad
through the ESD diode(s) to VDD would be determined by the
voltage and output resistance of the source supplying the pad
voltage, the number and forward voltage drops of the ESD
diodes, and the series resistance of the diodes and interconnects.
The following equation applies:

Ipad = (Vsource-(N*0.7)) / (Rsourcet+2)

N = the number of diodes (1,3,5) between the pad and VDD
Vsource = source voltage applied to the pad (volts)
Rsource = output resistance of the V source supply (ohms)

| pad = current into the pad (amps)

There are two limits to the acceptable pad current (Ipad). Both
are associated with current required to cause failures in the
Metal-1 (M1) wiring connecting from the pad to the ESD device

MXT3010 Reference Manual Version 4.1 387

Electrical Parameters

Adjustments to
Idc

Sample
calculation

388

and fromthe ESD deviceto VDD. Thefirst limitiscalled Ifuse.
Currentsabove Ifuse may immediately destroy the metal layer 1
connections. All MXT3010EP I/O pads are 5V tolerant and can
withstand an Ifuse current of 129ma. The second current limitis
Idc. Currents below Idc can be safely applied for extended peri-
ods of time without causing M1 electromigration (wear-out)
failures.

Idc is astrong function of both temperature and the number of
power-on hours (POH) over which the current is applied All
MXT3010EP I/O pads arerated for 11.4maunder the conditions
of 110K POH and 100°c. Idc may be adjusted for other condi-
tionsusing thefollowing multipliers:

| dc(POH) =1 dc(tablevalue) * (110000/POH)**0.588
| dc(temp) =1 dc(tablevalue)* exp((5459/(temp+273)-14.64))

Assume al 5V tolerant inputs are being driven prior to the
MXT3010EP’s VDD rail being powered. Assume further that
VDD on the hot-plugged ASIC part comes up 1 second after its
I/O's pad receives the signal net voltage. Finally, assume that
this scenario occurs 10,000 times over the life of the product, in
a system running at 180 A further assumption is made the
signal driving the 1/0O pad has a 5V nominal supply voltage and
has a 200hm nominal output impedance. Thus, Vsource = 2.5
volts and Rsource = 20 ohms. Since the BT520* I/O pad uses 5
series ESD diodes from a pad to VDD, N=5. Calculating Ipad
yields:

Ipad = (Vsource-(N*0.7)) / (Rsource+2)
= (5-(5*0.7)/(20+2)
=0.0681
=68.1 mA

Version 4.1 MXT3010 Reference Manual

MXT3010EP power sequencing

The calculated value Ipad is well below the 129 mA limit for
Ifuse, so pad damage from fusing does not occur. However, the
calculated value of I pad iswell above the 11.4 mA limit for Idc,
so thisamount of current cannot be applied indefinitely without
affecting reliability.

Sincewe assumed that the | pad current was being applied for 2.7
hours (10000 times for 1 seconds/time = 10000 seconds = 166
minutes = 2.7 hours) over the life of aproduct, Idc should be
adjusted for time:

Idc(POH) = I dc(Pad) * (110000/POH)**0.588

Idc(2.7 hours) = 11.4 mA * (110000/2.7)**0.588
=11.4* 513.7
= 5856 mA

This number is nearly two orders of magnitude above Ipad, so
we could stop here and conclude that the described application
will not effect reliability. Clearly, most cases of thistypewill be
limited by Ifuse well before Idc, but both Ifuse and Idc limits
should be checked.

/0 pad latch-up

I/0 pad latch-up occurs when free charge in the semiconductor
substrate gets to the wrong place. Troublesome amounts of free
charge can beintroduced by very large currents flowing through
the ESD diodes or other paths. Latchup is generaly prevented
by isolating and protecting the parasitic PNPN structure from
collecting free charge.

It isdifficult or impossible to induce latch-up in the device dur-
ing power up. Asthe device is conducting current from the I/O

pin to the VDD rail, there may be some free charge introduced

into the substrate. Thereisno power applied to the device at this
point, so latch up cannot occur.

MXT3010 Reference Manual Version 4.1 389

Electrical Parameters

Asthedevice VDD is applied, the current flowing through the

ESD diodesissharply reduced. Thisisbecause the forward volt-

age drop of the ESD diodesis about 3.5 volts, so for an I/0O pad
voltage of 5V, the ESD current drops to zero when the chip’s
VDD reaches 1.5V. Before the VDD level of the chip attains suf-
ficient voltage to sustain latch-up, the ESD current has been
neutralized due to the forward drop of the 5 series connected
ESD diodes.

Additionally, the CMOS device is generally designed to with-
stand several hundred milliamperes of ESD diode current with-
out having latchup problems. This level of current is never
attained during this power up situation, further reinforcing the
latch up protection.

MXT3010EP PLL considerations

390

Overview

The MXT3010EP has an internal Phase Lock Loop (PLL) which
it uses to generate the on-chip clock. This PLL allows the on-
chip clock tree delay to be neutralized, and optimum perfor-
mance of the IC to be obtained. The on-chip PLL can be affected
by external circuit noise, so careful circuit design must be
employed to optimize the performance of the PLL.

Degradation of the PLL performance manifests itself as jitter.
This jitter is measured as the timing variation of the chip’s inter-
nal clock to a stable reference clock supplied to the chip on the
FN pin (pin 40). The internal clock cannot be observed directly,
but any jitter on the internal clock will show up as jitter on the
UTOPIA transmit clock, TX_CLK (pin 226). Jitter will cause a

Version 4.1 MXT3010 Reference Manual

MXT3010EP PLL considerations

variation in the timing of the chip relative to the board clock.
Thetiming variation will affect setup and hold timing and erode
timing margins at the chip interface.

The following sections cover circuit design issues which affect
the operation of the PLL. Key areas of interest are de-coupling,
creating aquiet PLL VDD, and ensuring a good PCB layout of
the PLL area. The following sections also discuss the use of ref-
erence clocks, which may havejitter, and amethod to bypassthe
internal PLL of the MXT3010 in special applications.

VAA decoupling

The PLL has a separate power pin labeled VAA (pin 37). This
pin must be supplied with avery stable voltage level and should
be well decoupled. The current draw of thispinisvery low, 2.5
mA nominal. Thelow current draw allowsthe voltage to be iso-
lated from the 3.3V power plane with aresistor. The use of a
resistor instead of aninductor providesvery good isolation from
lower frequency noise such as power supply switching noise. A
ferrite bead or inductor will not introduce aDC voltage drop, but
it will al'so not filter low frequency noise. Dueto thelow current
draw, use of aresistor is the recommended solution. The VAA
pin should also be bypassed with a combination of a 10,F tanta-
lum cap and a 0.01,.F ceramic cap as shown in Figure 109 on
page 392.

If the VAA pin is supplied voltage from alinear regulator, the
designer must ensure that enough current isbeing drawn to keep
the regulator in regulation. The output of alinear regulator is
essentially noise free.

MXT3010 Reference Manual Version 4.1 391

Electrical Parameters

FIGURE 109.Generating a quiet VAA

27 ohm

VDD Plane ° VAA (Pin 37)
10 UF |.01 PF

A

Locate close to
pin 37 of the
MXT3010EP

General decoupling

The MXT3010EP must be properly decoupled to ensure clean
PLL operation. The PLL is most sensitive to noise on the VDD
supply. VDD noise contains both low frequency and high fre-
quency components. Power supply switching noise or insuffi-
cient bulk decoupling causes low frequency VDD noise. The
switching of the digital logic drivers causes high frequency
noise. Both of these noise sources must be taken into account to
ensure optimum performance.

The MXT3010EP has nineteen 3.3V supply pins. There should
be nineteen high frequency decoupling caps on the 3.3V supply
surrounding the chip. Additionally, there should be a minimum
20uF of bulk decoupling on the supply voltage (V DD) nearby to
the chip. This can be a single 22uF tantalum capacitor, or pref-
erably apair of 10uF tantalum capacitors.

In a switching power supply environment, it is beneficial to fil-

ter the switching noise. This can be accomplished by filtering

the MXT3010EP’s VDD with a ferrite bead. The ferrite bead
works in conjunction with the bulk decoupling capacitors to
effectively filter the power supply switching noise. The ferrite
bead must be sized to handle the current draw of the entire chip.
An appropriate part is the FairRite 2743021446 surface mount
ferrite bead.

392 Version 4.1 MXT3010 Reference Manual

MXT3010EP PLL considerations

FIGURE 110.M X T3010EP decoupling capacitor location

’ .01 pF Cap
3.3V Bypass
22 pF Cap
MXT3010EP
° @ 22uF Cap

Figure 110 shows the optimal location of the decoupling capac-
itorsaround the M X T3010EP. This diagram depictsthelocation
of 0805 size 0.01uF capacitors under the chip pin pads on the
bottom side of the board. The capacitors are located closeto the
associated power pins. The capacitor should shareacommonvia
with the power pin of the chip with aminimum length etch. The
same should be done with the ground connections.

Reference clock jitter

ThePLL of the MXT3010EP lockstheinternal chip clock tothe
reference clock supplied to the device. The PLL will not neces-
sarily be able to track jitter which is on the reference clock. If
there is significant jitter on the reference, and the chip clock
does not track it, the jitter will cause areduction in timing mar-
gin at the chip interface.

Jitter on the reference clock can be caused by power supply
noise aff ecting components of the clock generation and distribu-
tion circuit. One potential source of jitter is power supply noise
or poor decoupling of crystal oscillators. Noise on the oscillator
power pin, whether from the board or self-induced, can convert
to timing jitter at the oscillator output. Some devices are better

MXT3010 Reference Manual Version 4.1 393

Electrical Parameters

394

than othersin this aspect of operation. To reduce this noise
source, ensure that the oscillator iswell decoupled according to
the manufacturer’s specifications.

The distribution of the reference clock can also introduce clock
jitter. Designs that use dividers in the reference clock path must
avoid the possibility of simultaneous switching jitter, which can
occur in synchronous counters. PLL clock buffers can also be a
source of jitter, as these devices are generally susceptible to
power supply noise, and can convert this noise to timing jitter.

Circuit design goals

It is desirable to keep VDD noise as low as possible. The PLL
performance may start to degrade for high frequency noise
greater than 40mV p-p and low frequency noise greater than
20mV p-p. The low frequency noise is defined as the noise
below 20 MHz. The high frequency noise is defined as the full
bandwidth noise measurement minus the low frequency noise.
To ensure accuracy, measurements should be performed with a
coaxial probe terminated in 50 ohms.

The PLL is sensitive to the frequency of the noise on VDD. The
above guidelines may be conservative depending upon the
application. Low frequency noise in the 100kHz to 500kHz
range is the most critical.

The recommended VAA decoupling should guarantee less than
2mV p-p noise on the VAA voltage.

The jitter on the reference clock should be kept to less than
500pS peak to peak. The PLL is sensitive to the frequency of this
jitter and may track or filter this jitter based on the jitter fre-
guency and the PLL bandwidth. If the PLL does not track the jit-
ter closely, the board level timing will be affected.

Version 4.1 MXT3010 Reference Manual

cuapter 20 Mechanical and Thermal
|nformation

This chapter providesinformation on the M X T3010EP mechan-
ical and thermal properties.

MXT3010 Reference Manual Version 4.1 395

Mechanical and Thermal Information

MXT3010EP mechanical/thermal information

The MXT3010EP is packaged in a 240-pin thermally enhanced
quad flat-pack.

FIGURE 111.M XT 3010EP package/pin diagram - top view

125 — 34.6+£0.2 o -
T | g 32.0£0.2
alalalatalalatulainlalatulatilsdalatulatalalatatilalatilatalatatulataladulatulstalaialatalalatula latatalalatutulatila A

181 o

MXT3010EP

top view

HOHHHHEHEEEEEEEEEEEBEERE HEREEEEEEHEEHRE B EEEE BB EEEHEREEEE BEEE
I+
o
[aS)

O

y
ﬂHHHHHHHHj%LHH Y

1.25 < 0224005

no
S
o

¥ AAARAAAARRARAAAARARARARARRARARRARARRRAARARRARAARARARAAARARRT

60

396 Version 4.1 MXT3010 Reference Manual

MXT3010EP mechanical/thermal information

FIGURE 112.M XT3010EP package/pin diagram - side view

T
33.6+0.2 0.25
- P MiN
0.09~0.20
_!__40%7"
*‘ LO.S ~0.75
TABLE 106. M XT3010EP package summary
Package 0jc (xC/W) | Bja (xC/W)
Package Type | Body size (mm) Lead pitch (mm) *Still Air *Air Flow
MHSPQFP240| 320x320x30 |05 20 20 14

* These numbers will vary depending on the board stack-up and orientation. All airflow humbers
are quoted with 1m/sec of air flow over the device.

The MXT3010EP isalevel 3 1AW IPC-SM-786A or JESD 22-
A112 device. The MXT3010's safe floor life (out of bag) prior
to solder reflow is 1 week at30°C/60% RH.

MXT3010 Reference Manual Version 4.1 397

Mechanical and Thermal Information

398 Version 4.1 MXT3010 Reference Manual

apPENDIX A ACIONYIMS

Acronym Definition
AAL ATM Adaptation Layer
ABR Available Bit Rate
ACR Available Cell Rate
ATM Asynchronous Transfer Mode
CAM Content Addressable Memory
CBR Constant Bit Rate
Cbv Cell Delay Variation
CDVT Cell Delay Variation Tolerance
Cl Congestion Indicator
CLP Cdll Loss Priority
CPCS Common Part Convergence Sublayer
CH Common Part Identifier
CRC Cyclic Redundancy Check
Css Cell Scheduling System
DMA Direct Memory Access
E1l European 2.048 Mbps rate TDM system
EFCI Explicit Forward Congestion Indicator
ESS Externa State Signals
FIFO First In First Out
GCRA Generic Cell Rate Algorithm
GFC Genera Flow Control
MXT3010 Reference Manual Version 4.1

399

Acronym Definition

HEC Header Error Control

ICS Interchip Communication System
IFO Instruction Field Option

Jr2 96-channel TDM system used by Japan Telephone
MIB Management Information Base
MVIP Multi-Vendor Integration Protocol ™
OAM Operations and Management

PCR Peak Cell Rate

PDU Physical Data Unit

PHY Physica Layer

PIT Programmable Interval Timer

PTI Payload Type |dentifier

RAM Random A ccess Memory

RM Resource Management

RX Receive

SAR Segmentation and Reassembly
SCSA Signal Computing System Architecture, ANSI standard
SbuU Service Data Unit

SHFM Store Halfword to Fast Memory
SRAM Static Random Access Memory
SRTS Synchronous Residual Time Stamp
SWAN Soft-Wired ATM Network

TDM Time Division Multiplexing

T1 24-channel TDM system used in North America
TX Transmit

UBR Undefined Bit Rate

uDT Unstructured Data Transfer

uu User-to-User

VBR Variable Bit Rate

vVC Virtual Channel

VCl Virtual Channel |dentifier

VP Virtual Path

VPI Virtual Path Identifier

400

Version 4.1

MXT3010 Reference Manual

appENDIX B Device lnitialization

This appendix describes the procedures for initializing and down-
loading firmware to the MXT3010. The following information
appearsin this appendix:

* Initializing the MXT3010
» Downloading firmware

« Initializing the Mode Configuration register

MXT3010 Reference Manual \Version 4.1 401

Initializing the MXT3010EP

To initialize the MXT3010EP:
1. Assert RESET _ asynchronously to the input clock, FN.

2. Hold the RESET _ pin low for a period of timeto allow the
PLL to lock. For power-up, hold RESET _asindicated in
“Timing” on page 343. For reset during powered operation,
hold RESET _ for 16 clock ticks.

3. Remove RESET __ synchronously with respect to the input
clock. The reset state continues for 2056 clock ticks follow-
ing the removal of RESET_. The MXT3010EP will not
read or write the COMMIN/COMMOUT registers during
this time,nor will the CIN_BUSY or COUT_RDY flags
function during thistime. Maker recommends that a host
software timer be used between the removal of RESET _
and the beginning of boot download.

Downloading firmware

This section describes:
* How the system determines the boot path
» How the application program uses the output pins
* How the code set is structured
* How to boot the firmware

« Limitations on the size of boot code

How the system determines the boot path

Firmware structured as a single-user code set for the MXT3010
can be loaded through one of three paths:

402 Version 4.1 MXT3010 Reference Manual

Downloading firmware

» Through Portl, from a byte-wide device.
» Through Port2, from a byte-wide device.

» Through the COMMIN register.

The system signals the choice of boot path to the MXT3010 as
the device exits reset mode. During reset, the MXT3010 places
the ICSO_A and ICSO_B pins into tri-state mode. The
MXT3010 senses the state of these pins as RESET _ is removed
to determine the boot method. Each of these pins is pulled either
high or low to signal the appropriate boot path to the MXT3010.
During normal device operation, the ICSO_A and ICSO_B pins
function as outputs.

TABLE 107. Selecting boot mode with ISCO_A and ICSO_B

ICSO_A ICSO_B Boot MODE

0 0 Reserved

0 1 Portl Memory

1 0 Port2 Memory

1 1 COMMIN Register

How the application uses the output pins

After the MXT3010 initialization routine is completed, control

of the device passes to the application program. The application
program can then use the ICSO_A and ICSO_B pins by setting
the appropriate bits in the system register.

MXT3010 Reference Manual Version 4.1 403

404

How the code set is structured

The output of the SWAN Processor’s assembler is one or more
user-code sets. The user-code set includes four fields; see Table
108. The MXT3010 loads a single user-code set at device initial-
ization. Support for loading multiple user-code sets comes from
an intermediate boot loader routine.

TABLE 108. User code set’s four fields

Field | Description Size

1 The starting word address (code address) in Fast 2 bytes
Memory to which the user code set isto be stored.

The number of half words in the user code set. 2 bytes

The user code. variable

The checksum calculated by the host for codeset | 2 bytes
containing all four fields.

As the code set is loaded, the MXT3010 computes a 16-bit
checksum. This checksum is a running 16-bit sum of each half-
word of the user code set. All carree® discarded and not used
as part of the checksum routine. Upon completion of the trans-
fer, the checksum is written to the COMMOUT register. The
host must read the COMMOUT register to clear the COM-
MOUT Busy flag. The host can then compare the checksum to
the checksum contained in the tail of the image block. The
MXT3010 does not read the checksum field of the user-code set
when loading a .Id file from Portl or Port2 memory. The
MXT3010 firmwaredoes read the checksum field when down-
loading a .ubf file.

As the code set is loaded into Fast Memory, the MXT3010 stores
the starting address location. At the completion of the loading
operation, the MXT3010 branches to this location in Fast Mem-
ory to execute the program.

Version 4.1 MXT3010 Reference Manual

Downloading firmware

How to boot

This section describes how to boot from Portl, Port2, and the
COMMIN register.

Booting from Portl

When the Port1 memory boot mode is selected, the MXT3010

reads the user-code set from a Port1-based memory device

(RAM or ROM) beginning at location OxFFF00000. To support
byte-wide boot ROMs, the MXT3010 reads asingle byte from

each 32-bit word location. Therefore, for the host processor to

copy the MXT3010’s boot image into RAM located at
0xFFF00000, it must place a single byte of code into each 32-bit
word location. Align bits (7:0) of the byte-wide boot device with
PIAD (31:24) of the MXT3010.

Address ByteO Byte 1l Byte 2 Byte 3

31 0
0x0000 Not used Not used Not used
0x0004 Not used Not used Not used
0x0008 Not used Not used Not used
0x000C Not used Not used Not used
0x00010 Not used Not used Not used

Not used Not used Not used
Not used Not used Not used
Not used Not used Not used

The MXT3010 issues single-word Portl memory read opera-
tions until all of the fields shown in Table 108, except field #4,
the checksum field, are read from Portl memory. Once these
fields are read and placed into the specified location in Fast
Memory, the MXT3010 writes the result of its checksum opera-
tion into COMMOUT register[31:16], or the Portl memory
address location specified, and jumps to the first word of user
code.

MXT3010 Reference Manual Version 4.1 405

406

Booting from Port2

When the Port2 memory boot mode is selected, the MXT3010
reads the user-code set from a Port2-based memory device, such
asaflash RAM or EEPROM device. The Port2 boot address of
0x0000 maps in non-burst space. Using this mapping, the
MXT3010 can use aslow flash device asthe initialization
device. The MXT3010 inserts seven wait states for each Port2
read operation. To support byte-wide boot ROMs, the
MXT3010 reads a single byte from each 16 bit word of Port2
memory.

Address Byte O Byte 1
15 0

0x0000 Not used
0x0002 Not used
0x0004 Not used
0x0006 Not used
0x0008 Not used

Not used

Not used

Not used

The MXT3010 issues Port2 memory read operations until all of
the fields shown in Table 108, except field #4, the checksum
field, are read from Port2 memory. Once these fields are read
and placed into the specified location in Fast Memory, the
MXT3010 writes the result of its checksum operation into the
COMMOUT register[31:16], or the Port2 memory address|oca
tion specified, and jumps to the first word of user code.

Booting from the COMMIN Register
A boot from the COMMIN register is performed 16 bitsat a
time. The host writesthe block into the COMMIN register using

COMM /0. Thefirst 16 bitsare written from bits (31:16) of the
first image block word, the second 16 bits are written from bits

Version 4.1 MXT3010 Reference Manual

Downloading firmware

(15:0) of thefirst image block word, and so on. The following
diagram shows this process, arbitrarily assigning the letters A,
B, C, and D to represent successive 16-hit quantities.

Host Memory COMMIN_HIGH (R40)
31 16 15 0 First write 31 16
A B —| A |
Cc D Second write 31 16
—_— P
E F | B |
Third write 3l 16
Fourth write |31 5 1?
—_—

The host must write all of the fields shown in Table 108 on
page 404, except field #4, the checksum field. Oncethesefields
are read and placed into the specified location in Fast Memory,
the MXT3010 writes the result of its checksum operation into
the COMMOUT register[31:16], and jumps to the first word of
user code.

Limitations on the size of boot code

Due to address calculation carry limitations, the MXT3010EP
has restrictions on the maximum size of the code it can boot
from the boot image. The restrictions depend upon the boot path

used:

Boot Path Restriction
Port1 4K instructions
Port2 512 instructions
COMMIN register No restrictions

MXT3010 Reference Manual Version 4.1 407

For those boot paths that have restrictions, specialized bootstrap
code can be written. For example, using Port2, the code could
load 512 instructions starting at a512 word boundary. That code
could include asecondary bootstrap program to perform address
calculations and load the remainder of the application indepen-
dent of code size restrictions.

Initializing the Mode Configuration register

408

The Mode Configuration Register(R42) is affected by three pro-
cesses in the MXT3010. These processes proceed serialy, start-
ing at hardware reset.

1. Hardware reset
Hardware reset initializes R42 to all zeros.
2. Operation at boot time

The Mode Configuration register (R42) must be initialized

at boot time since some system aspects of the MXT3010's
operation are controlled by this register. At boot time as the
executable image is loaded into the MXT3010, the first 32-
bit word of the loaded image sets the least-significant eight
mode bits in R42 with the indicated values. For an explana-
tion of these bits, see “R42-write Mode Configuration reg-
ister” on page 201.

The format of this boot word is a bit-mapped 8-bit field.
The state of each of the relevant bits indicates the desired
state of the associated mode bit. Although writes to R42
can only set or clear one bit at a time, the boot word affects
the state of bits [7:0] simultaneously. The micro-boot
sequence parses the boot word and creates the individual
R42 writes needed to affect each bit.

The syntax for the assembler is:

Version 4.1 MXT3010 Reference Manual

Initializing the Mode Configuration register

#defi ne #boot val ue 0x000000zz;'zz is the
;desired value

LIMD R36, #boot_value ;'zz programmed
;to R42
;automatically by
:microboot

The LIMD instruction must be the first instruction in the
executableimage. The register used for this operation must
be the bit bucket (R36).

3. Firmware changes to register value

Although thisregister isautomatically initialized, firmware can
till change the value of this register through the set/clear oper-
ations.

Restrictions on starting addresses

All systems operating in Fast Memory mode 1 have restrictions
on the values that can be used for bootstrap starting addresses.
Systems operating in Fast Memory made 1 should use starting
addresses from the following table:

TABLE 109. Bootstrap starting addresses for Fast Memory mode 1
MXT3010EP - modulo 32K
0x00000
0x08000
0x10000

For applications that must run at a different starting address,
these restrictions can be avoided by using a secondary bootstrap
program.

MXT3010 Reference Manual Version 4.1 409

410 Version 4.1 MXT3010 Reference Manual

APPENDIX C QUICk Reference

This appendix contains duplicate copies of useful charts which
appear elsewhere in this book, plus a summary of the MXT3010
SWAN processor instruction set.

MXT3010 Reference Manual Version 4.1 411

Hardware register summary

TABLE 110. Hardware registers

Location Name Read/\Write
R32 Genera Purpose - 0000 R/W
R33 Genera Purpose - FFFF R/W
R34 Genera Purpose - FFOO R/W
R35 Genera Purpose - 0040 R/W
R36-Write The Bit Bucket w
R37 Genera Purpose R/W
R38 Genera Purpose R/W
R39 General Purpose R/W
R40 COMMOUT/COMMIN(31:16) R/W
R41 COMMOUT/COMMIN(15:0) R/W
R42-Read ESS register R
R42-Write Mode Configuration register Set/Clear
R43-Read Fast Memory Bit Swap register R
R43-Write UTOPIA TX Control FIFO register W
R44 CRC32PRX (15:0) R/W
R45 CRC32PRX (31:16) R/W
R46 CRC32PRY (15:0) R/W
R47 CRC32PRY (31:16) R/W
R48 rla Address register R/W
R49 rla Address register R/W
R50 rla Address register R/W
R51 rla Address register R/W
R52 Alternate Byte Count /ID register R/W
R53 Instruction Base Address register R/W
R54 Programmable Interval Timer (PITO) R/W
R55 Programmable Interval Timer (PIT1) R/W
R56 The Fast Memory Data register R/W
R57-Read Sparse Event/ICS register R
R57-Write Sparse Event/ICS register Set/Clear
R58 Fast Memory Shadow register R/W
R59 Branch register R/W
R60 CSS Configuration register R/W
R61-Read Scheduled Address register R
R62 UTOPIA Configuration register R/W
R63 System register R/W

412 Version 4.1 MXT3010 Reference Manual

ALU instruction field summary

ALU instruction field summary

TABLE 111. MODx fields

Value Modulo Operation Value Modulo Operation
0000 MOD2 1000 MOD512

0001 MODA4 1001 MOD1K

0010 MOD8 1010 MOD2K

0011 MOD16 1011 MOD4K

0100 MOD32 1100 MOD8K

0101 MOD64 1101 MOD16K

0110 MOD128 1110 MOD32K

0111 MOD256 1111 Default

TABLE 112. abc fields

Value

Branch Code Description

000
001
010
011
100
101
110
m

default No branch

BGEZ Branch if greater than or equal to zero
Bz Branch if zero

BLEZ Branch if less than or equal to zero
BLZ Branch if less than zero

BNz Branch if not zero

BNO Branch if no overflow

TABLE 113. AE field

Value

Action

0
1

Conditional execution

Always execute target instructions

TABLE 114. UM field

Value

Action

0
1

Don't update memory
Update memory

MXT3010 Reference Manual

Version 4.1 413

Shift amount summary

TABLE 115. Shift amount chart for SFT, SFTLI, and SFTRI

SFT/SFTLI SFT/SFTRI
(4:0) Shift Left by (4:0) Shift Right by
00000 0 10000 16
00001 1 10001 15
00010 2 10010 14
00011 3 10011 13
00100 4 10100 12
00101 5 10101 11
00110 6 10110 10
00111 7 10111 9
01000 8 11000 8
01001 9 11001 7
01010 10 11010 6
01011 11 11011 5
01100 12 11100 4
01101 13 11101 3
01110 14 11110 2
01111 15 11111 1
TABLE 116. Shift amount chart for SFTC and SFTCI

(3:0) Shift left circular by (3:0) Shift left circular by

0000 0 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15

414 Version 4.1 MXT3010 Reference Manual

Shift amount summary

TABLE 117. Shift amount chart for SFTA

(4:0) Shift right arithmetic by (4:0) Shift right arithmetic by
00000 O 10000 16
00001 1 10001 15
00010 2 10010 14
00011 3 10011 13
00100 4 10100 12
00101 5 10101 11
00110 6 10110 10
00111 7 10111 9
01000 8 11000 8
01001 9 11001 7
01010 10 11010 6
01011 11 11011 5
01100 12 11100 4
01101 13 11101 3
01110 14 1110 2
01111 15 11111 1

TABLE 118. Shift amount chart for SFTAI

Shift right Shift right

(3:0) arithmetic by (3:0) arithmetic by
0000 0 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15

MXT3010 Reference Manual Version 4.1 415

Branch instruction field summary

TABLE 119. The ESSfield (condition codes)

ESS Condition ESS Condition

ESSO ICSI_A ESS8 Sparse event register, bit OR

ESS1 ICSI_B ESS9O RXBUSY counter >0

ESS2 TXFULL counter < 2 ESS1I0 TXFULL counter = full

ESS3 RXBUSY counter = 4 ESS11 DMA1 Output or Queue
stage busy

ESS4 Assigned Cell Flag ESS12 DMAZ2 Qutput or Queue
stage busy

ESS5 CSSoperationin progress ESS13 DMA1 Queue stage busy

ESS6 COMMIN_BSY ESS14 DMAZ2 Queue stage busy

ESS7 COMMOUT_BSY blank Unconditional Branch

TABLE 120. The S-bit field

S Branch Result
0 Branch istaken if condition =0
1 Branch istaken if condition =1

TABLE 121. The C-bit field

Committed

Condition Conditional Never Slot
Type of Code Operator Execute Instruction
Branch Satisfied? (C-hit) Operator Executed?
Conditional Yes Note 1 Note 2 Yes
Conditional No Absent Note 2 Yes
Conditional No Present Note 2 No
Unconditional Note 1 Absent Yes
Unconditional Note 1 Present No

TABLE 122. The CSO field

CSO Hex /Binary Value Operation
DRXBUSY EO / 1110 0000 Decrement RXBUSY counter
DRXFULL E1 / 1110 0001 Decrement RXFULL counter
ITXBUSY C2 / 11000010 Increment TXBUSY counter
ITXFULL C3 / 1100 0011 Increment TXFULL counter

416 Version 4.1 MXT3010 Reference Manual

DMA instruction field summary

DMA instruction field summary

TABLE 123. Use of the | -bit

Bits[26] Description

0 Do not increment the rlaregister

1 Increment rlaregister upon completion of DMA operation

TABLE 124. Use of the BC field

_ DMA+
DMA Instructions Instructions
Bits[26:19] Bits[25:19] Description?
0 0 Transfer O Bytes.
2 2 Transfer 2 bytes
4 4 Transfer 4 bytes
6 6 Transfer 6 bytes
126 126 Transfer 126 bytes
128 Not Available Transfer 128 bytes
- Not Available -
254 Not Available Transfer 254 bytes

a. See “Use of odd BC values” on page 287.

TABLE 125. Use of the Control byte

Bit Name Function

9 IBI Internal flag. Not used by programmers.

8 CRCX CRC32 Partial Result is generated based on CRC32PRX

register’s value and the result is deposited into
CRC32PRX (R44/R45).

7 CRCY If set, a CRC32 Partial Result is generated based on
CRC32PRY register’s value and the result is deposited
into CRC32PRY (R46/R47)

6 POD If set, TXBUSY is incremented upon the completion of
DMA reads, and RXFULL is decremented upon comple-
tion of DMA writes.

5 ST If set, a “Silent Transfer” is performed.

MXT3010 Reference Manual Version 4.1 417

Instruction summary

TABLE 126. Instruction summary

Instruction Function & Format Pg.
ADD Add registers page
ADD (rsa,rsb) rd [MODx][abc][AE][UM] 234
ADDI Add register and intermediate page
ADDCI (rsa,usi) rd [MODx][abc][UM] 235
AND AND registers page
AND (rsa,rsb) rd [MODx][abc][AE][UM] 236
ANDI AND register and immediate page
ANDI (rsa,si) rd [abc][UM] 237
BF Branch Fast Memory Shadow Register page
BF [ESS#/(0]11)/[Cl][(cso)][N] 270
BFL Branch Fast Memory Shadow Register and link page
BFL [ESS#/(0]11)/[C]][(cs0)][N] 271
Bl Branch immediate page
BI wadr [ESS#/(0[1)/[C]][(cs0)][N] 272
BIL Branch immediate and link page
BIL wadr [ESS#/(0|1)/[C]][(cs0)][N] 273
BR Branch register page
BR wadr [ESS#/(0|1)/[C]][(cs0)][N] 274
BRL Branch register and link page
BRL wadr [ESS#/(0|1)/[C]][(cs0)][N] 275
CMP Compare two registers page
CMP (rsa,rsb) [abc][AE] 238
CMPI Compare register and immediate page
CMPI (rsa,g) [abc] 239
CMPP Compare two registers with previous page
CMPP (rsa,rsb) [abc][AE] 240
CMPPI Compare register and immediate with previous page
CMPPI (rsa,si) [abc] 241
DMAI1R Direct memory operation - Port 1 read page
DMAI1R rsalrsh, rla[BC/#][CRC { X,Y}][POD] 289
[ST]

418 Version 4.1 MXT3010 Reference Manual

Instruction summary

Instruction Function & Format Pg.
DMA1R+ Direct memory operation - Port 1 read page
DMAI1R+ rsalrsh, rla[BC/#|[CRC { X,Y}][POD] 289
[ST]
DMAI1W Direct memory operation - Port 1 write page
DMA1W rsalrsb, rla[BC/#[CRC { X,Y}][POD] 290
[ST]
DMA1W+ Direct memory operation - Port 1write page
DMA1W+ rsalrsh, rla[BC/#][CRC { X,Y}][POD] 290
[ST]
DMAZ2R Direct memory operation - Port 2 read page
DMAZ2R rsalrsh, rla[BC/#][POD] 291
DMAZ2R+ Direct memory operation - Port 2 read page
DMAZ2R+ rsalrsh, rla[BC/#][POD] 291
DMA2W Direct memory operation - Port 2 write page
DMA2W rsalrsh, rla[BC/#][POD] 292
DMA2W+ Direct memory operation - Port 2write page
DMA2W+ rsalrsh, rla[BC/#][POD] 292
FLS Find last set page
FLS (rsa,rsh) rd [abc][AE][UM] 242
LD Load register page
LD rd @rla[IDX/#] 321
LDD Load double register page
LDD rd @rla[IDX/# 322
LIMD Load immediate page
LIMD rd,li [UM] 243
LMFM Load multiple from Fast Memory page
LMFM rd @rsalrsb #HW [LNK] 308
MAX Maximum of two registers page
MAX (rsarsb) rd [MODx][abc][AE][UM] 244
MAXI Maximum of register and intermediate page
MAXI (rsa,si) rd [abc][UM] 245
MIN Minimum of two registers page
MIN (rsarsb) rd [MODx][abc][AE][UM] 246
MINI Minimum of register and intermediate page
MINI (rsa,s) rd [abc][UM] 247

MXT3010 Reference Manual Version 4.1 419

Instruction Function & Format Pg.

OR OR registers page
OR (rsa,rsb) rd [MODXx][abc][AE][UM] 248
ORI OR register and immediate page
ORI (rsa,s) rd [abc][UM] 249
POPC Service schedule page
POPC rd@rsb 278
POPF POP fast page
POPC rd@rsb 279
PUSHC Schedule page
PUSHC rsa@rsb 280
PUSHF PUSH Fast page
PUSHF rsa@rsb 281
SFT Shift signed amount page
SFT (rsarsb) rd [MODx][abc][UM] 250
SFTA Shift right arithmetic page
SFTA (rsa,rsb) rd [MODXx][abc][UM] 251
SFTAI Shift right arithmetic immediate page
SFTAI (rsa,usa) rd [MODXx][abc][UM] 252
SFTC Shift left circular page
SFTC (rsarsb) rd [MODx][abc][UM] 253
SFTCI Shift circular immediate page
SFTCI (rsa,usa) rd [MODXx][abc][UM] 254
SFTLI Shift left immediate page
SFTLI (rsa,usa) rd [MODx][abc][UM] 255
SFTRI Shift right immediate page
SFTRI (rsa,usa) rd [MODXx][abc][UM] 255
SHFM Store halfword to Fast Memory page
SHFM @rsalrsh 31
SRH Store register halfword page
SRH @rsalrsb [adr][reg][Isbs] 312
ST Store register page
ST rsa @rla[IDX/#] 323
STD Store double register page
STD rsalrsb @rla[IDX/#] 324

420 Version 4.1 MXT3010 Reference Manual

Instruction summary

Instruction Function & Format Pg.
SUB Subtract registers page
SUB (rsa,rsb) rd [MODX][abc][AE][UM] 256
SUBI Subtract register and intermediate page
SUBI (rsa,usi) rd [MODXx][abc][UM] 257
XOR XOR registers page
XOR (rsarsb) rd [MODx][abc][AE][UM] 258
XORI XOR register and intermediate page
XORI (rsa,usi) rd [abc][UM] 259

MXT3010 Reference Manual Version 4.1 421

422 Version 4.1 MXT3010 Reference Manual

| ndex

A

AC Electrical Characteristics 385

Acronyms 399

Address 123

Addressindex 141

Address masking (Z-bit) 296

Address spaces 11

Al pins 141

Alternate address field (adr) in SRH 306

Alternate Byte Count/ID register (R52) 207, 209,
287

ALU branch operations 228, 327

ALU instructions 19, 223

Assigned Cell flag 31, 200, 278

ATM Header 62

Automatic memory update 228

Automatic-turnaround 114

Available Bit Rate (ABR) 35

B

Big-endian design 11
Bit 26 usage in DMA instructions 285

MXT3010 Reference Manual

Bit Bucket register (R36) 197
Boot bit 210
Boot path 402
Booting
From Portl 405
From Port2 406
From the COMMIN Register 406
Branch Fast Memory instructions, use of R58 215
Branch instructions 19, 261
Basic Branch instructions 19
Target address 20
Branch register (R59) 216, 268
Branch with counter control 329
Branch with shadow address 329
Bus driving, turnaround, and holding 158
Bus parking 101
Byte Count (in R52) 209
Byte Count field (BC) 286
Byte manipulations on Portl 108
Byte swap support, load and store instructions 319

\ersion 4.1 423

C
C bit 265
Cell Buffer RAM 59
Access methods 64
Gather 65, 317
Linear 65, 317
Accessing 316
Internal cell storage 60
Receive cell buffer size 220
Segmentation 60
Transmit cell buffer size 220
UTOPIA Configuration register 60
Cell Buffer RAM Address Method
selection 208
Cell delay variation (CDV) 34
Cell fields 62
Cell formats 62
52-byte 63
56-byte 63
Cdll length control 201
Cell Scheduling System 27
Accessing Fast Memory 51
Assigned Cell flag 31
Calculating time dlots 34
Cell-scheduling process 30
Channel Descriptor 32, 40
Connection ID table 28
CSS Configuration register (R60) 41, 217
Error flag 217
GCRA 35
Initializing R60 217
POPC instruction 31
Programming 38
PUSHC instruction 32, 40
Scheduling a connection 32
Scheduling Error 41
Scoreboard 28
Accessing 316, 318
Initializing 318
Servicing a connection 31
CellMaker-155
description xxi
CellMaker-622
description xxi
Channel Descriptor 32, 40

424 Version4.1

CIN_BUSY 178, 199-200, 359
CircuitMaker
description xxi
Clean Up 117, 119, 127
Code set structure 404
Comm In Data Strobe 135
COMM SEL transfer 119, 127
COMMIN/COMMOUT register 178
Committed slot 229, 231, 264
Restrictions 233, 266
Communication Register I/O transfers 133
Comparing 32-bit numbers 240
Condition code (ESSfield) 263
Conditional operator (C-hit) 265
Configuration information, reading during
reset 181
Connection ID 298
Connection ID table 28
Address bits 44
Address generation 44
Addressin R61 218
Base address 217
Control field (DMA instructions) 287
Control signal timing 359
Counter system operations (CSO) 269
COUT_RDY 178, 199-200, 359
CRC acceleration
Using SRM 305
CRC32PRX and CRC32PRY registers (R44-
R47) 207
CRC32X Error Indicator 213
CRC32Y Error Indicator 213
CRCX bit 209, 288
CRCY bit 209, 288
CSO option 269
CSS Configuration register (R60) 217, 280
CSSeror flag 217
CSS operation in progress 200

D
Data alignment

DMA operations 107
DataRead 115, 120
DataWait 116, 121, 124, 128
Data Write 124, 128

MXT3010 Reference Manual

Decoupling
Genera 392
VAA 391
DevicelD field 209
Deviceinitialization 401
Direct Memory Operation - Portl Read (DMA1R
and DMA1R+) 289
Direct Memory Operation - Portl Write (DMA1W
and DMA1IW+) 290
Direct Memory Operation - Port2 Read (DMAZ2R
and DMA2R+) 291
Direct Memory Operation - Port2 Write (DMA2W
and DMA2W+) 292
Dispatched instructions 13
DMA instructions 284
Instruction field options 99
DMA Plus control 202, 285
DMA Plusinstruction 107
DMAZ1 out or queue stage busy 200
DMA1 queue stage busy 200
DMAZ2 out or queue stage busy 200
DMAZ2 queue stage busy 200
Downloading firmware 402

E

Early end 202

Electrical parameters 383

ESSfield 263

Examples
Add and Subtract 326
And, Or, Exclusive-or 334
Branching 328
Compare, Load Immediate, Max, Min 338
Load and Store Fast Memory 331
Load and Store Internal RAM 332
Shifts 335

External State Signals register (R42) 200

F

Fast Memory
Bus contention avoidance 55
Byte Swap register (R43) 203
Cell Scheduling System access 51
Chip Enableinputs 52
Configurations supported 52

MXT3010 Reference Manual

Interface operation 364

Loading 48

Memory sizes 52

Mode control 202

Operating modes 52-53

Priority of various accesses 51

Processor access 48

RAM selection 52

Sequence diagrams 56

SHFM instruction 50

SRH instruction 50

Storing 50

SWAN processor access 51
Fast Memory Byte Address generation 296
Fast Memory Byte Swap register (R43) 203
Fast Memory Data register (R56) 50, 212
Fast Memory port 47
Fast Memory Shadow register (R58) 215, 270
Fast Memory timing 345
Find First Set instruction using R43 203
Flags

Overflow Flag 225

G
GA, GB, GC, and GD registers 208, 314
Gather access 65, 317
General Purpose registers

(R32) 193

(R33) 194

(R34) 195

(R35) 196

(R37-R39) 198
Generic Cell Rate Algorithm (GCRA) 35
Glossary 399

H
Hardware registers (reg field) in SRH 307
HEC 62
Control 201
Generation
Use of R32 193, 202
Use of R33 194
Generation and checking 25
Host Communication registers (R40-R41) 199
HW field 295

\ersion 4.1

HW field limitations when linking 295

| bit 285

I/O Performance Levels 385
IBI bit 288

ICSI 180, 200, 213, 359

Input enables 221

ICSO 180, 213, 359

Output enables 221

Index field (IDX) 315
Input clock details 344
Input pins 180

Instruction Base Address register (R53) 210,

262

Instruction cache 15

Cache organization and mapping 15
Instruction prefetch 17

Observing cached program flow 18
Using the Cache 17

Instruction classes 18

Instruction features 10

Instruction reference examples 325
Instruction set summary 411
Instruction space 14, 263
Instructions

426

Abbreviations used in 188, 190

Add Register and Immediate (ADDI) 235

Add Registers (ADD) 234

And Register and Immediate (ANDI) 237

And Registers (AND) 236
Branch Fast Memory Shadow Register
(BF) 270

Branch Fast Memory Shadow Register and

Link (BFL) 271
Branch Immediate (Bl) 272
Branch Immediate and Link (BIL) 273
Branch Register (BR) 274
Branch Register and Link (BRL) 275
Compare Register and Immediate with
Previous (CMPPI) 241
Compare Two Registers (CMP) 238
Compare Two Registers and Immediate
(CMPI) 239
Compare Two Registers with Previous

\ersion 4.1

(CMPP) 239-240

Find First Set (How to implement) 242

Find Last Set (FLS) 242

Load Double Register (LDD) 322

Load Immediate (LIMD) 243

Load Multiple from Fast Memory
(LMFM) 308

Load Register (LD) 321

Maximum of Register and Immediate
(MAXI) 245

Maximum of Two Registers (MAX) 244

Minimum of Register and Immediate
(MINI) 247

Minimum of Two Registers (MIN) 246

OR Register and Immediate (ORI) 249

OR Registers (OR) 248

Schedule - Fast (PUSHF) 281

Schedule (PUSHC) 280

Service Schedule - Fast (POPF) 279

Service Schedule (POPC) 278

Shift Circular Immediate (SFTCI) 254

Shift Left Circular (SFTC) 253

Shift Left Immediate (SFTLI) 255

Shift Right Arithmetic (SFTA) 251

Shift Right Arithmetic Immediate
(SFTAI) 252

Shift Right Immediate (SFTRI) 255

Shift Signed Amount (SFT) 250

Store Double Register (STD) 324

Store Halfword to Fast Memory (SHFM) 311

Store Register (ST) 323

Store Register Halfword (SRH) 312

Subtract Register and Immediate (SUBI) 257

Subtract Registers (SUB) 256

XOR Register and Immediate (XORI) 259

XOR Registers (XOR) 258

Instructions, list of 185
Interchip communication 180

J
JTAG and PLL pin terminations 377
JTAG scan 365

L
Last Transfer 117, 119, 121, 127, 129

MXT3010 Reference Manual

Least significant bits (Isbs) field in SRH 307 Pin listings 378

Linear access 65, 317 Pin types 381
Linking option and the Branch Register (R59) 268 Pinout 368
LMFM instruction 48-49 PITO
#HW field 49 Control 202
LNK option 49, 294, 299 Time out indication 213
LNK option, usage example 299 Timer operation 211
Load and Store Fast Memory instructions 293 Useof R54 211
Load and Store Internal RAM Instructions 313 PIT1
Local Addressregisters (rla) (R48-R51) 208 Control 202
Logical state identifier (S-bit) 264 Time out indication 213
Timer operation 211
M Useof R55 211
Maximum Burst Size 35 PLL considerations 390
Maximum ratings 384 POD hit 288
Mechanical and thermal information 395 PODs 109
Memory alignment regquirements for LMFM and POPC instruction
LNK 303 Timing 42
Memory update, automatic 228 POPF instruction
Mode Configuration register (R42) 201, 285, 408 Timing 42
Modulo arithmetic 226, 326 Port interface
MXT3010 Command gqueues 100
description xxi Active stage 101
MXT3020 Queue stage 101
description xxi Testing status 101
DMA command format 98
N Instruction field options 99
N bit 265 Overview 98
NC bit 16, 210 Port1 DMA Controller
Nullify operator (N-bit) 265 Basic protocol 110

Byte manipulations 108

¢ _ N Control signals 111

Operating conditions 384 CRC32 generator 103

Output pins 180, 403 Acceleration 104

Overflow flag 225, 234-235 Address holding registers 105

Byte boundaries 108

P _ Pipelined operations 104

PlABORT_sgna_l 163 Silent transfers 105

Pacing the transmission rate of cells 37 Mapping rsa and rsb to address bits 110
Back pressure 37 PODs 109
External clock 37 Sequence diagrams

Package 396 Comm /O transfers 133

P_eak_CeII Rate 35 State tables

Pin diagram 397 Comm /O transfers 133

Pin information 367 Port1 Operation Control 202

MXT3010 Reference Manual \ersion 4.1 427

Port1 timing 352
Port2 DMA Controller
Addressindex 141
Basic protocol 137
Burst and non-burst operation 109
Control signals 141
Mapping rsaand rsb to address bits
(burst) 137
Mapping rsaand rsb to address bits (non-
burst) 139
Sequence diagrams
Non-burst read transfer 144, 151, 155
Write transfers 147
State tables
Read transfers 142, 146, 150, 154
Port2 Operation 202
Port2 timing 356
Post-DMA Operation Directives (PODs) 109
Post-increment option on rla operations 107
Power sequencing 386
Program Counter 11
Programmable Interval Timer registers (R54-
R55) 211
PUSHC instruction 40
Scheduled Address register 218
Timing 42
PUSHC/POPC instruction buffer 42
PUSHF instruction
Timing 42

Q
Quick reference 411

R
R54 control 202

Bit Bucket register (R36) 197

Branch register (R59) 216

CRC32PRX and CRC32PRY registers (R44-
R47) 207

CSS Configuration register (R60) 217

External State Signals register (R42) 200

Fast Memory Byte Swap Register (R43) 203

Fast Memory Data register (R56) 212

Fast Memory Shadow register (R58) 215

Flag registers 24

GA, GB, GC, GD 314

General purpose (R32) 193

General purpose (R33) 194

General purpose (R34) 195

General purpose (R35) 196

General purpose (R37-R39) 198

Host Communication registers (R40-
R41) 199

Initializing 191

Instruction Base Address register (R53) 210

List of 184, 191

Local Address registers (rla) (R48-R51) 208

Mode Configuration register (R42) 201

Overflow flag register 24

Pipeline feedback 21

Programmable Interval Timer registers (R54-
R55) 211

Register types 21

Scheduled Address register (R61) 218

Sparse Event/ICS register (R57) 213

Specifying in SWAN instructions 190

System register (R63) 221

Types 189

UTOPIA Configuration register (R62) 219

UTOPIA Control FIFO register (R43) 205

R55 control 202 Reset 402
RD register choices for LMFM 299-300 Reset timing 360
Receive Cell Buffer Size 220 Restrictions

Receive Cell Status word 63, 78

Receive header reduction 91

Reference clock jitter 393

Registers
Accessrules 22
Alternate Byte Count/ID register (R52) 209
Assigned Cell flag register 24

428 Version4.1

Accessto rlaregister 285, 315
Accessing destination of POPC 278
Choice of destination for POPC 278
CIN_BSY and COUT_RDY 179
Committed slot 233

LMFM instruction timing 309
Portl Addressing 111

MXT3010 Reference Manual

RLA Increment bit (i-bit) 285
RLA increment option 107
RLA register

Choicesfor rlaregister 208, 314
RXBUSY counter 79, 200
RXFULL

Counter 81

Decrementing 109

State indicator 213

S
Shit 264
SAR PDU 62
Scheduled Address register (R61) 33, 218
Scoreboard 28
Address hits 44
Address generation 44
Initialization 45
Section size selection 217
Sections 46
Size 45
Scoreboard/Cell Buffer selection 208
Segment ID 262
Segment ID bits 210
Sequence diagrams
CIN_BUSY and COUT_RDY 179
Comm 1/O transfer 133
Fast Memory 56
Port2 144, 147, 151, 155
UTOPIA Port 94
SHFM instruction 50
SHFM instruction, use of R56 212
Signal descriptions 369
Clock, control, and test signals 375
Fast Memory controller 373
Inter-chip and communication register 374
Portl 370
Port2 371
Power and ground pins 376
UTOPIA Port 372
Signed arithmetic 225
Silent transfers 105, 288
Sparse Event register bit OR 200
Sparse Event register enables 221
Sparse Event/ICS register (R57) 180, 213

MXT3010 Reference Manual

SPICE models 381
SRH instruction 50
ST hit 288
ST option 105
Stalls
Load Double Register 322
Load Register 321
Store Double Register 324
Store Register 323
With LMFM instruction 309
With SHFM instruction 311
Subroutine linking 268
Sustained Cell Rate 35
SWAN instruction set 185
Swap field 319
System register (R63) 91, 221

T
Target address

Branch instructions 262

Cell scheduling 277

Load and Store Internal RAM 315
Target field 263
Timing 343

Control signals 359

Definition of switching levels 343

Fast Memory interface 345

Portl 352

Port2 356

Reset 360

UTOPIA interface 348
Timing restrictions

LMFM instruction 309
Transfer complete

Byte count zero

Early end 162
Standard end 161

External abort (PLABORT) 163
Transmit Cell Buffer Size 220
TXBUSY

Incrementing 109, 206

State indicator 213
TXFULL Counter 200

\ersion 4.1

429

U
UM address generation 301
UM option 49, 228, 294
UM option, usage example 301
Unconditional branch 200
Unspecified Bit Rate (UBR) 35
User Header 62
UTOPIA Configuration register (R62) 60, 71,
88, 92-93, 219
UTOPIA Control FIFO register (R43) 205
UTOPIA port 69
Cell formats 74
Clock frequency selection 220
Clock phases 73
Configuration information summary 93
Control FIFO register 83
CRC10 generation and checking 87
Data bus width selection 219
Generating and inserting CRC10 205
Inserting an unassigned cell 205
Level 1 and 2 configurations 90
Level 2 configurations 89
Most significant PHY address selection 219
Multi-PHY support 88
Number of PHY's selection 219
Operating modes
16-bit 71
8-bit 71
Overview 70
Post-DMA operative directive (POD) 82
Receive cell flow 77
Receive Cell Status word 78
Receiver counters (RXBUSY, RXFULL) 78
Receiver Enable (RXENB_) 82
Receiver reduction mask 222
Resetting 71
Selecting address of target PHY 205
Selecting cell length 72
Selecting HEC operation 72
Selecting operating speed 72
Selecting transmit/receive modes 72
Sequence diagrams 94
Transmit cell flow 82
Transmit Enable (TXENB_) 84
Transmitter counters (TXBUSY,

430 \ersion 4.1

TXFULL) 84
TXBUSY counter 84
TXFULL counter 86
UTOPIA Port Post Operative Directive
(POD) 288
UTOPIA Receiver Reduction Mode Enable
Bit 220

\%
Variable Bit Rate (VBR 35
VPI/VCI 222

z
Z-bit 296

MXT3010 Reference Manual

	Preface
	Maker Products
	Using this manual
	Contacting Maker Support Services
	Changes Installed in This Version of the Manual

	CHAPTER 1 Introduction
	MXT3010 features
	FIGURE 1. MXT3010 and surrounding system devices

	MXT3010 subsystems
	What information is in this manual

	CHAPTER 2 The SWAN Processor
	The SWAN advantage
	SWAN’s instructions and address spaces
	Instruction features
	Address spaces
	FIGURE 2. SWAN processor address spaces and access instructions

	Instruction execution
	Instruction space organization
	FIGURE 3. SWAN instruction space

	Instruction cache
	Cache organization and mapping
	FIGURE 4. Formation of the page offset and the instruction tag

	Using the Cache
	Instruction prefetch
	Observing cached program flow

	SWAN processor instruction classes
	TABLE 1. SWAN processor instruction classes
	Arithmetic Logic Unit (ALU) instructions
	Branch instructions
	FIGURE 5. Target address format in Fast Memory
	TABLE 2. Methods of specifying the branch target field

	Registers
	FIGURE 6. Pipeline feedback
	TABLE 3. Hardware registers requiring one instruction delay
	TABLE 4. Hardware registers requiring two instruction delays
	Flag registers

	HEC generation and check circuit

	CHAPTER 3 The Cell Scheduling System
	How the Cell Scheduling System works
	TABLE 5. Scoreboard sectioning control
	FIGURE 7. Connection ID entries

	Data transmission - servicing and scheduling
	Servicing
	Scheduling
	FIGURE 8. Servicing and scheduling
	Calculating target time slots

	Pacing the transmission rate of cells
	Programming the Cell Scheduling System
	FIGURE 9. Scoreboard operation

	Guaranteeing the availability of a location in the Connection ID table
	The PUSHC/POPC instruction buffer
	POPC, PUSHC, POPF, and PUSHF instruction operation
	POPC and PUSHC timing
	POPF and PUSHF timing
	Connection ID table and Scoreboard addressing
	FIGURE 10. Connection ID table address generation
	TABLE 6. Connection ID table address bits
	FIGURE 11. Scoreboard address generation
	TABLE 7. Scoreboard address bits

	Initializing the Scoreboard
	Selecting a Scoreboard size
	Supporting multiple Scoreboard sections

	CHAPTER 4 The Fast Memory Interface
	SWAN processor accesses to Fast Memory
	Loading
	FIGURE 12. Load Fast Memory instruction

	Storing
	FIGURE 13. Store Fast Memory instruction

	Cell Scheduling System accesses to Fast Memory
	SWAN executable fetches from Fast Memory
	Fast Memory configurations
	Memory sizes supported
	FIGURE 14. Fast Memory SRAM options

	RAM selection and configuration
	Mode 0 operation
	TABLE 8. Comparison of Mode 0 and Mode 1 operation
	FIGURE 15. Mode 0 design example

	Mode 1 operation
	FIGURE 16. Mode 1 design example

	Bus contention avoidance

	Fast Memory sequence diagrams
	FIGURE 17. Fast Memory read operations - single bank
	FIGURE 18. Fast Memory write operations - single bank
	FIGURE 19. Fast Memory reads and writes - back-to-back and dual bank

	CHAPTER 5 The Cell Buffer RAM
	Internal cell storage in the Cell Buffer RAM
	TABLE 9. UTOPIA Configuration control of the Cell Buffer RAM
	FIGURE 20. Cell Buffer RAM organization
	FIGURE 21. Cell fields defined
	TABLE 10. Cell field functions
	FIGURE 22. Receive cell organization: 52-byte and 56-byte cells

	Cell Buffer RAM memory construction
	FIGURE 23. Gather method accesses

	Cell Buffer RAM access
	FIGURE 24. Cell Buffer RAM access

	CHAPTER 6 The UTOPIA port
	UTOPIA port interface overview
	Features
	Operating modes
	TABLE 11. UTOPIA port data bus width selection
	TABLE 12. UTOPIA port Tx and Rx pin utilization in 16-bit mode
	FIGURE 25. The UTOPIA port: 8/8 and 16-bit modes
	TABLE 13. Cell length and HEC control
	TABLE 14. UTOPIA port clock selection
	FIGURE 26. Clock phases for RX/TX CLK = 1/2 Internal Clock
	FIGURE 27. Clock phases for RX/TX CLK = 1/4 Internal Clock

	UTOPIA cell formats
	FIGURE 28. UTOPIA 8-bit and 16-bit cell formats
	FIGURE 29. HEC-enabled 52-byte mode
	FIGURE 30. HEC-disabled 52-byte mode
	FIGURE 31. HEC-enabled 56-byte mode
	FIGURE 32. HEC-disabled 56-byte mode

	Receive cell flow
	UTOPIA receiver counters
	FIGURE 33. The RXBUSY counter
	The RXBUSY counter
	FIGURE 34. The RXFULL counter

	The RXFULL counter

	Transmit cell flow
	UTOPIA transmitter counters
	FIGURE 35. The TXBUSY counter

	The TXBUSY counter
	FIGURE 36. The TXFULL counter

	The TXFULL counter
	CRC10 generation and checking support

	Multi-PHY support
	TABLE 15. Bit assignments for multi-PHY operation
	FIGURE 37. Level 2 PHY configurations
	FIGURE 38. Mixed Level 1 and Level 2 PHY configuration

	Receive Header Reduction hardware
	TABLE 16. Receive Header Reduction control
	TABLE 17. Receive Header Reduction enable bit

	UTOPIA port configuration summary
	TABLE 18. UTOPIA configuration information

	UTOPIA port sequence diagrams
	FIGURE 39. UTOPIA Port receive timing - single PHY, 8-bit mode
	FIGURE 40. UTOPIA Port transmit timing - single PHY, 8-bit mode
	FIGURE 41. UTOPIA Port receive full timing - single PHY, 8-bit mode
	FIGURE 42. UTOPIA Port transmit full timing - single PHY, 8-bit mode

	CHAPTER 7 The Port1 and Port2 Interfaces
	Port interface overview
	TABLE 19. Characteristics of Port1 and Port2

	The Port DMA command queues
	Port1 and Port2 DMA command queues
	FIGURE 43. DMA command queues for the MXT3010EP

	Testing DMA Controller queues with the ESS bits
	TABLE 20. ESS Bits for DMA Controller status
	TABLE 21. Example of DMA Controller status bit utilization

	Port Controller features
	The Cyclical Redundancy Check 32 generator for Port1
	TABLE 22. Specification of the CRCX/CRCY instruction field option

	Cyclical Redundancy Check operation acceleration
	Silent transfers
	Post-increment option on rla operations
	Data alignment
	Byte manipulations on Port1
	TABLE 23. Valid and invalid first, mid-cell, and last transfers.

	Post-DMA Operation Directives (PODs)

	Burst and non-burst operation (Port2)
	Port Operations
	Port1 basic protocol
	FIGURE 44. Diagram of Port1 DMA instruction bits
	TABLE 24. Port 1 DMA instruction bit mapping
	Port1 control signals
	Restrictions on Port1 Addressing
	TABLE 25. Signals to control Port1 transfers

	The Port1 control state machine
	General information concerning DMA transfers
	TABLE 26. State table for the Port1 DMA burst read state machine
	FIGURE 45. Port1 DMA Read transfer with a Wait state
	FIGURE 46. Port1 DMA Read transfer without a Wait state

	Port1 DMA write transfers
	TABLE 27. State table for the Port1 DMA burst write state machine
	FIGURE 47. Port1 DMA Write transfer with a Wait state
	FIGURE 48. Port1 DMA Write transfer without a Wait state

	Multiple Port1 Read and Write Transfers
	FIGURE 49. Cut-and-Paste Version of Port1 Read
	FIGURE 50. Cut-and-Paste Version of Port1 Write

	Communication register I/O transfers
	TABLE 28. State table for Port1 communication I/O state machine
	FIGURE 51. COMMIN write followed by COMMOUT read

	Port2 basic protocol
	FIGURE 52. Diagram of Port2 burst DMA instruction bits
	TABLE 29. Port2 burst DMA instruction bit mapping
	TABLE 30. Another view of Port2 burst DMA instruction bit mapping
	FIGURE 53. Diagram of Port2 non-burst DMA instruction bits
	TABLE 31. Port2 non-burst DMA instruction bit mapping
	TABLE 32. Another view of Port2 non-burst DMA instruction bit mapping
	Multi-function AI pins (P2AI[3:0])
	Port2 control signals
	TABLE 33. Signals to control Port2 transfers

	The Port2 control state machine
	Port2 DMA burst-mode read transfers
	TABLE 34. State table for the Port2 DMA burst-mode read state machine
	FIGURE 54. Port2 DMA burst-mode Read transfer with a Wait state
	FIGURE 55. Port2 DMA burst-mode Read transfer without a Wait state

	Port2 DMA burst-mode write transfers
	TABLE 35. State table for the Port2 DMA burst write state machine
	FIGURE 56. Port2 DMA burst-mode write transfer with a Wait state
	FIGURE 57. Port2 DMA burst-mode write transfer without a Wait state

	Port2 DMA non-burst-mode read transfers
	TABLE 36. State table for the Port2 DMA non-burst-mode read state machine
	FIGURE 58. Port2 DMA non-burst-mode Read transfer.

	Port2 DMA non-burst-mode write transfers
	TABLE 37. State table for the Port2 DMA non-burst-mode write state machine
	FIGURE 59. Port2 DMA non-burst-mode Write transfer.

	Additional Port1 and Port2 Design Information
	Arbitrating access to Port1
	FIGURE 60. System example for Port1 bus.

	Simplified Port2 interfaces
	Bus driving, turnaround, and bus parking
	Data Alignment

	Transfer complete
	Byte Count zero
	FIGURE 61. DMA Read transfer with standard END_ signal
	FIGURE 62. DMA Read transfer with Early END

	External DMA cycle abort (P1ABORT_)
	FIGURE 63. DMA Read transfer terminated by P1ABORT_

	Endian-ness
	FIGURE 64. Most Significant Byte is the Lowest Address (“Big-endian”)
	FIGURE 65. Least Significant Byte is the Lowest Address (“Little- endian”)
	TABLE 38. Comparison of Big-endian and Little-endian Read Operations
	FIGURE 66. Hardware Byte-swapping Circuit
	FIGURE 67. Word Access
	TABLE 39. Accesses With Hardware and Software Swaps, 32-bit
	FIGURE 68. 16-bit xxx0 Access
	FIGURE 69. 16-bit xxx2 Access
	TABLE 40. Accesses With Hardware and Software Swaps, 32-bit and 16-bit
	FIGURE 70. Byte Access
	TABLE 41. Accesses With Hardware and Software Swaps, 32-bit, 16-bit, and 8-bit

	Port1 and Port2 Reference Designs
	P1MemMaker
	FIGURE 71. The Port1 MemMaker FPGA
	FIGURE 72. Data Path Connections - Shared Memory to PCI
	FIGURE 73. Data Path Connections - Shared Memory to MXT3010

	P2MemMaker
	FIGURE 74. The Port2 MemMaker FPGA
	FIGURE 75. Data Path Connections - Shared Memory to PCI
	FIGURE 76. Data Path Connections - Shared Memory to MXT3010

	CHAPTER 8 Communications
	The COMMIN/COMMOUT register
	TABLE 42. Definitions of CIN_BUSY and COUT_RDY
	FIGURE 77. Timing of CIN_BUSY and COUT_RDY

	Interchip communications
	TABLE 43. ICSI pins
	TABLE 44. ICSO pins

	Registers
	TABLE 45. Hardware registers

	Instructions
	TABLE 46. Alphabetical list of instructions
	Instruction description notations
	TABLE 47. Abbreviations used in SWAN instructions

	CHAPTER 9 Registers
	Register types
	Software registers
	Hardware registers
	Specifying registers in SWAN instructions
	TABLE 48. Field abbreviations

	Initializing software and hardware registers
	TABLE 49. Hardware registers

	R32 General Purpose - 0000
	R33 General Purpose - FFFF
	R34 General Purpose - FF00
	R35 General Purpose - 0040
	R36-write Bit Bucket register
	R37-R39 General Purpose registers
	R40-R41 Host Communication registers
	R42-read External State Signals (ESS) register
	R42-write Mode Configuration register
	R43-read Fast Memory Bit Swap register (R42w[8]=0)
	R43-read Special Features register (R42w[8]=1)
	R43-write UTOPIA Control FIFO register
	R44-R47 CRC32PRX and CRC32PRY registers
	R48-R51 Local Address registers (rla)
	R52 Alternate Byte Count/ID register
	R53 Instruction Base Address register
	R54-R55 Programmable Interval Timer registers
	R56 Fast Memory Data register
	R57-read Sparse Event/ICS register
	R57-write Sparse Event/ICS register (Set/Clear)
	R58 Fast Memory Shadow register
	R59 Branch register
	R60 The Cell Scheduling System (CSS) Configuration register
	R61-read Scheduled Address register
	R62 The UTOPIA Configuration register
	TABLE 50. Signal utilization for 1-PHY and 2-PHY modes

	R63 The System register

	CHAPTER 10 Arithmetic Logic Unit Instructions
	Addressing modes
	Triadic register
	FIGURE 78. Triadic register operation
	FIGURE 79. Triadic instruction format

	Immediate
	FIGURE 80. Immediate 10-bit instruction format
	FIGURE 81. Immediate 6-bit instruction format

	Overflow flag
	Instruction options
	Modulo arithmetic
	TABLE 51. Modulo arithmetic options

	Automatic memory updates
	The Update Memory field (UM)

	ALU branching
	The ALU Branch Condition field (abc)
	TABLE 52. ALU Branch Conditions for all instructions except Compare and Min/Max instructions
	TABLE 53. ALU Branch Conditions for Compare and Min/Max instructions

	The Always Execute field (AE)

	ADD Add Registers
	ADDI Add Register and Immediate
	AND And Registers
	ANDI And Register and Immediate
	CMP Compare Two Registers
	CMPI Compare Register and Immediate
	CMPP Compare Two Registers with Previous
	CMPPI Compare Register and Immediate with Previous
	FLS Find Last Set
	LIMD Load Immediate
	MAX Maximum of Two Registers
	MAXI Maximum of Register and Immediate
	MIN Minimum of Two Registers
	MINI Minimum of Register and Immediate
	OR Or Registers
	ORI Or Register and Immediate
	SFT Shift Signed Amount
	SFTA Shift Right Arithmetic
	SFTAI Shift Right Arithmetic Immediate
	SFTC Shift Left Circular
	SFTCI Shift Circular Immediate
	SFTRI/SFTLI Shift Right or Left Immediate
	SUB Subtract Registers
	SUBI Subtract Register and Immediate
	XOR XOR Registers
	XORI XOR Register and Immediate

	CHAPTER 11 Branch Instructions
	General Branch instruction information
	Introduction
	FIGURE 82. Branch instruction format (simplified)

	Target address
	FIGURE 83. Target address format in Fast Memory
	TABLE 54. Methods of specifying the Branch target field

	Condition code (ESS Field)
	TABLE 55. External State Signals register (R42) bits

	The logical state identifier (S-Bit)
	TABLE 56. Use of the S-bit

	Committed slot instructions
	The Conditional operator (C-bit)
	TABLE 57. Use of the Conditional and Nullify operators
	TABLE 58. Example �- conditional branch, condition satisfied
	TABLE 59. Example �- conditional branch, condition not met�
	TABLE 60. Example - unconditional branch
	TABLE 61. Example �- conditional operator, conditional branch, condition satisfied
	TABLE 62. Example �- conditional operator, conditional branch, condition not satisfied

	Subroutine linking
	TABLE 63. Example �- Branch with link, and return

	Counter system operation
	TABLE 64. The CSO field

	BF Branch Fast Memory Shadow Register
	BFL Branch Fast Memory Shadow Register and Link
	BI Branch Immediate
	BIL Branch Immediate and Link
	BR Branch Register
	BRL Branch Register and Link

	CHAPTER 12 Cell Scheduling Instructions
	Cell Scheduling System target address
	POPC Service Schedule
	POPF POP Fast
	PUSHC Schedule
	PUSHF Push Fast

	CHAPTER 13 Direct Memory Access Instructions
	General DMA instruction information
	Introduction
	FIGURE 84. DMA instruction format (simplified)

	Op codes for DMA instructions
	TABLE 65. Op codes for DMA instructions

	The RLA increment bit (i-bit)
	TABLE 66. Use of Bit 26
	TABLE 67. Timing chart for accessing rla after a DMA

	The Byte Count instruction field option (BC)
	TABLE 68. Use of the BC field
	The “Use Alternate Byte Count Register (R52)” Feature
	Use of odd BC values

	The Control instruction field option
	FIGURE 85. Control field format)
	TABLE 69. Use of the Control byte

	DMA1R Direct Memory Operation - Port1 Read
	DMA1W Direct Memory Operation - Port1 Write
	DMA2R Direct Memory Operation - Port2 Read
	DMA2W Direct Memory Operation - Port2 Write

	CHAPTER 14 Load and Store Fast Memory Instructions
	General information for Load and Store Fast Memory instructions
	Introduction
	TABLE 70. Load Fast Memory instruction format
	TABLE 71. Store Fast Memory instruction format

	Transfer size (the #HW field)
	Fast Memory address (the rsa and rsb fields)
	TABLE 72. Use of the rsa and rsb fields

	Address masking (the Z-bit)
	TABLE 73. Use of the Z-bit
	FIGURE 86. Z-bit usage example

	Destination register (the rd field)
	Linking (the LNK bit)
	FIGURE 87. Simplified Channel Descriptors
	TABLE 74. Limits on #HW when linking to rd
	FIGURE 88. Channel Descriptor for LMFM and UM example
	TABLE 75. Memory alignment requirements

	Instructions for accelerating CRC operations
	Alternate address (the adr field)
	TABLE 76. Use of the adr field

	Hardware register (reg field)
	TABLE 77. Use of the reg field

	Least significant bits (the lsbs field)

	LMFM Load Multiple from Fast Memory
	TABLE 78. Restrictions on access to rd registers after LMFM

	SHFM Store Halfword to Fast Memory
	SRH Store Register Halfword

	CHAPTER 15 Load and Store Internal RAM Instructions
	General information for Load and Store internal RAM instructions
	Introduction
	TABLE 79. Load internal RAM instruction format
	TABLE 80. Store internal RAM instruction format

	Register load address (rla field)
	TABLE 81. Use of the rla field

	The index field (IDX)
	Using IDX to calculate the target address
	FIGURE 89. XOR operation between IDX and rla

	Selecting the Cell Buffer RAM or the Scoreboard
	Cell Buffer RAM accesses
	FIGURE 90. Gather method accesses

	Cell Scheduling System Scoreboard accesses

	Byte swap support
	The Swap field
	TABLE 82. Byte-swapping Load instructions
	TABLE 83. Byte-swapping Store instructions

	LD Load Register
	LDD Load Double Register
	ST Store Register
	STD Store Double Register

	CHAPTER 16 Swan Instruction Reference Examples
	Add and Subtract examples
	Branch examples
	Load and Store Fast Memory examples
	Load and Store Internal RAM examples
	Logical examples
	Shift examples
	Miscellaneous examples

	CHAPTER 17 Timing
	MXT3010EP timing - general information
	Definition of switching levels
	FIGURE 91. Switching level voltages

	Input clock details
	FIGURE 92. Input clock waveform (pin FN)
	TABLE 84. Input clock timing parameters

	MXT3010EP Fast Memory interface timing
	TABLE 85. Fast Memory timing for the Maker MXT3010EP
	FIGURE 93. Timing for Fast Memory reads
	FIGURE 94. Timing for Fast Memory writes

	MXT3010EP UTOPIA interface timing
	FIGURE 95. FN and half-speed RX_CLK/TX_CLK
	FIGURE 96. FN and quarter-speed RX_CLK/TX_CLK
	TABLE 86. UTOPIA timing for Maker MXT3010EP
	TABLE 87. Delay of UTOPIA clocks relative to MXT3010EP internal clock (CLK)
	FIGURE 97. UTOPIA port receive timing
	FIGURE 98. UTOPIA port transmit timing

	MXT3010EP Port1 timing
	TABLE 88. Port1 timing table
	FIGURE 99. Port1 read timing
	FIGURE 100. Port1 write timing
	FIGURE 101. COMMIN register write, COMMOUT register read timing

	MXT3010EP Port2 timing
	TABLE 89. Port2 timing table
	FIGURE 102. Port2 read timing
	FIGURE 103. Port2 write timing

	MXT3010EP miscellaneous control signal timing
	TABLE 90. Miscellaneous control signal timing
	FIGURE 104. Timing of CIN_BUSY and COUT_RDY
	MXT3010EP Reset timing
	TABLE 91. MXT3010EP reset timing
	FIGURE 105. MXT3010EP reset timing
	FIGURE 106. Reset trailing edge timing
	TABLE 92. MXT3010EP RESET_ timing parameters
	FIGURE 107. Reset timing circuit

	MXT3010EP Fast Memory interface operation
	MXT3010EP JTAG operation

	CHAPTER 18 Pin Information
	MXT3010EP pinout
	FIGURE 108. MXT3010EP package/pin diagram

	MXT3010EP signal descriptions
	TABLE 93. MXT3010EP Port1 signal descriptions
	TABLE 94. MXT3010EP Port2 signal descriptions
	TABLE 95. UTOPIA port signal description
	TABLE 96. MXT3010EP Fast Memory controller signal description
	TABLE 97. MXT3010EP inter-chip and communication registers signal description
	TABLE 98. MXT3010EP miscellaneous clock, control, and test signal descriptions
	TABLE 99. Power and ground pin descriptions

	MXT3010EP JTAG/PLL pin termination
	TABLE 100. MXT3010EP pin terminations

	MXT3010EP pin listing
	TABLE 101. MXT3010EP pin listing
	I/O pad reference
	TABLE 102. I/O pad types

	CHAPTER 19 Electrical Parameters
	MXT3010EP maximum ratings and operating conditions
	TABLE 103. Absolute maximum ratings (VSS = 0V)
	TABLE 104. Recommended operating conditions
	DC electrical characteristics
	TABLE 105. DC Electrical characteristics

	AC electrical characteristics
	I/O performance levels

	MXT3010EP power sequencing
	Overview
	Damage to I/O pad metal
	I/O pad latch-up

	MXT3010EP PLL considerations
	Overview
	VAA decoupling
	FIGURE 109. Generating a quiet VAA

	General decoupling
	FIGURE 110. MXT3010EP decoupling capacitor location

	Reference clock jitter
	Circuit design goals

	CHAPTER 20 Mechanical and Thermal Information
	MXT3010EP mechanical/thermal information
	FIGURE 111. MXT3010EP package/pin diagram - top view
	FIGURE 112. MXT3010EP package/pin diagram - side view
	TABLE 106. MXT3010EP package summary

	APPENDIX A Acronyms
	APPENDIX B Device Initialization
	Initializing the MXT3010EP
	Downloading firmware
	How the system determines the boot path
	TABLE 107. Selecting boot mode with ISCO_A and ICSO_B

	How the application uses the output pins
	How the code set is structured
	TABLE 108. User code set’s four fields

	How to boot
	Booting from Port1
	Booting from Port2
	Booting from the COMMIN Register

	Limitations on the size of boot code

	Initializing the Mode Configuration register
	Restrictions on starting addresses
	TABLE 109. Bootstrap starting addresses for Fast Memory mode 1

	APPENDIX C Quick Reference
	Hardware register summary
	TABLE 110. Hardware registers

	ALU instruction field summary
	TABLE 111. MODx fields
	TABLE 112. abc fields
	TABLE 113. AE field
	TABLE 114. UM field

	Shift amount summary
	TABLE 115. Shift amount chart for SFT, SFTLI, and SFTRI
	TABLE 116. Shift amount chart for SFTC and SFTCI
	TABLE 117. Shift amount chart for SFTA
	TABLE 118. Shift amount chart for SFTAI

	Branch instruction field summary
	TABLE 119. The ESS field (condition codes)
	TABLE 120. The S-bit field
	TABLE 121. The C-bit field
	TABLE 122. The CSO field

	DMA instruction field summary
	TABLE 123. Use of the I-bit
	TABLE 124. Use of the BC field
	TABLE 125. Use of the Control byte

	Instruction summary
	TABLE 126. Instruction summary

