
MXT3010

Reference Manual

Version 4.1

Order Number: 100108-05

October 1999
Copyright (c) 1999 by Maker Communications, Inc. All rights reserved.

Printed in the United States of America.

The information in this document is believed to be correct, however, the
information can change without notice. Maker Communications, Inc. disclaims
any responsibility for any consequences resulting from the use of the information
contained in this document.

The hardware, software, and the related documentation is provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1) (ii) of The Rights in
Technical Data and Computer Program Product clause at DFARS 252.227-7013
or subparagraphs (c)(1) and (2) of the Commercial Computer Software-
Restricted Rights at 48 CFR 52.227-19, as applicable.

Contractor/manufacturer is:
Maker Communications, Inc.
73 Mount Wayte Avenue, Framingham, MA 01702

CellMaker and BridgeMaker are registered trademarks of Maker
Communications, Inc. AccessMaker, High-Intensity Communications Processor,
High-Intensity Communications Processing, PortMaker, Octave, and SimMaker
are trademarks of Maker Communications, Inc.
All other trademarks are owned by their respective companies.

This manual supercedes and obsoletes the following Maker Communications
publications:

100108-03 - MXT3010 Reference Manual, dated June 1999
100108-04 - MXT3010 Reference Manual, dated October 1999

CONTENTS
Preface xxi
Maker Products xxi

Using this manual xxiii

Contacting Maker Support Services xxiv

Changes Installed in This Version of the Manual xxv

Section 1 Subsystems 1

CHAPTER 1 Introduction 3

MXT3010 features 4

MXT3010 subsystems 5

What information is in this manual 6

CHAPTER 2 The SWAN Processor 9

The SWAN advantage 10
SWAN’s instructions and address spaces 10
MXT3010 Reference Manual iii

Instruction execution 13
Instruction space organization 14
Instruction cache 15

SWAN processor instruction classes 18
Arithmetic Logic Unit (ALU) instructions 19
Branch instructions 19

Registers 21
Flag registers 24

HEC generation and check circuit 25

CHAPTER 3 The Cell Scheduling System 27

How the Cell Scheduling System works 28

Data transmission - servicing and scheduling 31
Servicing 31
Scheduling 32

Pacing the transmission rate of cells 37

Programming the Cell Scheduling System 38

Guaranteeing the availability of a location in the
Connection ID table 41

The PUSHC/POPC instruction buffer 42

POPC, PUSHC, POPF, and PUSHF instruction operation 42
POPC and PUSHC timing 42
POPF and PUSHF timing 42
Connection ID table and Scoreboard addressing 43

Initializing the Scoreboard 45

Selecting a Scoreboard size 45

Supporting multiple Scoreboard sections 46

CHAPTER 4 The Fast Memory Interface 47

SWAN processor accesses to Fast Memory 48
Loading 48
Storing 50

Cell Scheduling System accesses to Fast Memory 51

SWAN executable fetches from Fast Memory 51

Fast Memory configurations 52
Memory sizes supported 52
RAM selection and configuration 53
iv MXT3010 Reference Manual

Mode 0 operation 53
Mode 1 operation 54
Bus contention avoidance 55

Fast Memory sequence diagrams 56

CHAPTER 5 The Cell Buffer RAM 59

Internal cell storage in the Cell Buffer RAM 60

Cell Buffer RAM memory construction 64

Cell Buffer RAM access 67

CHAPTER 6 The UTOPIA port 69

UTOPIA port interface overview 70
Features 70
Operating modes 71
UTOPIA cell formats 74

Receive cell flow 77
UTOPIA receiver counters 78

Transmit cell flow 82
UTOPIA transmitter counters 84
The TXBUSY counter 84
The TXFULL counter 86
CRC10 generation and checking support 87

Multi-PHY support 88

Receive Header Reduction hardware 91

UTOPIA port configuration summary 93

UTOPIA port sequence diagrams 94

CHAPTER 7 The Port1 and Port2 Interfaces 97

Port interface overview 98

The Port DMA command queues 100
Port1 and Port2 DMA command queues 100
Testing DMA Controller queues with the ESS bits 101

Port Controller features 103
The Cyclical Redundancy Check 32 generator for Port1 103
Cyclical Redundancy Check operation acceleration 104
Silent transfers 105
MXT3010 Reference Manual v

Post-increment option on rla operations 107
Data alignment 107
Byte manipulations on Port1 108
Post-DMA Operation Directives (PODs) 109

Burst and non-burst operation (Port2) 109

Port Operations 110
Port1 basic protocol 110
The Port1 control state machine 113
Communication register I/O transfers 133
Port2 basic protocol 137
The Port2 control state machine 142
Port2 DMA non-burst-mode read transfers 150
Port2 DMA non-burst-mode write transfers 154

Additional Port1 and Port2 Design Information 156
Arbitrating access to Port1 156
Simplified Port2 interfaces 157
Bus driving, turnaround, and bus parking 158
Data Alignment 159

Transfer complete 161
Byte Count zero 161
External DMA cycle abort (P1ABORT_) 163

Endian-ness 164

Port1 and Port2 Reference Designs 169
P1MemMaker 169
P2MemMaker 172

CHAPTER 8 Communications 177

The COMMIN/COMMOUT register 178

Interchip communications 180

Section 2 Register and Instruction Reference 183
Registers 183

Instructions 185
Instruction description notations 188
vi MXT3010 Reference Manual

CHAPTER 9 Registers 189

Register types 189
Software registers 189
Hardware registers 190
Specifying registers in SWAN instructions 190
Initializing software and hardware registers 191

R32 General Purpose - 0000 193

R33 General Purpose - FFFF 194

R34 General Purpose - FF00 195

R35 General Purpose - 0040 196

R36-write Bit Bucket register 197

R37-R39 General Purpose registers 198

R40-R41 Host Communication registers 199

R42-read External State Signals (ESS) register 200

R42-write Mode Configuration register 201

R43-read Fast Memory Bit Swap register (R42w[8]=0) 203

R43-read Special Features register (R42w[8]=1) 204

R43-write UTOPIA Control FIFO register 205

R44-R47 CRC32PRX and CRC32PRY registers 207

R48-R51 Local Address registers (rla) 208

R52 Alternate Byte Count/ID register 209

R53 Instruction Base Address register 210

R54-R55 Programmable Interval Timer registers 211

R56 Fast Memory Data register 212

R57-read Sparse Event/ICS register 213

R57-write Sparse Event/ICS register (Set/Clear) 214

R58 Fast Memory Shadow register 215

R59 Branch register 216

R60 The Cell Scheduling System (CSS) Configuration
register 217

R61-read Scheduled Address register 218

R62 The UTOPIA Configuration register 219

R63 The System register 221

CHAPTER 10 Arithmetic Logic Unit Instructions 223

Addressing modes 223
MXT3010 Reference Manual vii

Triadic register 223
Immediate 224

Overflow flag 225

Instruction options 226
Modulo arithmetic 226
Automatic memory updates 228
ALU branching 228

ADD Add Registers 234

ADDI Add Register and Immediate 235

AND And Registers 236

ANDI And Register and Immediate 237

CMP Compare Two Registers 238

CMPI Compare Register and Immediate 239

CMPP Compare Two Registers with Previous 240

CMPPI Compare Register and Immediate with
Previous 241

FLS Find Last Set 242

LIMD Load Immediate 243

MAX Maximum of Two Registers 244

MAXI Maximum of Register and Immediate 245

MIN Minimum of Two Registers 246

MINI Minimum of Register and Immediate 247

OR Or Registers 248

ORI Or Register and Immediate 249

SFT Shift Signed Amount 250

SFTA Shift Right Arithmetic 251

SFTAI Shift Right Arithmetic Immediate 252

SFTC Shift Left Circular 253

SFTCI Shift Circular Immediate 254

SFTRI/SFTLI Shift Right or Left Immediate 255

SUB Subtract Registers 256

SUBI Subtract Register and Immediate 257

XOR XOR Registers 258

XORI XOR Register and Immediate 259

CHAPTER 11 Branch Instructions 261

General Branch instruction information 262
viii MXT3010 Reference Manual

Introduction 262
Target address 262
Condition code (ESS Field) 263
The logical state identifier (S-Bit) 264
Committed slot instructions 264
The Conditional operator (C-bit) 265
Subroutine linking 268
Counter system operation 269

BF Branch Fast Memory Shadow
Register 270

BFL Branch Fast Memory Shadow
Register and Link 271

BI Branch Immediate 272

BIL Branch Immediate and Link 273

BR Branch Register 274

BRL Branch Register and Link 275

CHAPTER 12 Cell Scheduling Instructions 277

Cell Scheduling System target address 277

POPC Service Schedule 278

POPF POP Fast 279

PUSHC Schedule 280

PUSHF Push Fast 281

CHAPTER 13 Direct Memory Access Instructions 283

General DMA instruction information 284
Introduction 284
Op codes for DMA instructions 284
The RLA increment bit (i-bit) 285
The Byte Count instruction field option (BC) 286
The Control instruction field option 287

DMA1R Direct Memory Operation - Port1 Read 289

DMA1W Direct Memory Operation - Port1 Write 290

DMA2R Direct Memory Operation - Port2 Read 291

DMA2W Direct Memory Operation - Port2 Write 292
MXT3010 Reference Manual ix

CHAPTER 14 Load and Store Fast Memory
Instructions 293

General information for Load and Store Fast Memory
instructions 294

Introduction 294
Transfer size (the #HW field) 295
Fast Memory address (the rsa and rsb fields) 296
Address masking (the Z-bit) 296
Destination register (the rd field) 299
Linking (the LNK bit) 299

Instructions for accelerating CRC operations 305
Alternate address (the adr field) 306
Hardware register (reg field) 307
Least significant bits (the lsbs field) 307

LMFM Load Multiple from Fast Memory 308

SHFM Store Halfword to Fast Memory 311

SRH Store Register Halfword 312

CHAPTER 15 Load and Store Internal RAM
Instructions 313

General information for Load and Store internal RAM
instructions 314

Introduction 314
Register load address (rla field) 314
The index field (IDX) 315

Byte swap support 319
The Swap field 319

LD Load Register 321

LDD Load Double Register 322

ST Store Register 323

STD Store Double Register 324

CHAPTER 16 Swan Instruction Reference Examples 325

Add and Subtract examples 326

Branch examples 328

Load and Store Fast Memory examples 331
x MXT3010 Reference Manual

Load and Store Internal RAM examples 332

Logical examples 334

Shift examples 335

Miscellaneous examples 338

Section 3 Signal Descriptions and Electrical
Characteristics 341

CHAPTER 17 Timing 343

MXT3010EP timing - general information 343
Definition of switching levels 343
Input clock details 344

MXT3010EP Fast Memory interface timing 345

MXT3010EP UTOPIA interface timing 348

MXT3010EP Port1 timing 352

MXT3010EP Port2 timing 356

MXT3010EP miscellaneous control signal timing 359
MXT3010EP Reset timing 360

MXT3010EP Fast Memory interface operation 364

MXT3010EP JTAG operation 365

CHAPTER 18 Pin Information 367

MXT3010EP pinout 368

MXT3010EP signal descriptions 369

MXT3010EP JTAG/PLL pin termination 377

MXT3010EP pin listing 378
I/O pad reference 381

CHAPTER 19 Electrical Parameters 383

MXT3010EP maximum ratings and operating conditions 384
DC electrical characteristics 385
AC electrical characteristics 385

MXT3010EP power sequencing 386
MXT3010 Reference Manual xi

Overview 386
Damage to I/O pad metal 387
I/O pad latch-up 389

MXT3010EP PLL considerations 390
Overview 390
VAA decoupling 391
General decoupling 392
Reference clock jitter 393
Circuit design goals 394

CHAPTER 20 Mechanical and Thermal Information 395

MXT3010EP mechanical/thermal information 396

APPENDIX A Acronyms 399

APPENDIX B Device Initialization 401

Initializing the MXT3010EP 402

Downloading firmware 402
How the system determines the boot path 402
How the application uses the output pins 403
How the code set is structured 404
How to boot 405
Limitations on the size of boot code 407

Initializing the Mode Configuration register 408
Restrictions on starting addresses 409

APPENDIX C Quick Reference 411

Hardware register summary 412

ALU instruction field summary 413

Shift amount summary 414

Branch instruction field summary 416

DMA instruction field summary 417

Instruction summary 418
xii MXT3010 Reference Manual

List of Figures

FIGURE 1. MXT3010 and surrounding system devices 5

FIGURE 2. SWAN processor address spaces and access instructions 11

FIGURE 3. SWAN instruction space 14

FIGURE 4. Formation of the page offset and the instruction tag 16

FIGURE 5. Target address format in Fast Memory 20

FIGURE 6. Pipeline feedback 22

FIGURE 7. Connection ID entries 30

FIGURE 8. Servicing and scheduling 34

FIGURE 9. Scoreboard operation 38

FIGURE 10. Connection ID table address generation 44

FIGURE 11. Scoreboard address generation 44

FIGURE 12. Load Fast Memory instruction 48

FIGURE 13. Store Fast Memory instruction 50

FIGURE 14. Fast Memory SRAM options 52

FIGURE 15. Mode 0 design example 54

FIGURE 16. Mode 1 design example 55

FIGURE 17. Fast Memory read operations - single bank 56

FIGURE 18. Fast Memory write operations - single bank 57

FIGURE 19. Fast Memory reads and writes - back-to-back and dual bank 57

FIGURE 20. Cell Buffer RAM organization 61

FIGURE 21. Cell fields defined 62

FIGURE 22. Receive cell organization: 52-byte and 56-byte cells 63

FIGURE 23. Gather method accesses 66

FIGURE 24. Cell Buffer RAM access 67

FIGURE 25. The UTOPIA port: 8/8 and 16-bit modes 72

FIGURE 26. Clock phases for RX/TX CLK = 1/2 Internal Clock 73

FIGURE 27. Clock phases for RX/TX CLK = 1/4 Internal Clock 73

FIGURE 28. UTOPIA 8-bit and 16-bit cell formats 74

FIGURE 29. HEC-enabled 52-byte mode 75

FIGURE 30. HEC-disabled 52-byte mode 75

FIGURE 31. HEC-enabled 56-byte mode 76

FIGURE 32. HEC-disabled 56-byte mode 76

FIGURE 33. The RXBUSY counter 79

FIGURE 34. The RXFULL counter 81

FIGURE 35. The TXBUSY counter 84
MXT3010 Reference Manual xiii

FIGURE 36. The TXFULL counter 85

FIGURE 37. Level 2 PHY configurations 89

FIGURE 38. Mixed Level 1 and Level 2 PHY configuration 90

FIGURE 39. UTOPIA Port receive timing - single PHY, 8-bit mode 94

FIGURE 40. UTOPIA Port transmit timing - single PHY, 8-bit mode 95

FIGURE 41. UTOPIA Port receive full timing - single PHY, 8-bit mode 95

FIGURE 42. UTOPIA Port transmit full timing - single PHY, 8-bit mode 95

FIGURE 43. DMA command queues for the MXT3010EP 100

FIGURE 44. Diagram of Port1 DMA instruction bits 111

FIGURE 45. Port1 DMA Read transfer with a Wait state 119

FIGURE 46. Port1 DMA Read transfer without a Wait state 122

FIGURE 47. Port1 DMA Write transfer with a Wait state 127

FIGURE 48. Port1 DMA Write transfer without a Wait state 130

FIGURE 49. Cut-and-Paste Version of Port1 Read 131

FIGURE 50. Cut-and-Paste Version of Port1 Write 132

FIGURE 51. COMMIN write followed by COMMOUT read 134

FIGURE 52. Diagram of Port2 burst DMA instruction bits 137

FIGURE 53. Diagram of Port2 non-burst DMA instruction bits 139

FIGURE 54. Port2 DMA burst-mode Read transfer with a Wait state 144

FIGURE 55. Port2 DMA burst-mode Read transfer without a Wait state 145

FIGURE 56. Port2 DMA burst-mode write transfer with a Wait state 148

FIGURE 57. Port2 DMA burst-mode write transfer without a Wait state 149

FIGURE 58. Port2 DMA non-burst-mode Read transfer. 151

FIGURE 59. Port2 DMA non-burst-mode Write transfer. 155

FIGURE 60. System example for Port1 bus. 156

FIGURE 61. DMA Read transfer with standard END_ signal 161

FIGURE 62. DMA Read transfer with Early END 162

FIGURE 63. DMA Read transfer terminated by P1ABORT_ 163

FIGURE 64. Most Significant Byte is the Lowest Address (“Big-endian”) 164

FIGURE 65. Least Significant Byte is the Lowest Address (“Little-endian”) 164

FIGURE 66. Hardware Byte-swapping Circuit 165

FIGURE 67. Word Access 166

FIGURE 68. 16-bit xxx0 Access 167

FIGURE 69. 16-bit xxx2 Access 167

FIGURE 70. Byte Access 168

FIGURE 71. The Port1 MemMaker FPGA 171

FIGURE 72. Data Path Connections - Shared Memory to PCI 172
xiv MXT3010 Reference Manual

FIGURE 73. Data Path Connections - Shared Memory to MXT3010 172

FIGURE 74. The Port2 MemMaker FPGA 174

FIGURE 75. Data Path Connections - Shared Memory to PCI 174

FIGURE 76. Data Path Connections - Shared Memory to MXT3010 175

FIGURE 77. Timing of CIN_BUSY and COUT_RDY 180

FIGURE 78. Triadic register operation 224

FIGURE 79. Triadic instruction format 224

FIGURE 80. Immediate 10-bit instruction format 225

FIGURE 81. Immediate 6-bit instruction format 225

FIGURE 82. Branch instruction format (simplified) 262

FIGURE 83. Target address format in Fast Memory 262

FIGURE 84. DMA instruction format (simplified) 284

FIGURE 85. Control field format) 287

FIGURE 86. Z-bit usage example 298

FIGURE 87. Simplified Channel Descriptors 300

FIGURE 88. Channel Descriptor for LMFM and UM example 302

FIGURE 89. XOR operation between IDX and rla 316

FIGURE 90. Gather method accesses 318

FIGURE 91. Switching level voltages 343

FIGURE 92. Input clock waveform (pin FN) 344

FIGURE 93. Timing for Fast Memory reads 347

FIGURE 94. Timing for Fast Memory writes 347

FIGURE 95. FN and half-speed RX_CLK/TX_CLK 348

FIGURE 96. FN and quarter-speed RX_CLK/TX_CLK 348

FIGURE 97. UTOPIA port receive timing 350

FIGURE 98. UTOPIA port transmit timing 351

FIGURE 99. Port1 read timing 354

FIGURE 100.Port1 write timing 354

FIGURE 101.COMMIN register write, COMMOUT register read timing 355

FIGURE 102.Port2 read timing 358

FIGURE 103.Port2 write timing 358

FIGURE 104.Timing of CIN_BUSY and COUT_RDY 359

FIGURE 105.MXT3010EP reset timing 361

FIGURE 106.Reset trailing edge timing 362

FIGURE 107.Reset timing circuit 363

FIGURE 108.MXT3010EP package/pin diagram 368

FIGURE 109.Generating a quiet VAA 392
MXT3010 Reference Manual xv

FIGURE 110.MXT3010EP decoupling capacitor location 393

FIGURE 111.MXT3010EP package/pin diagram - top view 396

FIGURE 112.MXT3010EP package/pin diagram - side view 397
xvi MXT3010 Reference Manual

List of Tables

Table 1 SWAN processor instruction classes 18
Table 2 Methods of specifying the branch target field 21
Table 3 Hardware registers requiring one instruction delay 23
Table 4 Hardware registers requiring two instruction delays 24
Table 5 Scoreboard sectioning control 29
Table 6 Connection ID table address bits 44
Table 7 Scoreboard address bits 44
Table 8 Comparison of Mode 0 and Mode 1 operation 53
Table 9 UTOPIA Configuration control of the Cell Buffer RAM 60
Table 10 Cell field functions 62
Table 11 UTOPIA port data bus width selection 71
Table 12 UTOPIA port Tx and Rx pin utilization in 16-bit mode 71
Table 13 Cell length and HEC control 72
Table 14 UTOPIA port clock selection 73
Table 15 Bit assignments for multi-PHY operation 88
Table 16 Receive Header Reduction control 91
Table 17 Receive Header Reduction enable bit 92
Table 18 UTOPIA configuration information 93
Table 19 Characteristics of Port1 and Port2 98
Table 20 ESS Bits for DMA Controller status 102
Table 21 Example of DMA Controller status bit utilization 102
Table 22 Specification of the CRCX/CRCY instruction field option 103
Table 23 Valid and invalid first, mid-cell, and last transfers. 108
Table 24 Port 1 DMA instruction bit mapping 111
Table 25 Signals to control Port1 transfers 112
Table 26 State table for the Port1 DMA burst read state machine 118
Table 27 State table for the Port1 DMA burst write state machine 126
Table 28 State table for Port1 communication I/O state machine 133
Table 29 Port2 burst DMA instruction bit mapping 137
Table 30 Another view of Port2 burst DMA instruction bit mapping 138
Table 31 Port2 non-burst DMA instruction bit mapping 139
Table 32 Another view of Port2 non-burst DMA instruction bit mapping 140
Table 33 Signals to control Port2 transfers 141
Table 34 State table for the Port2 DMA burst-mode read state machine 143
Table 35 State table for the Port2 DMA burst write state machine 147
Table 36 State table for the Port2 DMA non-burst-mode read state machine 150
Table 37 State table for the Port2 DMA non-burst-mode write state machine 154
Table 38 Comparison of Big-endian and Little-endian Read Operations 165
Table 39 Accesses With Hardware and Software Swaps, 32-bit 166
Table 40 Accesses With Hardware and Software Swaps, 32-bit and 16-bit 168
MXT3010 Reference Manual xvii

Table 41 Accesses With Hardware and Software Swaps, 32-bit, 16-bit, and 8-bit 168
Table 42 Definitions of CIN_BUSY and COUT_RDY 178
Table 43 ICSI pins 180
Table 44 ICSO pins 181
Table 45 Hardware registers 184
Table 46 Alphabetical list of instructions 186
Table 47 Abbreviations used in SWAN instructions 188
Table 48 Field abbreviations 190
Table 49 Hardware registers 191
Table 50 Signal utilization for 1-PHY and 2-PHY modes 220
Table 51 Modulo arithmetic options 227
Table 52 ALU Branch Conditions for all instructions except Compare and Min/Max in-

structions 230
Table 53 ALU Branch Conditions for Compare and Min/Max instructions 230
Table 54 Methods of specifying the Branch target field 263
Table 55 External State Signals register (R42) bits 264
Table 56 Use of the S-bit 264
Table 57 Use of the Conditional and Nullify operators 266
Table 58 Example - conditional branch, condition satisfied 266
Table 59 Example - conditional branch, condition not met 267
Table 60 Example - unconditional branch 267
Table 61 Example - conditional operator, conditional branch, condition satisfied 267
Table 62 Example - conditional operator, conditional branch, condition not satisfied 268
Table 63 Example - Branch with link, and return 269
Table 64 The CSO field 269
Table 65 Op codes for DMA instructions 284
Table 66 Use of Bit 26 285
Table 67 Timing chart for accessing rla after a DMA 286
Table 68 Use of the BC field 286
Table 69 Use of the Control byte 288
Table 70 Load Fast Memory instruction format 294
Table 71 Store Fast Memory instruction format 294
Table 72 Use of the rsa and rsb fields 296
Table 73 Use of the Z-bit 296
Table 74 Limits on #HW when linking to rd 300
Table 75 Memory alignment requirements 304
Table 76 Use of the adr field 306
Table 77 Use of the reg field 307
Table 78 Restrictions on access to rd registers after LMFM 309
Table 79 Load internal RAM instruction format 314
Table 80 Store internal RAM instruction format 314
Table 81 Use of the rla field 315
Table 82 Byte-swapping Load instructions 320
xviii MXT3010 Reference Manual

Table 83 Byte-swapping Store instructions 320
Table 84 Input clock timing parameters 344
Table 85 Fast Memory timing for the Maker MXT3010EP 346
Table 86 UTOPIA timing for Maker MXT3010EP 349
Table 87 Delay of UTOPIA clocks relative to MXT3010EP internal clock (CLK) 350
Table 88 Port1 timing table 353
Table 89 Port2 timing table 357
Table 90 Miscellaneous control signal timing 359
Table 91 MXT3010EP reset timing 361
Table 92 MXT3010EP RESET_ timing parameters 362
Table 93 MXT3010EP Port1 signal descriptions 370
Table 94 MXT3010EP Port2 signal descriptions 371
Table 95 UTOPIA port signal description 372
Table 96 MXT3010EP Fast Memory controller signal description 373
Table 97 MXT3010EP inter-chip and communication registers signal description 374
Table 98 MXT3010EP miscellaneous clock, control, and test signal descriptions 375
Table 99 Power and ground pin descriptions 376
Table 100 MXT3010EP pin terminations 377
Table 101 MXT3010EP pin listing 378
Table 102 I/O pad types 381
Table 103 Absolute maximum ratings (VSS = 0V) 384
Table 104 Recommended operating conditions 384
Table 105 DC Electrical characteristics 385
Table 106 MXT3010EP package summary 397
Table 107 Selecting boot mode with ISCO_A and ICSO_B 403
Table 108 User code set’s four fields 404
Table 109 Bootstrap starting addresses for Fast Memory mode 1 409
Table 110 Hardware registers 412
Table 111 MODx fields 413
Table 112 abc fields 413
Table 113 AE field 413
Table 114 UM field 413
Table 115 Shift amount chart for SFT, SFTLI, and SFTRI 414
Table 116 Shift amount chart for SFTC and SFTCI 414
Table 117 Shift amount chart for SFTA 415
Table 118 Shift amount chart for SFTAI 415
Table 119 The CSO field 416
Table 120 The ESS field (condition codes) 416
Table 121 The S-bit field 416
Table 122 The C-bit field 416
Table 123 Use of the I-bit 417
Table 124 Use of the BC field 417
Table 125 Use of the Control byte 417
MXT3010 Reference Manual xix

Table 126 Instruction summary 418
xx MXT3010 Reference Manual

Preface
Maker Products

Integrated
Circuits

Maker Communications delivers a wide range of ATM solutions
based on the MXT3010 cell processing engine and the MXT3020
circuit interface coprocessor. The MXT3010 is a high-perfor-
mance programmable cell processor engine specifically designed
to handle ATM cell manipulation and transmission at data rates up
to 622 Mb/s. The MXT3020 is an ATM circuit interface coproces-
sor for the MXT3010 cell processor. It provides flexible inter-
working between Time Division Multiplexed (TDM) links and the
ATM network.

Software
Solutions

The MXT3010 and MXT3020 are complemented with a series of
software applications that provide standard cell processing func-
tionality. CellMaker®-155 and CellMaker®-622 execute on an
MXT3010 and provide ATM Adaptation Layer 5 (AAL5) Seg-
mentation and Reassembly (SAR) at data rates of 155 Mb/s and
622 Mb/s, respectively. AccessMaker™ executes on an
MXT3010 with up to four attached MXT3020 coprocessors. It
MXT3010 Reference Manual Version 4.1 xxi

provides cell processing functions for both packet and circuit
interworking to support multiple services concurrently includ-
ing AAL1, AAL5, IMA, and cell relay.

Development
Tools

Maker Communications offers a full suite of development tools
for the MXT3010 Cell Processor including Verilog models of
the chips, the WASM assembler, CellMaker Simulator (CSIM),
and Graphical CellMaker Simulator (GCSIM). CSIM is a Ver-
ilog-based simulator that provides a tightly controlled and fully
observable environment to execute and debug both processor
applications and external host programs before running them on
the target hardware. Maker also provides two development
boards. CSIM is complemented with a graphical post processor,
GCSIM. The MXT3016 is a 32-bit, PCI bus-based development
board used to test 622Mb/s applications. The MXT3025 is a 32-
bit, PCI bus-based evaluation board used to test OC-3 ATM
(MXT3010) and T1 (MXT3020) applications.
xxii Version 4.1 MXT3010 Reference Manual

Using this manual
Using this manual

This section provides information on the conventions used
within this manual.

Typographical
conventions

This document uses the following typographical conventions
when describing features of the hardware and software, user-
machine interactions, and variables.

• Commands appear in mixed case, for example
Write_Channel_Map.

• Instruction mnemonics appear in uppercase, for example the
SUBBI instruction.

• User input appears in bold monospace font.

• System output and code examples appear in monospace font.

• Variables, such as user-definable names, appear in italics.

Instruction syntax All the instructions use the following syntax:

• Required values appear between (parentheses).

• Optional values appear between [square brackets].

• Optional descriptions appear in lowercase.

• Literal descriptions appear in UPPERCASE.

• Numbers are denoted by pound signs, #.

• A string of options from which you can only choose one appear
as follows: [option1 | option2 | option3]

• A string of options from which you can choose one or all the
options appear as follows: [option1] [option2] [option3]

• Bits which should be written as zeroes and ignored on reads
appear as Reserved
MXT3010 Reference Manual Version 4.1 xxiii

ual

-

Terminology Common acronyms and abbreviations are defined in “Acro-
nyms” on page 399 and not in the text. In addition, this man
uses the following term as defined:

Packets refer to Local Area Network (LAN) information and
frames refer to circuit information.

Contacting Maker Support Services

Maker Communications, Inc. has the following forums for com
municating ideas, questions, and reporting problems:

• Sales and customer support 508-628-0622

• Product support support@maker.com

• Product inquires info@maker.com

• Facsimile 508-628-0256

• Web www.maker.com
xxiv Version 4.1 MXT3010 Reference Manual

Changes Installed in This Version of the Manual

 on
e
oss

nd
is-

/
a-

e

ed

f

 to

f

5

Changes Installed in This Version of the Manual

Change Bars Change bars are provided to indicate revisions made since the
previous publication of the manual.

Changes 1. Additional text has been added to “Register access rules”
page 22, and to the paragraph before that, concerning th
use of LD and LDD between accesses to rla registers. Cr
references to this warning have been added to “Avoiding
stale rla values” on page 315, to “LD Load Register” on
page 321, to “LDD Load Double Register” on page 322, a
to all hardware register descriptions in CHAPTER 9 "Reg
ters" on page 189.

2. Figure 95, “FN and half-speed RX_CLK/TX_CLK,” on
page 348 and Figure 96, “FN and quarter-speed RX_CLK
TX_CLK,” on page 348 have been added to show the rel
tionship of UTOPIA clocks to FN.

3. Figure 22, “Receive cell organization: 52-byte and 56-byt
cells,” on page 63 has been modified to correctly identify
User Header bytes 2 and 3 in the 56-byte cell format.

4. The description of “LIMD Load Immediate” on page 243
has been corrected to indicate that the immediate is load
into register rd, not register rsa.

5. Table 47, “Abbreviations used in SWAN instructions,” on
page 188 has been modified to generalize the definition o
usi.

6. The caption of Figure 89 on page 316 has been corrected
indicate that it applies to XOR rather than OR.

7. A typographic error (“3020” vs “3010”) in the description o
out-of-bag floor life in “MXT3010EP mechanical/thermal
information” on page 396 has been corrected.

8. The note that explains the enabling/disabling of “R54-R5
Programmable Interval Timer registers” on page 211 has
been changed.
MXT3010 Reference Manual Version 4.1 xxv

xxvi Version 4.1 MXT3010 Reference Manual

Section 1 Subsystems
This section is composed of eight chapters. It provides an over-
view of the MXT3010 ATM cell processing engine and its major
functional subsystems.
MXT3010 Reference Manual Version 4.1 1

2 Version 4.1 MXT3010 Reference Manual

CHAPTER 1 Introduction
-
d

ns.

The MXT3010 is Maker Communication’s innovative, program
mable ATM cell processing engine. The MXT3010 is built aroun
Maker Communication’s SWAN processor and specifically
designed for use in high-speed ATM cell-processing applicatio
The MXT3010 delivers throughput at hard-wired speeds while
maintaining all of the benefits of programmable approaches.
MXT3010 Reference Manual Version 4.1 3

Introduction

t

s

BR

em-
,
2

at
Hz
ed

ir
MXT3010 features

MXT3010-based systems are insulated against changes in ATM
standards because firmware modifications can accommodate
these changes. The MXT3010 can:

• Scale across both performance and application ranges.

• Run at speeds ranging from 1.5 Mb/s up to 622 Mb/s.

• Handle the ATM Forum’s Traffic Management 4.0 Avail-
able Bit Rate (ABR) service specification.

• Operate as a self-contained device managing concurren
Constant Bit Rate (CBR), Variable Bit Rate (VBR), and
ABR connections, which frees host processing resource
for other tasks.

• Support rate-based and Quantum Flow Control-based A
services with algorithmic implementation of traffic shap-
ing.

• Perform in ATM layer processing applications.

The MXT3010 has a high speed glueless interface to Fast M
ory (SRAM) for storage of instructions and control structures
two high-performance data interfaces, and a UTOPIA Level
compliant interface.

The MXT3010 device, packaged in a 240-pin plastic quad fl
package, is available in three speed grades, 100 MHz, 80 M
and 66 MHz. Full electrical and mechanical details are provid
in Section 3 of this manual.

Figure 1 shows the MXT3010’s internal subsystems and the
relationship to devices found in a typical ATM application.
4 Version 4.1 MXT3010 Reference Manual

MXT3010 subsystems

raf-

to
-

ell

it
FIGURE 1.MXT3010 and surrounding system devices

MXT3010 subsystems

While the SWAN processor is the heart of the MXT3010, the
device also uses a series of subsystems or hardware agents cre-
ated to handle ATM-specific tasks. Not only do these sub-
systems off-load many time-critical functions from the SWAN
processor, but they also operate simultaneously with the SWAN
processor and with each other, achieving a high degree of paral-
lelism. The subsystems include:

• The Cell Scheduling System (CSS), a hardware-based t
fic-shaping subsystem that allows concurrent shaping of
dissimilar traffic types.

• The Fast Memory port that provides low latency access
external Channel Descriptors, program code, traffic shap
ing memory, and the look up tables used for Available C
Rate calculations.

• The Cell Buffer RAM that buffers cells in both the transm
and receive directions.

Multi-purpose
DMA (Port2)

UTOPIA
Port

Cell Buffer
High

Performance
DMA (Port1)

Instruction Cache

SWANTM

Fast Memory
Controller

Cell Scheduling
System

Inter-chip
Signalling

PHY or
switch fabric

Application
specific
devices

Main Memory

Message
buffers & other

information

32-bit 16-bit

Host
Processor

Fast Memory

Instructions &
data structures

RAM

Processor

bus bus

MXT3010
MXT3010 Reference Manual Version 4.1 5

Introduction

t-

ce

l

AN
ed.

ot
a-
b-

o-
n-

p-

s”,
ns

• The UTOPIA port that provides connection to an ATM ne
work via a UTOPIA Level 2 Multi-PHY interface.

• The Port1 and Port2 interfaces: Port1 is a high performan
32-bit DMA host system interface and Port2 is a general
purpose 16-bit DMA interface.

How the
subsystems work
together

The Cell Scheduling System, the Fast Memory port, the Cel
Buffer RAM, and the port interfaces utilize “dispatched”
instructions that operate outside of the CPU such that the SW
processor does not stall while the instruction is being execut
Not only do dispatched instructions not interfere with the
SWAN, but those associated with different subsystems do n
interfere with each other, thus permitting simultaneous oper
tion of several dispatched instructions within independent su
systems.

Although the Cell Scheduling System relies on the SWAN pr
cessor for direction on required traffic patterns, the CSS ma
ages the traffic-shaping functions of the ATM task. This CSS
function provides all of the benefits of algorithmic traffic sha
ing without decreasing overall performance.

What information is in this manual

This reference manual includes three sections: “Subsystem
“Register and Instruction Reference,” and “Signal Descriptio
and Electrical Characteristics.” Also included are Appendix A
“Acronyms,” Appendix B “Device Initialization,” and Appen-
dix C “Quick Reference.”
6 Version 4.1 MXT3010 Reference Manual

What information is in this manual

the
r,
d-
tion
 an

on
The “Subsystems” section includes information on:

• The SWAN processor

• The Cell Scheduling System

• The Fast Memory port

• The Cell Buffer RAM

• The UTOPIA port

• The Port1 and Port2 interfaces

• Interchip communications

The “Register and Instruction Reference” section describes
software and hardware registers within the SWAN processo
and includes bit assignments and functions for all of the har
ware registers. The “Register and Instruction Reference” sec
also describes instructions in functional groups and provides
alphabetical list of instructions within each group.

The “Signal Descriptions and Electrical Characteristics” secti
includes information on:

• Timing information

• Pin out and pin listing

• Signal descriptions

• Electrical parameters

• PLL details

• Thermal characteristics

• Mechanical information
MXT3010 Reference Manual Version 4.1 7

Introduction
8 Version 4.1 MXT3010 Reference Manual

CHAPTER 2 The SWAN Processor
The SWAN processor is used in network protocol processing
applications. This chapter describes how the SWAN processor
functions and provides functional descriptions of Arithmetic
Logic Unit (ALU) and Branch instructions of the SWAN proces-
sor.

Data
Stream

Cell
Stream

Multi-purpose

DMA (Port2)

UTOPIA
Port

Cell Buffer RAM
High

Performance
DMA (Port1)

Data
Stream

Instruction Cache

SWANTM Processor

Fast Memory
Controller

Cell Scheduling
System

Control
Memory
SRAMInter-chip

Signalling
MXT3010 Reference Manual Version 4.1 9

The SWAN Processor

at
m-

-

ri-

r-

 a

-
.

ell
The SWAN advantage

The SWAN processor was designed using Reduced Instruction
Set Computer (RISC) and Complex Instruction Set Computer
(CISC) design techniques. By combining the high pipeline
speeds of a RISC processor with the instruction set power of a
CISC processor, the SWAN processor attains the level of perfor-
mance required to process a 622 Mb/s ATM cell stream.

SWAN’s instructions and address spaces

In addition to utilizing an advanced RISC/CISC design, the
SWAN processor employs highly efficient instructions and
address spaces optimized for ATM applications.

Instruction features

• The ALU instructions include a memory update feature th
can write the results of an ALU operation back into a me
ory location linked to the destination register.

• The ALU instructions include an integral branching capa
bility that can perform a branch within the ALU instruction
cycle if the results of the ALU operation meet selected c
teria.

• The ALU instructions can perform modulo arithmetic ope
ations, selectable from 1 bit to 16 bits (full ALU width).

• The Branch instructions can test the status of more than
dozen internal hardware points and two external pins.

• Branch instructions and ALU branching facilities can be
programmed to eliminate the performance penalties nor
mally exacted by branch failures in pipeline architectures

• The Cell Scheduling System provides a powerful set of c
scheduling instructions.
10 Version 4.1 MXT3010 Reference Manual

The SWAN advantage

,

n,
or
 for
 and
the
w.

st

g
.
• DMA operations are dispatched with a single instruction
and those for Port1 include flexible CRC capabilities.

• Load and Store instructions include indexing and byte-
swapping capability.

Address spaces

The architecture of the SWAN processor, a big-endian desig
provides several independent address spaces. The process
accesses each space with instructions specifically designed
optimal performance. Figure 2 shows these address spaces
the instructions which access them. The circled numbers in
figure correspond to the explanatory paragraphs which follo

FIGURE 2.SWAN processor address spaces and access instructions

1. Instruction Space - 128K Words

The SWAN processor executes instructions stored in Fa
Memory. Fast Memory instructions are prefetched and
optionally cached in a direct mapped on-chip cache to
accelerate execution. A 17-bit Program Counter (allowin
up to 128K instructions) identifies the current instruction

Port2

UTOPIA
Port

Cell Buffer Port1

Instruction Cache

SWANTM
Fast Mem Cntl

Cell Scheduling
System

Inter-chip
Signalling

PHY or
switch fabric

Application
specific
devices

Main Memory

Message
buffers & other

information

Host
Processor

Fast Memory

Instructions &
data structures

RAM

Processor

DMA2R

DMA2W

DMA1W

DMA1R

Instruction Fetches
LMFM

SHFM

Scoreboard

Register file

PUSH

POP

LD/ST

LD

ST

1 2

3

4

MXT3010 Reference Manual Version 4.1 11

The SWAN Processor

”

-
e
-
rs

-
s

The processor executes instructions in a four stage instruc-
tion pipeline. The four stages -- Fetch, Decode, Execute
and Store -- utilize scoreboarding and feedback to ensure
proper operation, minimize stalls, and safeguard against
illegal instruction sequences. The Decode stage of the pipe-
line is the current Program Counter value.

2. Control Memory Space - 1MByte (includes instruction
space)

Fast Memory also provides a low latency store for control
structures such as descriptors for the applications objects
(VC descriptors, packet descriptors). The SWAN register
set is tightly coupled to this control memory space through
special purpose instructions -- Load Multiple from Fast
Memory (LMFM) and Store Halfword to Fast Memory
(SHFM). See “Load and Store Fast Memory Instructions
on page 293.

A powerful extension to ALU operations, linking, dynami
cally associates Fast Memory with the register set. Thes
instructions virtually eliminate the context switching over
head that limits the performance of off-the-shelf processo
in ATM systems. See “Automatic memory updates” on
page 228.

3. On-Chip Cell Buffer RAM - 1Kbytes

The Cell Buffer RAM on the MXT3010 provides the
SWAN processor with low latency access to cells in the
ATM data flow and to control information from the host. A
flexible Load/Store instruction paradigm provides an effi-
cient memory-register manipulation mechanism. In addi
tion to byte swapping, the extended load/store operation
include an indexing method to facilitate control structure
parsing. See “Load and Store Internal RAM Instructions”
on page 313. This multi-port RAM is accessible to the
UTOPIA, Port1 and Port2 DMA engine as well as the
12 Version 4.1 MXT3010 Reference Manual

The SWAN advantage

 the

-

,

e,
ro-

ons

fre-

d
per-
ing
SWAN. Since it is truly multi-ported, it provides very low
latency access to all arbiters. See “Direct Memory Access
Instructions” on page 283.

4. On-Chip Cell Scheduling System Scoreboard RAM -
2Kbytes

The Cell Scheduling System uses an on-chip RAM to
accelerate cell scheduling operations. When not used by
CSS, this RAM is accessible to the SWAN processor
through the Load/Store instructions and may be used as
general purpose memory. See “The Cell Scheduling Sys
tem” on page 27.

Instruction execution

All SWAN instructions, except dispatched instructions, execute
in a single clock cycle. Dispatched instructions include Load
Multiple Fast Memory (LMFM), the cell scheduling instruc-
tions (PUSHC, POPC), the DMA instructions (DMA1, DMA2)
and the load and store double instructions (LDD, STD). Dis-
patched instructions require more than one cycle to complet
but their execution occurs outside of the CPU such that the p
cessor can accomplish other tasks while dispatched instructi
execute.

Since the input clock is doubled in frequency by an on-chip
PLL, the SWAN processor executes instructions at twice the
quency of the input clock. Like other high performance RISC
processors, the SWAN utilizes a multi-stage pipeline. Delaye
branching techniques ensure that Branch instructions also o
ate at an effective rate of one instruction per cycle by prevent
pipeline delays.
MXT3010 Reference Manual Version 4.1 13

The SWAN Processor
Instruction space organization

The SWAN supports an instruction space of 128K 32-bit
instructions, which must be 4-byte aligned. The instruction
space spans 32 Segments of 4K instructions each. Figure 3
shows the SWAN instruction space.

FIGURE 3.SWAN instruction space

Notes: 1. The tag numbers wrap every 32K instructions

2. Page size is defined by the instruction cache size. Therefore,
the MXT3010 EP has sixty-four 2K pages.

Segments are defined by the branching range of the instruction
set. Since the Branch instruction has a 12 bit instruction address
range, it may jump anywhere within a 4K segment. See “Target
field” on page 20.

Page 0, Tag = 0

Page 1, Tag = 1

Page 2, Tag = 2

Page 3, Tag = 3

Segment 0

Segment 1

0

2K

4K

8K

Page 14, Tag = 14

Page 15, Tag = 15

Page 16, Tag = 0

Page 17, Tag = 1

Segment 7

Segment 8

28K

32K

36K

Page 60, Tag = 12

Page 61, Tag = 13

Page 62, Tag = 14

Page 63, Tag = 15

Segment 30

Segment 31

120K

124K

128K
14 Version 4.1 MXT3010 Reference Manual

The SWAN advantage

ty’s
cut-
ns

e

ion

ruc-

ter

-
ory

f
r

AN
 off-
on
 the
Instruction cache

The internal Instruction Cache is 2048 instructions. The cache is
a direct-mapped cache, with each 32-bit entry having an inde-
pendent 4-bit tag. There are no separate valid bits for the cache
entries. At device initialization time, all of the cache tags are
written to 0xF. After the micro-boot routine downloads the firm-
ware, the SWAN processor jumps to the specified starting
address. The address must not map onto a cache tag of 0xF, as
these fetches would cause incorrect cache hits. For simplici
sake, consider the code space of 32K instructions as an exe
able space of 30K instructions and with a top 2K of instructio
inaccessible for execution.

Cache organization and mapping

The line size of the MXT3010 cache (i.e. the amount of cach
replaced on a cache miss) is 1 instruction. Each entry in the
cache is therefore a single instruction. Each entry or instruct
in the cache is 'tagged' with a 4 bit value that represents the
cache page. As shown in Figure 3 on page 14, each 4K inst
tion segment contains two 2K cache pages.

The NC (No-Cache) bit in the Instruction Base Address regis
(R53) disables the cache. If this bit is set (one), the SWAN
fetches all instructions from Fast Memory, and these instruc
tions are not stored in the on-chip cache. Since the Fast Mem
interface runs at 1/2 of the processor speed, it delivers an
instruction every other cycle. Therefore, while running out o
Fast Memory, the SWAN will stall, at a minimum, every othe
cycle.

While NC is clear (zero), the cache is enabled. When the SW
fetches an instruction, the tag of the cache entry at the page
set of the instruction is compared with the tag of the instructi
address. Figure 4 details the formation of the page offset and
instruction tag.
MXT3010 Reference Manual Version 4.1 15

The SWAN Processor
FIGURE 4.Formation of the page offset and the instruction tag

 Note: The Instruction Offset is a word offset, as opposed to a byte offset.
The byte instruction address in Fast Memory will be ((Segment_ID
<< 14)+ (Instruction Offset << 2))

If the instruction tag matches the corresponding cache tag, a
cache hit has been achieved and the cache returns the instruction
within a single cycle. The processor continues execution with-
out stalling. However, if the tag does not match, a cache miss has
occurred and the instruction must be fetched from Fast Memory.
This will cause a processor stall as it awaits the instruction. Once
Fast Memory returns the instruction, it is stored in the cache and
the tag is updated. Because the cache line size is a single instruc-
tion, only a single instruction is replaced in the cache on a cache
miss. Subsequent cache misses may replace other instructions in
the cache. With an empty cache, such as when exiting the boot-
strap, every instruction must be fetched from Fast Memory.
Therefore, every other cycle will be a stall as the cache is cold
filled.

The firmware designer controls which segments are cacheable.
The NC bit in the Instruction Base Address register (R53) con-
trols the cache and is typically modified by firmware when a
code path jumps off the current segment. The firmware must
ensure that for each cache tag value (0x0-0xE), only a single

Cache

0

2047

Instruction (32 bits)Tag (4 bits)

0123456789101101234

Segment ID Instruction offset

4-bit tag Page offset
Program
counter
(17-bits)
16 Version 4.1 MXT3010 Reference Manual

The SWAN advantage
cache page is made cacheable. Otherwise, stale cache entries
prevent proper operation. The SWAN’s bootstrap program pre-
loads a tag of 0xF into all cache entries at initialization. It is rec-
ommended that no cacheable code be placed at a location with a
tag of 0xF.

Using the Cache

Code that is always executed, referred to as the ’fast path’, should
be placed in cacheable space, preferably within a single cache
page. Infrequently executed code (slow path) and performance
insensitive code (for example, initialization code) should be
located in non-cacheable segments. Maker’s development tools
provide code location features.

Many applications do not require more than 2K instructions. In
this case, the application may be located on a single cache page.
The entire page will be mapped into cache. Obviously, this will
provide an optimal level of performance. However, it is not a
requirement, as a program can easily jump to a new segment
using the following instruction sequence:

LIMD R53 new-segment

BI offset_in_new_segment n

Instruction prefetch

The SWAN architecture is highly pipelined. The hardware may
prefetch instructions from Fast Memory in anticipation of exe-
cution. These prefetches may be cached. However, changes in
program flow (branches) may prevent the instructions from
being executed. This behavior is expected and does not cause
improper operation. Prefetches are mentioned here to alert the
user that fetches from Fast Memory do not correlate exactly to
the sequence of the Program Counter.
MXT3010 Reference Manual Version 4.1 17

The SWAN Processor

es
ibes

rip-
Observing cached program flow

When the processor is executing out of cache, it does not need
to access Fast Memory. However, if Fast Memory is not being
used, the MXT3010 presents the program counter address on the
Fast Memory address lines. This helps to monitor code execu-
tion from cache.

SWAN processor instruction classes
The SWAN processor includes powerful 32-bit instructions in
six functional areas or classes. Descriptions of each class of
instruction are divided into two sections — one which describ
the subsystem that uses that instruction and one which descr
the bit utilization and format for each instruction. These desc
tions appear in the chapters listed in Table 1.

TABLE 1. SWAN processor instruction classes

Functional Area Subsystem Description Instruction Description

Arithmetic Logic
Unit Instructions

“The SWAN Proces-
sor” (this chapter)

“Arithmetic Logic Unit
Instructions” on page 223

Branch Instructions “The SWAN Proces-
sor” (this chapter)

“Branch Instructions” on
page 261

Cell Scheduling
Instructions

“The Cell Scheduling
System” on page 27

“Cell Scheduling Instruc-
tions” on page 277

Direct Memory
Access Instructions

“The Port1 and Port2
Interfaces” on page 97

“Direct Memory Access
Instructions” on page 283

Load and Store Inter-
nal RAM Instruc-
tions

“The Cell Buffer
RAM” on page 59

“Load and Store Internal
RAM Instructions” on
page 313

Load and Store Fast
Memory Instructions

“The Fast Memory
Interface” on page 47

“Load and Store Fast
Memory Instructions” on
page 293
18 Version 4.1 MXT3010 Reference Manual

SWAN processor instruction classes

ha-

-

 is

-

Arithmetic Logic Unit (ALU) instructions

Basic ALU
instructions

The SWAN processor instruction set includes a complete suite
of arithmetic, logical, and shifting instructions implemented in a
high performance ALU. The format of a typical ALU instruction
is shown below:

ADD (rsa, rsb) rd [MODx][abc][AE][UM]

In the example shown, input data is stored in rsa and rsb, while
the result is delivered to register rd. The notations shown in
square brackets represent the special features that optimize the
SWAN ALU for ATM cell processing. These features, referred
to as instruction field options (IFOs), include the modulo field
(MODx), the ALU branch condition field (abc), the always exe-
cute bit (AE), and the update memory feature (UM). For more
information see “Arithmetic Logic Unit Instructions” on
page 223.

Branch instructions

The SWAN processor includes two basic branch control mec
nisms:

• A suite of ALU instructions that includes conditional
branching capabilities. See “Arithmetic Logic Unit Instruc
tions” on page 223.

• A suite of three basic branch instructions, each of which
available with a return address linking version.

Basic Branch
instructions

The format of a typical Branch instruction (Branch Fast Mem
ory) is shown below:

BF [ESS#/(0|1)[/C]][cso][N]
MXT3010 Reference Manual Version 4.1 19

The SWAN Processor

)
ch

ars

n-

e
nd
et

e
) at
uc-
et
Branch instructions allow the programmer to specify condi-
tional branching decisions which will alter the instruction exe-
cution sequence. The branching decisions are based on the state
of the MXT3010 subsystems, as indicated in the External State
Signals (ESS) register. The point to be tested is specified by the
ESS field (ESS#). If the branch is to be taken when the point
tested is a 1, the ESS# is followed by a /1. If the branch is to be
taken when the point tested is a 0, the ESS# is followed by a /0.
Branch instructions can also be used to manipulate the UTOPIA
port’s control counters via the counter system operation (cso
field. The C and N options optimize the performance of Bran
instructions in special circumstances. Descriptions of these
options appear in “The Conditional operator (C-bit)” on
page 265. Complete information on Branch instructions appe
in “Branch Instructions” on page 261.

Target address The branch target address is the address at which execution co
tinues if the specified branch condition is satisfied. The full
branch target address within Fast Memory is formed from th
Segment ID in the Instruction Base Address register (R53) a
the branch target field. Figure 5 shows the format of the targ
address.

FIGURE 5.Target address format in Fast Memory

Target field The branch target field is a 12-bit field that specifies the absolut
word address within the current code segment (4096 words
which execution is to continue. The three basic branch instr
tions differ only in their method of specifying the branch targ
address field. Table 2 summarizes the methods used.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment ID Branch Target Field 0 0
20 Version 4.1 MXT3010 Reference Manual

Registers

 of
pur-

 con-
s

ters,
nd

es.
tage

e
 the

Note 1:The Fast Memory shadow register is loaded with the first halfword
returned from memory during a Fast Memory read operation that
specifies the LNK Instruction Field Option.

For a complete description of the three basic branch instructions
and the versions which include return address linking, see
“Branch Instructions” on page 261.

Registers

Register types The SWAN processor contains 64 software-visible registers
two types, general-purpose and control/status. The general-
pose registers are classified as software registers because their
usage and content is firmware dependent. The registers that
trol functions and provide status information are classified a
hardware registers.

The SWAN processor has 32 general-purpose software regis
R0-R31, each 16-bits wide. The SWAN also has 32 control a
status hardware registers, R32-R63.

Pipeline feedback The SWAN processor includes two pipeline feedback featur
One of the feedback paths takes results from the execution s
of the instruction pipeline and delivers those results to the
decode stage. A second feedback path takes results from th
storage stage of the pipeline and also delivers those results to
decode stage. Figure 6 shows the general concept:

TABLE 2. Methods of specifying the branch target field

Instruction Method of specifying the branch target field

Branch Immediate (BI) As bits [11:0] of the instruction

Branch Fast Memory
Shadow Register (BF)

As bits [11:0] of the Fast Memory Shadow
register (R58). (Note 1)

Branch Register (BR) As bits [11:0] of the Branch register (R59)
MXT3010 Reference Manual Version 4.1 21

The SWAN Processor

 not
PC
FIGURE 6.Pipeline feedback

Using the execution stage feedback facility, an ALU instruction
that modifies a register can be followed immediately by another
ALU instruction that accesses that same register. Using the stor-
age stage feedback facility, other instructions that modify a reg-
ister can be followed, after an intervening instruction, by an
instruction that accesses the same register. This intervening
instruction must not be an LD or LDD to a hardware register.

Register access
rules

Do not perform a load (LD, LDD) to a hardware register imme-
diately between an instruction that accesses an rla register (R48-
R51, GA-GD) and an instruction that stores to that rla register.

The number of processor cycles which must intervene between
an instruction that alters a register and an instruction which uses
the data in the altered register depends upon two factors:

• The instruction used

When a POPC is issued, the destination register, rd, does
contain the requested data until eight cycles after the PO
instruction is decoded.

Cache Register
 File

Fetch Stage Decode Stage

Other Logic ALU

Execution Stage

Storage
 Stage

E
xe

cu
tio

n
S

ta
ge

 F
ee

db
ac

k

S
to

ra
ge

 S
ta

ge
 F

ee
db

ac
k

22 Version 4.1 MXT3010 Reference Manual

Registers

ly
er.

or-

When a Load (LD) instruction is issued, the destination reg-
ister, rd, does not contain the requested data until one cycle
after the LD instruction is decoded.

When a Load Double (LDD) instruction is issued, the sec-
ond destination register, rd + 1, does not contain the
requested data until two cycles after the LDD instruction is
decoded.

When a Load Multiple Fast Memory (LMFM) instruction is
issued, the destination registers are updated after delays
described in “LMFM Load Multiple from Fast Memory” on
page 308.

• The register accessed

A write to a software register, R0-R31, can be immediate
followed by an instruction that uses the data in that regist

Writes to the following hardware registers should be fol-
lowed by at least one other instruction before the new inf
mation in the register is used for load, store, or branch
instructions. This restriction does not apply to their use in
ALU or DMA instructions.:

TABLE 3. Hardware registers requiring one instruction delay

Location Name Read/Write

R44-R47 CRCX/CRCY
(when used a general purpose registers)

R/W

R48 rla Address register R/W

R49 rla Address register R/W

R50 rla Address register R/W

R51 rla Address register R/W

R57-write Sparse Event/ICS register Set/Clear

R58 Fast Memory Shadow register R/W

R59 Branch register R/W
MXT3010 Reference Manual Version 4.1 23

The SWAN Processor
Writes to the following hardware registers should be followed
by at least two other instructions before the new information in
the register is used:

Flag registers

Flag registers include the Assigned Cell Flag register and the
Overflow Flag register. These registers are internal state bits;
programs do not manipulate them directly, but can use the status
of the flags to modify program flow.

Assigned Cell flag
register

The Cell Scheduling System manipulates this register at the con-
clusion of a POPC operation. The state of the Scoreboard bit tar-
geted by the POPC operation is copied into this register, which
is connected to ESS4 and can be tested by ALU Conditional
Branch instructions.

Overflow flag
register

Add and Subtract instructions that cause arithmetic overflow set
this register. ALU Conditional Branch instructions test this reg-
ister.

For more
information

For a complete description of the registers within the SWAN
processor, please see “Registers” on page 189.

TABLE 4. Hardware registers requiring two instruction delays

Location Name Read/Write

R42-write Mode Configuration register Set/Clear

R43-read Fast Memory Bit Swap register R

R60 CSS Configuration register R/W

R62 UTOPIA Configuration register R/W

R63 System register R/W
24 Version 4.1 MXT3010 Reference Manual

HEC generation and check circuit

s-

efi-

,
C-
he
 as

for
to
e to

d
rst
er.
e
n

ta
put
he
g
HEC generation and check circuit

The MXT3010 provides two HEC generation and checking
methods:

1. HEC generation and checking is provided in the UTOPIA
port. See “Receive cell flow” on page 77.

2. For applications which do not use the UTOPIA port, HEC
generation and checking is provided in the SWAN proce
sor.

SWAN HEC
operation

Bit 9 of the Mode Configuration Register (R42) enables HEC
generation mode in the SWAN processor and changes the d
nition of General Purpose register R33. In normal operation
R33 is a read/write register and is initialized to 0xFFFF. In HE
enabled mode, R33 is redefined to include the output from t
HEC generation circuitry and is therefore no longer available
a simple read/write register or as a constant value.

Additionally, the HEC circuitry uses R32 as a source of data
HEC generation. This register is read/write and is initialized
0x0000. When not used for HEC purposes, R32 can continu
function as a 16-bit read/write register.

The HEC generation logic takes in two 16-bit data values an
produces an 8-bit result. In normal ATM cell processing, the fi
data value would be the first two bytes of the ATM cell head
The second data value would be the second two bytes of th
ATM cell header, and the 8-bit result of that second operatio
would be the HEC inserted (or checked) for the current cell.

The HEC circuitry initializes its 8-bit seed value when new da
is written to R32. A subsequent write to R33 completes the in
of data to the HEC circuit. After appropriate pipeline delays, t
resultant HEC is available right justified in R33. The followin
code segment illustrates this.
MXT3010 Reference Manual Version 4.1 25

The SWAN Processor
LIMD r32 #first_two_bytes ;load first half of cell
header

 ;this also resets the
SEED value

LIMD r33 #second_two_bytes ;load second half of
cell header

NOP ;execute stage

NOP ;store stage

NOP ;HEC processing

CMP r33, x ;HEC is returned in low
byte R33

The HEC result can be used directly in a transmitted cell, or
compared to the fifth byte in a received cell. The NOP instruc-
tions can be replaced with useful operations, but the HEC result
in R33 is not valid until the fourth instruction after data is writ-
ten to R33.
26 Version 4.1 MXT3010 Reference Manual

CHAPTER 3 The Cell Scheduling System
The Cell Scheduling System (CSS) is a traffic-shaping system
that operates as a combination of algorithmic- and hardware-
assisted functions. The SWAN processor implements the algorith-
mic-assisted portion of the scheduling function, and the cell
scheduler performs the hardware-assisted portion. By implement-

Data
Stream

Cell
Stream

Multi-purpose

DMA (Port2)

UTOPIA
Port

Cell Buffer RAM
High

Performance
DMA (Port1)

Data
Stream

Instruction Cache

SWANTM Processor

Fast Memory
Controller

Cell Scheduling
System

Control
Memory
SRAMInter-chip

Signalling
MXT3010 Reference Manual Version 4.1 27

The Cell Scheduling System

in-
 to
To
tes
 in
ns,
 for
 a
ard
ID
ig-
ing traffic shaping as a combination of algorithmic- and hard-
ware-assisted functions, the programmer has complete control
over the traffic-shaping algorithms used.

This chapter includes the following information:

• How the Cell Scheduling System works

• Data transmission - servicing and scheduling

• Pacing the transmission rate of cells

• Programming the Cell Scheduling System

How the Cell Scheduling System works

The Cell Scheduling System works by dividing the ATM cell
payload capacity of the transmission link into periodic conta
ers of cells. The boundary of the periodic containers relative
the transmission convergence framing structure is arbitrary.
schedule cell usage within the containers, the MXT3010 crea
a Scoreboard (schedule) on-chip and a Connection ID table
Fast Memory. The Scoreboard can contain up to eight sectio
each of which represents an independent periodic container
a separate physical link or priority level. Each location within
periodic container corresponds to a single bit in the Scorebo
section and a single entry in the corresponding Connection
table. Bits [13:12] of the Cell Scheduling System (CSS) Conf
uration register (R60) control the number of sections in the
Scoreboard.
28 Version 4.1 MXT3010 Reference Manual

How the Cell Scheduling System works
TABLE 5. Scoreboard sectioning control

To clarify the discussion which follows, it will be assumed that
the Scoreboard contains only a single section of 16,384 bits/
entries.

The Scoreboard and Connection ID table are maintained by the
SWAN processor working with a specialized control circuit
referred to as the cell scheduler. The cell scheduler modifies the
Scoreboard and Connection ID table in response to servicing
and cell scheduling requests issued by the SWAN processor.

Successive bits in the Scoreboard and locations in the Connec-
tion ID table represent successive cell time slots on a transmis-
sion link. If the transmission link is not fully loaded with traffic,
only some of the entries in the table have a virtual circuit (VC)
assigned to them, as indicated by a bit set to one in the Score-
board. Others are labeled Available, as indicated by a Score-
board bit that is zero. Figure 7 shows an example of Connection
ID table entries.

Bits Name Description

13:12 SZ Scoreboard Section Size
00 = 2,048 bits/entries per section; up to 8 sections
01 = 4,096 bits/entries per section; up to 4 sections
10 = 8,192 bits/entries per section; up to 2 sections
11 = 16,384 bits/entries per section; 1 section
MXT3010 Reference Manual Version 4.1 29

The Cell Scheduling System
FIGURE 7.Connection ID entries

During the cell-scheduling process, status bits in the Scoreboard
table summarize the assigned or available status of each Con-
nection ID table entry. Since a bit in the Scoreboard represents
the status of a 16-bit entry in the Connection ID table, the Score-
board is only 1/16th the size of the Connection ID table. This
compaction of table status accelerates the cell scheduler task of
searching for available time slots. The searching task is further
accelerated by a proprietary algorithm that guarantees to iden-
tify an available cell-time slot from anywhere within the Score-
board and write the Connection ID into that slot within 121
processor cycles. High-speed searching is especially important
for high-speed ATM links and/or those links that carry a large
number of VCs, as larger Connection ID tables are used in such
systems.

Connection ID 145

Connection ID 47
Available

11 0

Note

The MXT3010 accommodates Scoreboards of
2,048 through 16,384 bits and Connection ID
tables of 2,048 through 16,384 16-bit halfwords.

Scoreboard

Connection ID Table

1. Under ideal conditions (Fast Memory write pipe empty), this number
could be as low as 10, but it is highly likely that a write pipe entry will
need to be displaced, raising the number to 12.
30 Version 4.1 MXT3010 Reference Manual

Data transmission - servicing and scheduling
Data transmission - servicing and scheduling

The data transmission process consists of two major steps:

1. Servicing the Connection ID table to find entries represent-
ing assigned time slots that are scheduled for transmission
on an established virtual circuit.

2. Scheduling time slots for existing virtual circuits or estab-
lishing new VCs by placing entries into Connection ID
table locations that ensure the proper service quality for
that VC.

Servicing

The SWAN processor services the Connection ID table and
Scoreboard linearly and services the VCs that have reserved the
various locations. The SWAN processor determines which VC
reserved a time slot by examining the corresponding Connection
ID table entry. The SWAN processor reads the Connection ID
table entry by executing the POPC instruction. When POPC
executes, the cell scheduler returns the addressed Connection ID
table entry, copies the value of the Scoreboard bit corresponding
to the entry into the Assigned Cell flag bit of the External State
Signals register (R42, bit 4), and clears the Scoreboard bit.

The processor maintains a pointer into the Connection ID table
that represents the current cell time slot. In a normal application,
the processor increments this pointer each time it issues the
POPC instruction. Because the Scoreboard and Connection ID
table represent periodic containers, the SWAN processor is
responsible for manipulating its Connection ID table pointer
modulo the container size. If multiple Scoreboards and Connec-
tion ID tables are used, the SWAN is responsible for manipulat-
ing multiple Connection ID table pointers, each modulo its
respective container size.
MXT3010 Reference Manual Version 4.1 31

The Cell Scheduling System

 the

on-
or
uc-
The POPC instruction is a dispatched instruction operating out-
side of the CPU such that the SWAN processor does not stall
while the cell scheduler executes the POPC instruction. The
SWAN processor can determine when the POPC operation is
complete by testing the state of bit 5 in the External States Sig-
nals register (R42). ESS5 is set while a cell scheduling operation
is in progress. Alternatively, the SWAN processor can determine
when the POPC operation is complete by accessing the destina-
tion register, although this method can result in a processor stall.
Register scoreboarding guarantees that the processor will stall if
the processor tries to access the destination register (rd) before
the cell scheduler has written the POPC result to that register.
However, the instruction immediately following the POPC is
not register scoreboarded and should not access register rd.

When a POPC instruction has executed, and the Assigned Cell
Flag indicates that the selected time slot had an assigned Con-
nection ID table entry, the program can read the destination reg-
ister of the POPC instruction to obtain a pointer to the Channel
Descriptor for the VC associated with that time slot. The Chan-
nel Descriptor contains the application-defined state informa-
tion needed to process the cell transmission event for the
associated VC. This data normally includes the pointer to the
data to be transmitted plus rate or flow control information used
in scheduling future activity for the VC.

If the Assigned Cell Flag indicates that the selected time slot is
unassigned, the program must employ measures to ensure that
an appropriate transmission rate is maintained. See “Pacing
transmission rate of cells” on page 37.

Scheduling

The SWAN processor schedules a VC when adding a new c
nection or when servicing an existing VC. The SWAN process
initiates a scheduling operation by executing a PUSHC instr
32 Version 4.1 MXT3010 Reference Manual

Data transmission - servicing and scheduling
tion. PUSHC specifies a 16-bit Connection ID and a target loca-
tion within the periodic container (Scoreboard). The cell
scheduler responds to PUSHC by scanning the Scoreboard look-
ing for the first available location at or after the targeted loca-
tion. If an available location is not found by the time the last bit
of the Scoreboard is reached, the cell scheduler loops back to the
beginning of the Scoreboard to continue the search. When the
cell scheduler finds an available location, it sets the bit in the
Scoreboard and writes the Connection ID into the corresponding
Connection ID table entry. In general, the Connection ID identi-
fies the Fast Memory address of the Channel Descriptor for the
VC.

Like POPC, PUSHC is a dispatched instruction operating out-
side of the CPU such that the SWAN processor does not stall
while the cell scheduler executes the PUSHC instruction. The
SWAN processor determines when the PUSHC operation is
complete by testing the state of bit 5 in the External Signal Sta-
tus register (R42). ESS5 is set while a cell scheduling operation
is in progress. When the scheduling operation is complete, the
processor reads the scheduled address in the Cell Scheduling
System Scheduled Address register (R61). This address differs
from the target address if the target address was previously
scheduled.

Software cannot depend upon the state of register R61 until the
PUSH/PUSHF instruction is complete, as no register score-
boarding mechanism protects access to this register during
PUSH/PUSHF instruction operation.

For example, Figure 8 shows the SWAN processor servicing the
third location in the Connection ID table and scheduling a new
time slot for Connection ID 47.
MXT3010 Reference Manual Version 4.1 33

The Cell Scheduling System
FIGURE 8.Servicing and scheduling

In the example shown in Figure 8, the requested location was six
entries away from the entry being serviced. However, that loca-
tion was assigned, and the nearest available location was eight
entries away. The cell scheduler reserves the available location
and reports the location to the SWAN processor via the Cell
Scheduling System Scheduled Address register (R61). This
report-back feature is important when creating controlled delay
connections, as it enables the program to determine whether the
chosen location meets the cell delay variation (CDV) require-
ments. If the CDV requirements are not met, the SWAN proces-
sor can make another scheduling attempt or otherwise
reschedule or reject the connection.

Calculating target time slots

The SWAN processor uses the Channel Descriptor information
to calculate, via an algorithm, a target time slot location for the
next transmission to serve the VC. A variety of methods can be
employed.

Connection ID 145

Connection ID 47
Available

11 0

Scoreboard

Connection ID Table

Pointer in CPU representing current time slot

110

Ideal next transmission time slot

First available transmission time slot
nearest the ideal time slot

Connection ID 321
Connection ID 123

Available
34 Version 4.1 MXT3010 Reference Manual

Data transmission - servicing and scheduling

ll

s

e

t

h

e
on

ia-
.
for
Using GCRA to
calculate time
slots

The scheduling of cells on a per-connection basis is completely
implementation dependent. For example, an implementation
can use the Generic Cell Rate Algorithm1 as defined by Incre-
ment and Limit ((GCRA(I,L)) to schedule cells on a VC. The
Increment represents the minimum inter-cell emission interval
for the VC.

The scheduling algorithm calculates target time slots for various
types of connection as follows:

• For an Available Bit Rate (ABR) connection, the inter-ce
emission interval is based on feedback from the network
(flow control information in the Channel Descriptor) and i
equal to 1/ACR. The implementation can calculate the
Increment for ABR connections in accordance with the
ATM Forum's rate-based ABR service specification, but
other methods can be used.

• For a Variable Bit Rate (VBR) connection, the target time
slot calculation can use an algorithm that allows burst
transmission of a specified number of cells (Maximum
Burst Size) at a peak cell rate (Peak Cell Rate), not to
exceed a sustained cell rate (Sustained Cell Rate) over
time. In this case, the Increment depends upon the abov
three parameters.

• For an Unspecified Bit Rate (UBR) connection, the targe
time slot calculation is based on the information in the
Channel Descriptor without regard to flow control, but wit
no effort at reliable transport.

• For a CBR connection, the algorithm can schedule all th
required time slots in the Scoreboard when the connecti
is initially established. The quantity and spacing of these
time slots depends on the bandwidth and Cell Delay Var
tion (CDV) requirements associated with the connection
Therefore, when a target time slot calculation is created

1. Consult ATM Forum’s Traffic Management 4.0 for GCRA information.
MXT3010 Reference Manual Version 4.1 35

The Cell Scheduling System
an established CBR connection, the target time slot is the
current time slot. Maintaining the currently assigned time
slots ensures consistent CBR connection performance.

For CBR connections, the inter-cell emission interval is not
time varying and is equal to 1/Peak Cell Rate (PCR).

For VCs with dynamically allocated time slots, such as VBR
and ABR VCs, a single time slot can exist on the Connection ID
Table/Scoreboard for each VC. VCs that use permanent reserva-
tion of bandwidth, such as CBR VCs, can have multiple time
slots.

All of the information required to calculate the inter-cell emis-
sion intervals can be stored in Fast Memory. Inter-cell emission
intervals can be stored as fractional integers to support high con-
nection rates. The program can store the inter-cell interval as a
fractional integer and maintain a remainder. The SWAN proces-
sor can then schedule cells using the integer portion of the result,
saving the remainder for use in the next scheduling event on that
VC.

The SWAN processor can recover bandwidth lost due to cell
scheduling collisions by scheduling connections at the calcu-
lated Theoretical Arrival Time minus the Limit. A copy of the
scheduled time must be stored in the Channel Descriptor for
each VC scheduled in this fashion for proper operation of the
GCRA.
36 Version 4.1 MXT3010 Reference Manual

Pacing the transmission rate of cells

g
d.
IA
ells
on-
-
ed

r
 the
g

e
o
-

g
ck
e
nly
is-
Pacing the transmission rate of cells

The MXT3010 can pace the transmission rate of cells in either
of two ways:

• Back pressure through the UTOPIA port

• Use of an external clock

Back pressure
method

When the back pressure method is used, the Cell Schedulin
System is a self-pacing system—no external clock is require
Back pressure from the transmission link through the UTOP
port limits the rate at which the SWAN processor can queue c
for transmission. Therefore, the processor must maintain a c
tinuously scheduled cell stream at the UTOPIA port. The pro
cessor maintains this cell stream by issuing idle or unassign
cells when no active VC is scheduled.

As indicated in “Servicing” on page 31, the SWAN processo
determines if a time slot is assigned or unassigned by testing
state of the Assigned Cell flag bit of the ESS register followin
a POPC instruction. If the Assigned Cell flag bit is 0, the tim
slot is unassigned and an unassigned cell must be queued t
maintain the necessary back pressure. The queuing of unas
signed cells guarantees that inter-cell emission intervals on the
transmission link remain synchronous with the intervals pro-
grammed into the schedule.

External clock
method

When the external clock method is used, the Cell Schedulin
System is no longer a self-pacing system, as an external clo1
is required to indicate cell transmission opportunities. If ther
are no cells to be sent, no cells are presented to the PHY. O
user data cells are presented to the UTOPIA Port for transm
sion; no idle cells are sent.

1. Either of the Programmable Interval Timers (PIT0 or PIT1) can be used.
See “R54-R55 Programmable Interval Timer registers” on page 211.
MXT3010 Reference Manual Version 4.1 37

The Cell Scheduling System
Advantages of
each method

The back pressure method is preferable when transmitting cells
over an ATM transmission link, as the ATM transmission link
must be kept full, and the transmission of idle cells is required.
The external clock method is preferable when the MXT3010 is
connected to a switch fabric, as it saves the switch the overhead
of dealing with idle cells.

Programming the Cell Scheduling System

The Cell Scheduling System example in Figure 9 shows the
SWAN processor maintaining a pointer that represents the
present transmission time slot, such as the service address, in
R7. In this example R7= 02, the halfword address of the third
location in the Connection ID table.

FIGURE 9.Scoreboard operation

Connection ID 145

Connection ID 47
Available

11 0

Scoreboard before POPC/PUSHC

Connection ID Table

Pointer in R7 representing current time slot

110

Ideal next transmission time slot

First available transmission time slot
nearest the ideal time slot

10 0

Scoreboard after POPC

110

10 0

Scoreboard after PUSHC

111

Connection ID 321
Connection ID 123

Available
38 Version 4.1 MXT3010 Reference Manual

Programming the Cell Scheduling System

t

)

s-

r

-
,
The following instructions represent typical cell scheduling
operation:

POPC R10 @R7 If the UTOPIA Port Transmit queue is not full, the
SWAN processor executes a POPC requesting that
the cell scheduler access the Connection ID table
entry that R7 references (location 02), and place that
Connection ID into R10. The cell scheduler copies
the Scoreboard bit associated with this Connection
ID table entry into the Assigned Cell Flag register,
then clears the Scoreboard bit (see “Scoreboard
after POPC” in Figure 9). Because the relevant
Scoreboard bit was set to 1 at the time that POPC
was executed, the Assigned Cell Flag register is se
to 1.

BI $RDY ESS5/0 The SWAN processor first tests for completion of
the POPC instruction (bit 5 in the External Signals
State (ESS) register) using a Branch Immediate (BI
instruction. The BI instruction specifies a branch to
location $RDY if the point tested (ESS5) is a 0,
indicating the CSS scheduling operation is no
longer in progress.

$RDY BI $SAC ESS4/1 The SWAN processor then tests the Assigned Cell
Flag register (bit 4 in the External Signals State
(ESS) register) using a Branch Immediate (BI)
instruction. The BI instruction specifies a branch to
location $SAC if the point tested (ESS4) is a 1.

$SAC LMFM R16 @R10/
R10 16HW LNK

Since the time slot was assigned, the SWAN proce
sor uses the connection ID returned in R10 to
retrieve the Fast Memory-based Channel Descripto
for the VC that reserved the time slot. The Load
Multiple Fast Memory (LMFM) instruction is used
to copy 16 halfwords beginning at the Fast Memory
Address specified in R10 into 16 SWAN registers
starting with register R16. To ensure that any
changes to the Fast Memory locations can be auto
matically copied into the entries stored in R16-R31
the Link (LNK) instruction field option is invoked.
MXT3010 Reference Manual Version 4.1 39

The Cell Scheduling System

 in

e
 the
d
reg-

DV
The SWAN processor uses the information stored in the Channel
Descriptor to build or retrieve a cell for the VC. In a SAR appli-
cation that uses dynamic scheduling as part of the service rou-
tine, the SWAN processor determines when to service the next
connection. The SWAN processor does this by executing a
scheduling algorithm using parameters stored in the Channel
Descriptor. The Channel Descriptor contains the parameters
necessary to determine the connection scheduling rate.

From the information in the Channel Descriptor, the SWAN pro-
cessor determines the next location within the Connection ID
table that should be scheduled for this VC. Then the SWAN pro-
cessor places the result into a software register, for example
R22. The SWAN processor activates the connection by execut-
ing the PUSHC instruction. The PUSHC instruction requests
that the cell scheduler find an available time slot at or after the
target address specified in R22, assign the chosen time slot, and
write the Connection ID from register R10 into the Connection
ID table location corresponding to that time slot.

PUSHC R10 @R22

The cell scheduler translates the target address indicated by R22
into a Scoreboard bit position and searches the Scoreboard,
beginning at that bit position. In the example shown in Figure 9,
the cell scheduler discovers that a previous connection reserved
the target location. Therefore, the cell scheduler examines the
Scoreboard until it finds an available location. This location is
found two cell slots away from the target location. The cell
scheduler reserves the location for the present connection by set-
ting the Scoreboard bit to 1 (see “Scoreboard after PUSHC”
Figure 9) and by writing the Connection ID provided by the
SWAN processor in R10 into the selected location. When th
scheduling operation is complete, the cell scheduler reports
scheduled address in the Cell Scheduling System Schedule
Address register (R61). The SWAN processor can read this
ister to determine whether the scheduled address meets the C
requirements for the service being provided.
40 Version 4.1 MXT3010 Reference Manual

Guaranteeing the availability of a location in the Connection ID table
The SWAN processor completes servicing the connection by
incrementing the service address contained in R7, modulo the
Connection ID table size. For example, the SWAN processor
can use the Add Immediate (ADDI) instruction to add 0x0002 to
the address contained in R7 and place the result in R7. If the
Connection ID table size is 4096 entries, the ADDI instruction
can include 4096 as a modulo value, limiting the incrementation
process to the lowest order twelve bits. This limitation causes
the incrementation process to cycle through the table locations.

ADDI R7 0x0002 R7 MOD4096

Guaranteeing the availability of a location in the
Connection ID table

If the Scoreboard is full while the cell scheduler is servicing or
adding a new connection, the Cell Scheduling System returns an
error by setting bit 15 in R60, the Cell Scheduling System Con-
figuration register. Constant checking for this error bit slows
down the effective operating rate of the device. Rather than
check the error bit setting, use either of these two methods to
ensure that a location is available:

1. Add new connections or activate inactive connections only
when unassigned slots are encountered.

2. Maintain a count of the active VCs on the scoreboard,
being careful to adjust for connections (such as pre-allo-
cated CBR connections) that consume more than one slot in
the Scoreboard. Do not admit a new connection that
exceeds the capacity of the Scoreboard.
MXT3010 Reference Manual Version 4.1 41

The Cell Scheduling System

ll

uc-
HC
ory
e

ry,

ons
on-

y
The PUSHC/POPC instruction buffer

The cell scheduler contains a two-deep PUSHC/POPC instruc-
tion buffer. The SWAN processor can issue the following cell
scheduling instructions without entering a stall condition:

• A PUSHC or PUSHF followed by a PUSHC or PUSHF

• A PUSHC or PUSHF followed by a POPC or POPF

Execution of a cell scheduling instruction while the buffer is fu
results in a SWAN processor stall until the first operation fin-
ishes.

POPC, PUSHC, POPF, and PUSHF instruction operation

POPC and PUSHC timing

The POPC operation completes in eight cycles from the instr
tion decode to loading of the rd register. The worst case PUS
time is 12 cycles from the instruction decode to the Fast Mem
write acknowledge from the write buffer. If the four-stage writ
buffer is full at the time of the PUSHC operation, this cycle
count increases so that the buffer can be flushed of one ent
and space for the new write information can be provided.

POPF and PUSHF timing

Both the POPF (Pop Fast) and PUSHF (Push Fast) instructi
manipulate the internal Scoreboards without accessing the C
nection ID table in Fast Memory. By eliminating unnecessar
accesses to Fast Memory, memory read/write latencies are
avoided.
42 Version 4.1 MXT3010 Reference Manual

POPC, PUSHC, POPF, and PUSHF instruction operation
In POPF, as in POPC, the Cell Scheduling System translates the
target address into a Scoreboard bit position. The Cell Schedul-
ing System copies the state of that bit into the Assigned Cell flag
(see below), and clears the bit location. However, POPF differs
from POPC in that the Cell Scheduling System does not access
the Fast Memory and does not provide a Connection ID in the
destination register. The POPF operation completes in five
cycles from the instruction decode.

In PUSHF, as in PUSHC, the Cell Scheduling System translates
the target address into a Scoreboard bit position. The Cell
Scheduling System searches for the first available location in the
Scoreboard at or after that bit position and sets the bit for that
location to reserve it. However, PUSHF differs from PUSHC in
that the Cell Scheduling System does not write a new Connec-
tion ID into the Connection ID table location corresponding to
the reserved Scoreboard bit. Rather, the existing Connection ID
at that location is scheduled. The PUSHF operation completes in
12 cycles from the instruction decode. This is the same speed as
an optimum PUSHC that experiences no write buffer delays.
Unlike the PUSHC instruction, PUSHF will never experience
write buffer delays, as it does not perform a Fast Memory write.

When servicing a Scoreboard where time slot assignments
rarely vary, a combination of POPF and PUSHF can be used to
service and schedule connections without the overhead of Fast
Memory access.

Connection ID table and Scoreboard addressing

The Cell Scheduling System Configuration register specifies
bits(18:15) of the Connection ID table address. Bits (14:1) of the
Connection ID table address are provided by software in
bits(13:0) of the rsb register specified by POPC and PUSHC
instructions.
MXT3010 Reference Manual Version 4.1 43

The Cell Scheduling System

-

FIGURE 10.Connection ID table address generation

TABLE 6. Connection ID table address bits

The Connection ID table entry generates the Scoreboard address
corresponding to the specified Connection ID table entry as fol-
lows:

FIGURE 11.Scoreboard address generation

TABLE 7. Scoreboard address bits

Note:Bits [3:0] of the rsb register in POPC or PUSHC instruction select a
target bit within the 16-bit Scoreboard entry. (While the Cell Sched-
uling System searches the Scoreboard on the basis of 32-bit quanti-
ties, the SWAN processor addresses the Scoreboard on a 16-bit
basis.)

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Source

[0] Fixed as zero (0)

[14:1] Bits [13:0] of the rsb register in POPC or PUSHC instruction

[18:15] Bits [11:8] of “R60 The Cell Scheduling System (CSS) Config
uration register” on page 217

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Bits Source

18:11 Reserved. Write as zeros; ignore on reads

10:1 Bits [13:4] of the rsb register in POPC or PUSHC instruction

0 Fixed as zero (0)
44 Version 4.1 MXT3010 Reference Manual

Initializing the Scoreboard
Initializing the Scoreboard

The SWAN processor clears the Scoreboard during its system
initialization routine. The SWAN processor initializes the Score-
board by executing POPF instructions to all of the locations in
the Connection ID table. Once the SWAN processor has cleared
the Scoreboard, it can execute cell-scheduling instructions. For
those portions of the Scoreboard used for cell scheduling, the
program must perform all scheduling changes through the
PUSHC and POPC instructions to ensure that the MXT3010’s
internal mechanisms remain consistent. However, the SWAN
processor can read Connection ID table entries at any time with
the LMFM instruction, or read the Scoreboard using the LD
instruction, without affecting the internal mechanisms.

Selecting a Scoreboard size

The Cell Scheduling System Configuration register includes the
desired Scoreboard size, rounded up to the nearest power of two.
The SWAN processor can mark certain locations as unavailable
to support Scoreboard sizes other than powers of two.

For example, assume the desired Schedule size is 2304 bits. The
program can execute a series of PUSHC operations to select a
4096 bit schedule and to mark bits 2304 to 4095 as unavailable.
From that point on, the cell scheduler will not try to reserve
those locations in response to cell scheduling requests. As a pro-
gram executes POP instructions to the Scoreboard, it must return
to the beginning of the Scoreboard when it reaches location
2303. In other words, once the unwanted locations are reserved,
the program must not specify them as the target address of a POP
operation. Also, the program must calculate the PUSHC target
addresses modulo 2304 instead of modulo 4096.
MXT3010 Reference Manual Version 4.1 45

The Cell Scheduling System

/

ck
Supporting multiple Scoreboard sections

As indicated in Table 5, “Scoreboard sectioning control,” on
page 29, the MXT3010 supports multiple Connection ID tables
Scoreboard sections. The device supports a maximum of:

• Eight 2K Connection ID tables/Scoreboard sections

• Four 4K Connection ID tables/Scoreboard sections

• Two 8K Connection ID tables/Scoreboard sections

• One 16K Connection ID table/Scoreboard section

If eight schedules are used, bits [13:11] of the rsb register in
POPC or PUSHC instruction select a schedule within the blo
of eight. If four schedules are used, rsb bits [13:12] select a
schedule within the block of four, and so on.

PUSHC/POPC rsb register
address bit(s) Select(s) which schedule for

13 2 x 8K

13:12 4 x 4K

13:11 8 x 2K
46 Version 4.1 MXT3010 Reference Manual

CHAPTER 4 The Fast Memory Interface
The Fast Memory port provides the SWAN processor and the Cell
Scheduling System with low latency access to external Channel
Descriptors, program code, traffic shaping memory, and the look
up tables used for Available Bit Rate calculations. The Fast Mem-

Data
Stream

Cell
Stream

Multi-purpose

DMA (Port2)

UTOPIA
Port

Cell Buffer RAM
High

Performance
DMA (Port1)

Data
Stream

Instruction Cache

SWANTM Processor

Fast Memory
Controller

Cell Scheduling
System

Control
Memory
SRAMInter-chip

Signalling
MXT3010 Reference Manual Version 4.1 47

The Fast Memory Interface

st

Fast
t

ory
ad

ory controller provides a glue-less interface to synchronous,
flow-through, burst-mode cache RAMs. The Samsung
KM718B90 and compatible parts are examples of suitable
RAMs.

This chapter describes:

• SWAN processor accesses to Fast Memory

• Cell Scheduling System accesses to Fast Memory

• SWAN executable fetches from Fast memory

• Fast Memory configuration

SWAN processor accesses to Fast Memory

The processor accesses Fast Memory with Load Multiple Fa
Memory (LMFM) and Store Halfword (SHFM) instructions. A
specialized Fast Memory access and update protocol in the
Memory controller accelerates access to and update of Fas
Memory-based data structures.

Loading

The software tables and data structures stored in Fast Mem
are accessed by the SWAN processor through the LMFM (Lo
Multiple Fast Memory) instruction. A simplified version of the
LMFM instruction is shown below.

FIGURE 12.Load Fast Memory instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code rd LNK 00 Z rsa #HW rsb
48 Version 4.1 MXT3010 Reference Manual

SWAN processor accesses to Fast Memory

u-

y
 in
c-
 to
m-
-

he
e
can

ec-

ge
ro).
LMFM rd @rsa/rsb #HW [LNK]

The SWAN processor uses the #HW field to specify the number
of halfwords to be fetched and the rsa and rsb fields to specify
the Fast Memory byte address at which the transfer will begin.
In response to the LMFM instruction, the Fast Memory interface
controller will write the halfwords returned from memory into
the SWAN’s register file beginning with register rd and contin
ing with rd+1, rd+2, etc. until the designated number of half-
words have been transferred. Thus, the LMFM instruction
allows the SWAN processor to transfer up to 16 halfwords1 from
the Fast Memory into the register file in a single instruction.

Memory update
protocol

If the LNK instruction field option is specified, the fast memor
interface controller links the loaded registers to the locations
Fast Memory from which their contents were read. ALU instru
tions which modify these registers can force the modifications
be written back to Fast Memory by specifying the update me
ory (UM) option. Thus, the UM function allows the SWAN pro
cessor to update the data structure in Fast Memory without
executing a dedicated Store instruction. In addition, use of t
LNK option causes the first halfword read from memory to b
read into the Fast Memory Shadow Register (R58), where it
be used by BF/BFL instructions.

Once a linking relationship has been set up by an LMFM
instruction, subsequent LMFM instructions do not need to sp
ify a linking option, as the links remain in place. When it is
desired that the links be changed, a new LMFM with linking
option enabled can change the links. An LMFM used to chan
links does not have to specify a data transfer (#HW can be ze

1. Since the number of halfwords that can be transferred range from 0 to 16
halfwords, there are 17 possible values for the #HW field. Therefore, the
#HW field is 5 bits wide.
MXT3010 Reference Manual Version 4.1 49

The Fast Memory Interface

n
m-
nd

ry
lf-
n

st
the
rful

il-
g
n
Additional information on the LNK option and memory updat-
ing, including restrictions, appears in “Linking (the LNK bit)”
on page 299 and following pages.

Further
information

Further information about the LMFM instruction is provided i
“Load and Store Fast Memory Instructions” on page 293. Exa
ples of LMFM instruction usage are provided in that chapter a
in “Swan Instruction Reference Examples” on page 325.

Storing

Fast Memory writes can be accomplished utilizing the memo
update function described above or by utilizing the Store Ha
word to Fast Memory (SHFM) instruction. A simplified versio
of the SHFM instruction is shown below.

FIGURE 13.Store Fast Memory instruction

SHFM @rsa/rsb

Execution of the SHFM instruction causes the Fast Memory
interface controller to write the halfword contained in the Fa
Memory Data register (R56) into the halfword addressed by
byte address contained in registers rsa and rsb. A more powe
store instruction, Store Register Halfword (SRH) is also ava
able. The SRH instruction is especially useful for acceleratin
CRC operations. See “Cyclical Redundancy Check operatio

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code 000000000 rsa #HW rsb
50 Version 4.1 MXT3010 Reference Manual

Cell Scheduling System accesses to Fast Memory

re

ion
ses
the
 to
ord

ion
ys-

ext

are
an
en
e

ul-
acceleration” on page 104 and “Instructions for accelerating
CRC operations” on page 305.

Further
Information

Further information about the SHFM and SRH instructions is
provided in “Load and Store Fast Memory Instructions” on
page 293. Examples of SHFM and SRH instruction usage a
provided in that chapter and in “Swan Instruction Reference
Examples” on page 325.

Cell Scheduling System accesses to Fast Memory

The Cell Scheduling System maintains one or more Connect
ID tables in Fast Memory. The Cell Scheduling System acces
Fast Memory with PUSHC and POPC instructions issued by
SWAN processor. PUSHC instructions cause a halfword write
a Connection ID table, and POPC instructions cause a halfw
read to a Connection ID table.

Cell Scheduling System operations are a lower priority than
LMFM burst data reads. If a Cell Scheduling System operat
is in progress when a LMFM is issued, the Cell Scheduling S
tem operation finishes but the LMFM is serviced before the n
Cell Scheduling System operation proceeds.

SWAN executable fetches from Fast Memory

The SWAN processor fetches all instructions from the Fast
Memory using 32-bit word read accesses. These accesses
higher priority than any other access to the Fast Memory. If
LMFM or Cell Scheduling System operation is in progress wh
the SWAN processor makes a Fast Memory read request, th
LMFM or Cell Scheduling System operation finishes but the
read request is serviced before the next LMFM or Cell Sched
ing System operation proceeds.
MXT3010 Reference Manual Version 4.1 51

The Fast Memory Interface

ll
Fast Memory configurations

This section describes these configuration features:

• Memory sizes supported

• RAM selection and configuration

• Mode 0 operation for chips with single or multiple Chip
Enable inputs

• Mode 1 operation for chips with multiple Chip Enable
inputs only, allowing 512K banks

• Bus contention avoidance

Memory sizes supported

The Fast Memory interface supports memory sizes from 128
Kbytes to 1 Mbyte in configurations of one or two banks. In a
configurations Fast Memory is 32 bits wide.

FIGURE 14.Fast Memory SRAM options

CLK
CLK CLK

64K x 16

CLK

Control
Address

Data

512K Bytes, 2 Banks

64K x 16

CLK

64K x 16 64K x 16

32K x 32

256K Bytes 128K Bytes
(1 MB with 128Kx16 RAMs) (512KB with 128Kx16RAMs)

MXT3010
52 Version 4.1 MXT3010 Reference Manual

Fast Memory configurations

d

RAM selection and configuration

The MXT3010 supports the following RAM configurations:

Mode 0 operation

The MXT3010 provides two operation modes for the Fast Mem-
ory. Table 8 compares the two modes, which can be selected by
modifying target bit 4 in the Mode Configuration Register
(R42):

In Mode 0 the MXT3010 drives 16 address bits and four inde-
pendent byte enables to permit direct addressing of 64K 32-bit
words in each of two memory banks. Two chip select signals and
two output enable signals provide independent bank selection
and output drive enable signals for the two memory banks.
Address bit FADRS[18] internally generates the select signal for
the active bank. Physical memory appears as two contiguous
64Kx32 banks starting in address space at 0x00000, going to
0x7FFFF.

Memory Size RAM Banks Mode

128K Bytes 32Kx32 1 – 32Kx32 1 0

256K Bytes 64Kx32 2 – 64Kx16 1 0

512K Bytes 128Kx32 4 – 64Kx16 2 0

512K Bytes 128Kx32 2 – 128Kx16 1 1

1M Byte 256Kx32 4 – 128Kx16 2 1

TABLE 8. Comparison of Mode 0 and Mode 1 operation

Attribute Mode 0 Mode 1

Types of access supported Byte or halfword Byte or halfwor

Device Chip Enable configurations Single or multiple Multiple only

Maximum addressable memory 512 Kbytes 1 Mbyte
MXT3010 Reference Manual Version 4.1 53

The Fast Memory Interface
FIGURE 15.Mode 0 design example

Mode 1 operation

In Mode 1 the MXT3010 drives 18 address bits and four inde-
pendent byte enables to directly address 256K 32-bit words in
each of two memory banks. Two output enable signals provide
independent output drive enable signals for the two memory
banks. No chip enable signals are used; address bit FADRS[19]
selects the active bank. Physical memory appears as two contig-
uous 128Kx32 banks starting in address space at 0x00000 and
ending at 0xFFFFF. One of the two banks is always enabled
since no independent chip enable signals are used.

In a single bank configuration, Mode 1 can configure only 512
Kbytes of Fast Memory using 128Kx16 RAMs. In this configu-
ration, physical memory appears as a single 128Kx32 bank in
address space from 0x00000 to 0x7FFFF.

The Connection ID table and the executable code space (as set
by the Segment ID field in the Instruction Base Address register)
can only reside in the first 512K bytes of Fast Memory.

FADRS[17:2]
FDAT[31:0]
Control

D[31:16]
A[17:2]

FCS1_

A15-A0
D15-D0
CS_
OE_
BW1_
BW0_

FOE1_
FWE0_
FWE1_

D[15:0]
A[17:2]

FCS1_

A15-A0
D15-D0
CS_
OE_
BW1_
BW0_

FOE1_
FWE2_
FWE3_

D[31:16]
A[17:2]

FCS0_

A15-A0
D15-D0
CS_
OE_
BW1_
BW0_

FOE0_
FWE0_
FWE1_

D[15:0]
A[17:2]

FCS0_

A15-A0
D15-D0
CS_
OE_
BW1_
BW0_

FOE0_
FWE2_
FWE3_

64K x 16 64K x 16

64K x 1664K x 16

0x00000-0x3FFFF 0x40000-0x7FFFF

MXT3010

Bank 0 Bank 1
54 Version 4.1 MXT3010 Reference Manual

Fast Memory configurations
FIGURE 16.Mode 1 design example

Bus contention avoidance

The timing of the two output enable signals (FOE1_ and
FOE0_) is skewed when the addresses of consecutive memory
accesses cross bank boundaries to prevent bus contention on
back-to-back read cycles. The MXT3010 guarantees a window1
between disabling one bank and enabling an alternate bank. This
allows both banks to be directly wired to the data bus without
external buffers or transceivers.

1. Please refer to “Timing” in Section 3 for further information.

FADRS[19:2]
FDAT[31:0]
Control

D[31:16]
A[18:2]

A[19]

A16-A0
D15-D0
CS_
CS+
OE_
BW1_

VDD
FOE0_
FWE0_

128K x 16

0x00000-0x7FFFF 0x80000-0xFFFFF

MXT3010

BW0_
FWE1_

D[15:0]
A[18:2]

A[19]

A16-A0
D15-D0
CS_
CS+
OE_
BW1_

VDD
FOE0_
FWE2_

128K x 16

BW0_
FWE3_

D[31:16]
A[18:2]

A[19]

A16-A0
D15-D0
CS_
CS+
OE_
BW1_

VSS

FOE1_
FWE0_

128K x 16

BW0_
FWE1_

D[15:0]
A[18:2]

A[19]

A16-A0
D15-D0
CS_
CS+
OE_
BW1_

VSS

FOE1_
FWE2_

128K x 16

BW0_
FWE3_

When operating in Mode 1, the Chip Select pins are used as Fast Memory Address lines 19 and 18.
FCS1_ = FADRS[19]. FCS0_ = FADRS[18]
MXT3010 Reference Manual Version 4.1 55

The Fast Memory Interface

ual

n
Fast Memory sequence diagrams

This section shows sequence diagrams for the following Fast
Memory operations:

• Read operations, single bank (Figure 17 on page 56)

• Write operations, single bank (Figure 18 on page 57)

• Read and write operations, back-to-back operation and d
bank (Figure 19 on page 57)

Set-up times, propagation times, and other timing informatio
for the Fast Memory interface are provided in “Timing” on
page 343.

FIGURE 17.Fast Memory read operations - single bank

CLK

FCS0_

FADRS[17:2] A0 A1 A2

D0 D1 D2FDATin[31:0]

FDATout[31:0] high impedance high impedance

FOE0_ low

0xF WE0 WE1 WE2 0xFFWE[3:0]_
56 Version 4.1 MXT3010 Reference Manual

Fast Memory sequence diagrams
FIGURE 18.Fast Memory write operations - single bank

FIGURE 19.Fast Memory reads and writes - back-to-back and dual bank

CLK

FCS0_

FADRS[17:2] A0 A1 A2

FDATin[31:0]

FDATout[31:0]

FOE0_

0xF WE0 WE1 WE2 0xFFWE[3:0]_

D0 D1 D2

CLK

FCS0_

FADRS[17:2] A0 A1 A2

FDATin[31:0]

FDATout[31:0]

FOE0_

FWE[3:0]_

D4

Read
Bank 1

A3

Read
Bank 0

Read
Bank 0

Read
Bank 0

A4 A5 A6

Write
Bank 1

Read
Bank 0

Write
Bank 1

D6

D2

D0 D1

FDATin[31:0]

Driven by Bank 0

Driven by Bank 1

D3 D5

FOE1_

FCS1_

0xF 0xF 0xF 0xF WE4 0xF

WE6

0xF 0xF
MXT3010 Reference Manual Version 4.1 57

The Fast Memory Interface
58 Version 4.1 MXT3010 Reference Manual

CHAPTER 5 The Cell Buffer RAM
The MXT3010’s internal Cell Buffer RAM buffers cells in both
the transmit and receive directions. The CPU and the DMA unit
can access the Cell Buffer RAM through memory access proto-
cols. This chapter describes the Cell Buffer RAM and the memory
access protocols.

Data
Stream

Cell
Stream

Multi-purpose

DMA (Port2)

UTOPIA
Port

Cell Buffer RAM
High

Performance
DMA (Port1)

Data
Stream

Instruction Cache

SWANTM Processor

Fast Memory
Controller

Cell Scheduling
System

Control
Memory
SRAMInter-chip

Signalling
MXT3010 Reference Manual Version 4.1 59

The Cell Buffer RAM
Internal cell storage in the Cell Buffer RAM

To store cells, the Cell Buffer RAM is configured into a number
of 64 byte blocks referred to as cell holders. During reception,
cells are written into cell holders as they are received from the
physical layer. During transmission, cells are built in cell hold-
ers before being transmitted to the physical layer.

At device initialization, the Cell Buffer RAM is segmented into
sections for receive cell storage, transmit cell construction, and
general purpose scratch pad use. As shown in Table 9, bits [6:1]
of the UTOPIA Configuration register(R62) control the seg-
mentation of the Cell Buffer RAM.

TABLE 9. UTOPIA Configuration control of the Cell Buffer RAM

Bits Description

3:1 Receive Cell Buffer Size in the Cell Buffer RAM

000

001
010

110
111

UTOPIA Port Receiver in Reset Mode. All Rx outputs are
tristated. This includes RXDATA (a bidirectional signal), but
does not include RXCLK. All inputs are pulled to their inac-
tive states by the MXT3010.
Receiver Buffer Size in the Cell Buffer RAM = 2 cells
Receiver Buffer Size in the Cell Buffer RAM = 3 cells

Receiver Buffer Size in the Cell Buffer RAM = 7 cells
Receiver Buffer Size in the Cell Buffer RAM = 8 cells

6:4 Transmit Cell Buffer Size in the Cell Buffer RAM

000

001
010

110
111

UTOPIA Port Transmitter in Reset Mode. All Tx outputs are
tristated except TXCLK. All inputs are pulled to their inactive
states by the MXT3010.
Transmitter Buffer Size in the Cell Buffer RAM = 2 cells
Transmitter Buffer Size in the Cell Buffer RAM = 3 cells

Transmitter Buffer Size in the Cell Buffer RAM = 7 cells
Transmitter Buffer Size in the Cell Buffer RAM = 8 cells
60 Version 4.1 MXT3010 Reference Manual

Internal cell storage in the Cell Buffer RAM
The minimum allocation for receive cell holders is two, the
maximum is eight, and receiver cell holder addressing begins at
location 0x0000. The minimum allocation for transmit cell hold-
ers is two, the maximum is eight, and transmit cell holder
addressing begins at location 0x0200. As an example, Figure 20
shows a Cell Buffer RAM organization with eight receive cell
holders, four transmit cell holders, and the remaining space
available as scratch pad space.

FIGURE 20.Cell Buffer RAM organization

Rx Cell 64 bytes

Rx Cell 64 bytes

Rx Cell 64 bytes

Rx Cell 64 bytes

Rx Cell 64 bytes

Rx Cell 64 bytes

Rx Cell 64 bytes

Rx Cell 64 bytes

Tx Cell 64 bytes

Tx Cell 64 bytes

Tx Cell 64 bytes

Tx Cell 64 bytes

0x0000

0x0040

0x0080

0x00C0

0x0100

0x0140

0x0180

0x01C0

0x0200

0x0240

0x0280

0x02c0

0x0300

0x0340

0x0380

0x03C0

64 bytes

64 bytes

64 bytes

64 bytes
MXT3010 Reference Manual Version 4.1 61

The Cell Buffer RAM

-

Cell fields Independent of the specific cell format used, certain fields (if
provided) occupy certain positions. Figure 21 shows these
fields, and Table 10 summarizes their functions.

FIGURE 21.Cell fields defined

TABLE 10. Cell field functions

Cell formats The format of the information in the cell holders is a function of
the selection of 52-byte or 56-byte cell operation via bit 1 of the
“R42-write Mode Configuration register” on page 201.

Field Function

User
Header

The User Header is a four-byte field that can be inserted before
the ATM header, adding four bytes to the front of a cell.

ATM
Header

The ATM Header is a four-byte field specified by relevant
ATM standards and consists of GFC, VPI, VCI, and PTI sub-
fields. It is generally present in all but a few proprietary
schemes. The VPI and VCI sub-fields are interpreted by
UTOPIA Receive Header Reduction hardware in the
MXT3010 to form the Channel Identifier for the cell. See
“Receive Header Reduction hardware” on page 91.

HEC The Header Error Control (HEC) is a one-byte CRC accumu
lated across the ATM Header. The MXT3010 can be config-
ured to transmit and receive cells with or without HEC.

SAR PDU The SAR PDU is a 48-byte field that is present in every cell.

User Header

ATM Header

HEC

SAR PDU

Present in proprietary 56-byte cells only

Present in all cells

Optionally present in cells

Present in all cells

4 bytes

4 bytes

1 byte

48 bytes

Bit Bit State and Function

1 Cell Length Control

0 52 byte cells

1 56 byte cells
62 Version 4.1 MXT3010 Reference Manual

Internal cell storage in the Cell Buffer RAM

ed
e
ge.
Figure 22 compares the 52-byte and 56-byte cell formats.

FIGURE 22.Receive cell organization: 52-byte and 56-byte cells

Figure 22 does not show the HEC byte, because the HEC byte
(if enabled) is never written to or read from the Cell Buffer
RAM. Rather, HEC generation/insertion on transmission and
HEC checking/removal on reception are performed at the
UTOPIA port1. The result of HEC verification is available in the
Receive Cell Status Word. See Figure 22 and “Receive cell
flow” on page 77.

Receive Cell
Status location

While the ATM Header bytes and the SAR PDU bytes are fix
with respect to the cell holder in both the 52-byte and 56-byt
mode, the location of the Receive Cell Status Word does chan

1. The MXT3010 also provides HEC generation and checking logic for
devices not using the UTOPIA port.

Unused
Receive Cell Status Word

ATM Header bytes 0, 1

ATM Header bytes 2, 3

SAR PDU bytes 0, 1

SAR PDU bytes 2, 3

SAR PDU bytes 4, 5

SAR PDU bytes 6, 7

SAR PDU bytes 44, 45

0x0000

0x0002

0x0004

0x0006

0x0008

0x000A

0x000C

0x000E

0x0010

0x0034

0x0036

0x0038

0x003A

0x003C

0x003E

Unused

Unused

Unused

Unused

SAR PDU bytes 7, 8

SAR PDU bytes 46, 47

User Header bytes 0, 1

Receive Cell Status Word

ATM Header bytes 0, 1

ATM Header bytes 2, 3

SAR PDU bytes 0, 1

SAR PDU bytes 2, 3

SAR PDU bytes 4, 5

SAR PDU bytes 6, 7

SAR PDU bytes 44, 45

Unused

Unused

Unused

SAR PDU bytes 7, 8

SAR PDU bytes 46, 47

User Header bytes 2, 3

52-byte cell 56-byte cell
MXT3010 Reference Manual Version 4.1 63

The Cell Buffer RAM

em-
ell
ll
o-

en
a-
ies
ves

iffi-
d
ce
col.

.

u-
ee
ex

ll
In 52-byte mode, it precedes the ATM Header field, while in 56-
byte mode, the four-byte User Header precedes the ATM
Header, and the Receive Cell Status Word follows the last byte
of the SAR PDU. The placement of the Receive Cell Status
Word beyond the last byte of the SAR PDU in 56-byte mode
conflicts with the concept of Cell Buffer RAM memory gather-
ing as described in “Gather method accesses” on page 65. M
ory gathering is still a valid means of addressing the unused C
Buffer RAM space, however the presence of the Receive Ce
Status Word within each receive cell holder must be accomm
dated.

Cell Buffer RAM memory construction

As shown in Figure 20, “Cell Buffer RAM organization,” on
page 61, the Cell Buffer RAM is logically constructed as sixte
64-byte cell holders. As shown in Figure 22, “Receive cell org
nization: 52-byte and 56-byte cells,” on page 63, a cell occup
no more than the top 56 or 58 bytes of a cell holder. This lea
approximately eight bytes of RAM at the bottom of each cell
holder location. This space is discontinuous and therefore d
cult to use. So that the CPU can regain access to this unuse
memory as a single linear space, the Cell Buffer RAM interfa
supports both a linear access and a memory gathering proto

Selecting an
access method

Both the CPU and the DMA controllers can access the Cell
Buffer RAM by using either linear or gather access methods
The CPU uses register rla and the Index field (IDX) in the LD
(Load), LDD (Load Double), ST (Store), and STD (Store Do
ble) instructions to form an address in the Cell Buffer RAM. S
“Register load address (rla field)” on page 314 and “The ind
field (IDX)” on page 315. DMA controllers use register rla in
the DMA1 or DMA2 instruction to form an address in the Ce
Buffer RAM. See “Direct Memory Access Instructions” on
page 283.
64 Version 4.1 MXT3010 Reference Manual

Cell Buffer RAM memory construction
Whether generated by a CPU instruction or a DMA controller,
Bit [10] of the local address selects the access method of the Cell
Buffer RAM.

Linear method
accesses

In linear method accesses, the Cell Buffer RAM is treated as a
simple contiguous memory 1024 bytes in length. Bits [9:1] of
the target address select the 16-bit halfword within this space.

Gather method
accesses

In gather method accesses, the last eight bytes of each 64-byte
section appear as a contiguous 128-byte block of memory. The
first 16-bit halfword of this block is at address 0x0400 of the
gather address method. The last 16-bit halfword is at address
0x047E. Thus, gather access recovers discontinuous regions of
Cell Buffer RAM memory into one continuous address space.
This is not additional space, but rather a method of making use
of small pieces of existing space. Figure 23 illustrates this
addressing method.

Bit 10 Cell Buffer RAM method selected

0 Linear

1 Gather
MXT3010 Reference Manual Version 4.1 65

The Cell Buffer RAM

al
FIGURE 23.Gather method accesses

Please note the restrictions on gather access in 56-byte mode
(see “Receive Cell Status location” on page 63). For addition
information, please see “Cell Buffer RAM accesses” on
page 317.

Cell Store 0

Cell Store 1

Cell Store 15

0x0000

0x0038
0x0040

0x0078
0x0080

0x03C0
0x03B8

0x0400
0x03F8

0x0400
0x0408
0x0410

0x0480
0x047E
66 Version 4.1 MXT3010 Reference Manual

Cell Buffer RAM access
Cell Buffer RAM access

The MXT3010EP Cell Buffer RAM has five independent 16-bit
ports, each capable of moving data at the internal clock fre-
quency. The arrangement of data ports is shown in Figure 24.

FIGURE 24.Cell Buffer RAM access

On a 100 MHz device, the three read ports can deliver data at a
total rate of 600 MB per second, and the two write ports can
accept a total of 400 MB per second.

Making optimum use of this high performance design requires
some programming care, however. While Load and Store
instructions from the SWAN processor are guaranteed to be
ordered with respect to one another, ordering is not guaranteed
between Load/Store instructions and DMA operations to Port1
or Port 2. Consider the following example:

STD R0/R1 @R48

STD R2/R3 @R49

STD R4/R5 @R50

DMA1W rsa/rsb R50

Cell Buffer
RAM 512 x 16

A

B

C

D

E

Port1 Read

UTOPIA Tx/
Port2 Read

CPU Read

Port1/CPU Write

Port2/UTOPIA RX/
CPU Write

SWAN Processor

Load/Store Pipe

Port C Port D/E
CPU rd addr CPU write addr
MXT3010 Reference Manual Version 4.1 67

The Cell Buffer RAM
The Port1 write operation is not guaranteed to see the new val-
ues of R4/R5. This is true because Store Double (STD) instruc-
tions are retired in the Cell Buffer RAM at half the rate they can
be issued by the SWAN, and the SWAN does not have a dedicate
write pipe into the Cell Buffer RAM.

To guarantee correct behavior, the program must do one of the
following:

1. Guarantee that at least one of the write ports is always available to
ensure that the DMA from Port1 or Port2 can never fetch stale
data. The pipelining of the DMA operation guarantees that it will
not fetch data before it is flushed from the SWAN Load/Store pipe
into Cell Buffer RAM.

2. Follow all stores by a dummy read prior to issuing a DMA com-
mand. The read ensures that all preceding writes are flushed in the
pipe. Note that since the Load Double (LD) is offloaded from the
host, it must be followed by an instruction that uses the destination
of the load to invoke the hardware register scoreboarding mecha-
nism.

3. Use successive writes to ensure that preceding writes are flushed
through the pipe into the Cell Buffer RAM.
68 Version 4.1 MXT3010 Reference Manual

CHAPTER 6 The UTOPIA port
The UTOPIA port implements the ATM Forum’s UTOPIA Level
1 and Level 2 protocol for interfacing ATM Layer devices, such
as the MXT3010, to PHY Layer devices, such as SONET framers.
The UTOPIA port supports the direct attachment of up to 16 sin-
gle PHY or multiple logical PHY devices. In addition, the UTO-
PIA port supports the direct attachment of a Level 2-compliant

Data
Stream

Cell
Stream

Multi-purpose

DMA

UTOPIA
Port

Cell Buffer RAM
High

Performance
DMA

Data
Stream

Instruction Cache

SWANTM Processor

Fast Memory
Controller

Cell Scheduling
System

Control
Memory
SRAMInter-chip

Signalling
MXT3010 Reference Manual Version 4.1 69

The UTOPIA port

al

it

d
ll.
Multi-PHY device with up to 16 ports. In compliance with the
ATM Forum specification, the UTOPIA connection operates as
the Master device.

This chapter includes:

• UTOPIA port interface overview

• Receive cell flow

• Transmit cell flow

• The control byte and special operations

• Multi-PHY support

• Receive Header Reduction hardware

• UTOPIA port configuration summary

UTOPIA port interface overview

Features

The UTOPIA port interface includes the following features:

• Two modes of operation are supported, 8-bit bi-direction
mode and 16-bit unidirectional mode (either transmit or
receive).

• The UTOPIA port supports up to 16 physical ports in 8-b
bi-directional mode. The UTOPIA port complies with the
ATM Forum’s Level 2 Specification for Multi-PHY Opera-
tions.

• Cell-level handshaking is supported. No wait states are
inserted, and no wait states are expected.

• 56-byte cell mode over the UTOPIA interface is supporte
for applications where a field is prepended to an ATM ce

• HEC insertion and checking can be enabled.
70 Version 4.1 MXT3010 Reference Manual

UTOPIA port interface overview

.
,
r

ond-
MXT3010 Reference Manual Version 4.1 71

Operating modes

The UTOPIA port can be configured to operate in bi-directional mode
with an 8-bit Receive (Rx) data path and an 8-bit Transmit (Tx) data
path, or in unidirectional mode as either a 16-bit Transmitter or a 16-bit
Receiver. The 16-bit mode supports 622 Mb/s data rates.

Selecting 8-bit or
16-bit mode

Bit [8] of the UTOPIA Configuration register (R62) controls the operat-
ing mode.

In 16-bit transmit mode, the TxData pins carry data [7:0]. The RxData
pins are configured as outputs and carry data [15:8]. In 16-bit receive
mode, the RxData pins carry data [7:0]. The TxData pins are configured
as inputs and carry data [15:8].

Resetting the
transmitter and
receiver

Bits [6:4] of the UTOPIA Configuration register (R62) control the
Transmit Cell Buffer size in the Cell Buffer RAM, and bits [3:1] control
the Receive Cell Buffer size. Definitions for these bits appear in Table 9,
“UTOPIA Configuration control of the Cell Buffer RAM,” on page 60
While these bits primarily affect the operation of the Cell Buffer RAM
a buffer size selection of 0 cells places the corresponding transmit o
receive UTOPIA interface in reset mode. In reset mode the corresp
ing output signals are placed into their inactive states.

TABLE 11. UTOPIA port data bus width selection

Bit Description

8 UTOPIA Port Data Bus Width

0
1

16 Bits Wide
8 Bits Wide

TABLE 12. UTOPIA port Tx and Rx pin utilization in 16-bit mode

Mode Tx Data Pins Rx Data Pins

16-bit transmit Data [7:0] Data (outputs) [15:8]

16-bit receive Data (inputs) [15:8] Data [7:0]

The UTOPIA port
Selecting transmit
or receive mode

Transmit-only operation is selected by setting bits [3:1] of the
UTOPIA Configuration register (R62) to zeroes, thus placing
the UTOPIA port receiver in reset mode. Receive-only opera-
tion is selected by setting bits [6:4] of the UTOPIA Configura-
tion (R62) to zeroes, thus placing the UTOPIA port transmitter
in reset mode. Figure 25 shows a UTOPIA port using 8/8- and
16-bit modes.

FIGURE 25.The UTOPIA port: 8/8 and 16-bit modes

Selecting cell
length and HEC
operation

The UTOPIA configuration operation uses R42, bits 0 and 1, to
select HEC operation and cell length.

UTOPIA speed
select

The MXT3010 can operate each UTOPIA interface (transmit
and receive) either at the input clock frequency or at one-half
that frequency. Since the SWAN processor internal clock runs at

Tx Control Rx

MXT3010
8-bit transmit
8-bit receive

Rx Control Rx

MXT3010
16-bit receive

Tx Control Tx

MXT3010
16-bit transmit

SONET Framer
OC3

SONET Framer
OC12

8 8
8 8

88

TABLE 13. Cell length and HEC control

Bit Description

0 HEC Control

0 HEC is generated (Tx), inserted (Tx), and checked (Rx)

1 HEC is omitted

1 Cell Length Control

0 52-byte cells

1 56-byte cells
72 Version 4.1 MXT3010 Reference Manual

UTOPIA port interface overview
twice the input clock frequency, these selections correspond to
one-half or one-quarter of the internal clock frequency. The
MXT3010 generates a UTOPIA output clock for each of the
transmit and receive interfaces based on the setting of the clock
selection bit in the UTOPIA Configuration register (R62). All
PHY to ATM layer transfers should be controlled from the rising
edge of these clocks.

UTOPIA Port
clock phases

Figure 26 and Figure 27 show the relationship between the chip
input clock, the internal clock, and TXCLK and RXCLK oper-
ating at 1/2 and 1/4 of the internal clock frequency, respectively.

FIGURE 26.Clock phases for RX/TX CLK = 1/2 Internal Clock

FIGURE 27.Clock phases for RX/TX CLK = 1/4 Internal Clock

TABLE 14. UTOPIA port clock selection

Bit Description

7 UTOPIA Port operational/output clock selection

0 TXCLK and RXCLK operate at 1/2 of internal clock frequency.

1 TXCLK and RXCLK operate at 1/4 of internal clock frequency.

INTERNAL CLK

INPUT CLK

RX CLK

TX CLK

INTERNAL CLK

INPUT CLK

RX CLK

TX CLK
MXT3010 Reference Manual Version 4.1 73

The UTOPIA port
UTOPIA cell formats

Two standard formats for cells are defined for UTOPIA inter-
faces depending on the width of the data bus in use. Addition-
ally, proprietary schemes may define arbitrary cell lengths and
formats as long as the format is commonly understood by the
components on the bus. Figure 28 shows the standard cell for-
mats for UTOPIA interfaces.

FIGURE 28.UTOPIA 8-bit and 16-bit cell formats

In the case of cells received through a 16-bit UTOPIA port, the
PHY inserts an additional byte after the HEC to ensure that the
SAR PDU data structure presented to the UTOPIA port is 16-bit
aligned. After the HEC has been checked by the UTOPIA port,
both the HEC and the extra byte are deleted before the cell is
stored in the Cell Buffer RAM. In the case of cells transmitted
through a 16-bit UTOPIA port, the UTOPIA port inserts an
additional byte after the HEC to ensure that the data structure
presented to the PHY is 16-bit aligned. The PHY transmits the
HEC over the SONET interface, but discards the extra byte.

Cell format
examples

The following figures show examples of HEC-enabled 52-byte
mode, HEC-disabled 52-byte mode, HEC-enabled 56-byte
mode, and HEC-disabled 56-byte mode.

1
2
3
4
5
6
7
8
--
51
52
53

8-bit UTOPIA

ATM Header

HEC

SAR PDU

16-bit UTOPIA

ATM Header

HEC

SAR PDU

1
3
5
6
8

10
--
50
52

2
4

xxx
7
9
11
--
51
53
74 Version 4.1 MXT3010 Reference Manual

75

UTOPIA port interface overview
MXT3010 Reference Manual Version 4.1

FIGURE 29.HEC-enabled 52-byte mode

FIGURE 30.HEC-disabled 52-byte mode

1
2
3
4
5
6
7
8
--
51
52

8-bit UTOPIA

ATM Header

SAR PDU

Unused
Receive Cell Status Word

ATM Header bytes 0, 1

ATM Header bytes 2, 3

SAR PDU bytes 0, 1

SAR PDU bytes 2, 3

SAR PDU bytes 4, 5
SAR PDU bytes 6, 7

0x0000

0x0002

0x0004

0x0006

0x0008

0x000A

0x000C

0x000E

0x0010

0x0036

0x0038

0x003A

0x003C

0x003E

Unused

Unused

Unused

Unused

SAR PDU bytes 7, 8

SAR PDU bytes 46, 47

52-byte cell

HEC

53

16-bit UTOPIA

ATM Header
HEC

SAR PDU

1
3
5
6
8
10
--
50
52

2
4

xxx
7
9
11
--
51
53

1
2
3
4
5
6
7
--
50
51
52

8-bit UTOPIA

ATM Header

SAR PDU

Unused
Receive Cell Status Word

ATM Header bytes 0, 1

ATM Header bytes 2, 3

SAR PDU bytes 0, 1

SAR PDU bytes 2, 3

SAR PDU bytes 4, 5

SAR PDU bytes 6, 7

0x0000

0x0002

0x0004

0x0006

0x0008

0x000A

0x000C

0x000E

0x0010

0x0036

0x0038

0x003A

0x003C

0x003E

Unused

Unused

Unused

Unused

SAR PDU bytes 7, 8

SAR PDU bytes 46, 47

52-byte cell

16-bit UTOPIA

ATM Header

SAR PDU

1
3
5
7
9
11
--
49
51

2
4
6
8

10
12
--
50
52

The UTOPIA port
FIGURE 31.HEC-enabled 56-byte mode

FIGURE 32.HEC-disabled 56-byte mode

2
3
4
5
6
7
8
9
10
11

8-bit UTOPIA

User Header

SAR PDU

16-bit UTOPIA

1

5
7
9
10
12
14

2

13
15

User Header

HEC

SAR PDU

User Header bytes 0, 1

ATM Header bytes 0, 1

ATM Header bytes 2, 3

SAR PDU bytes 0, 1

SAR PDU bytes 2, 3

SAR PDU bytes 4, 5
SAR PDU bytes 6, 7

0x0000

0x0002

0x0004

0x0006

0x0008

0x000A

0x000C

0x000E

0x0010

0x0036

0x0038

0x003A

0x003C

0x003E
Unused

Unused

Unused

SAR PDU bytes 7, 8

SAR PDU bytes 46, 47

56-byte cell

User Header bytes 2, 3

Receive Cell Status Word

1

ATM Header

12
--
55
56
57

HEC

43

ATM Header
6
8

xxx
11

-- --
54 55
56 57

2
3
4
5
6
7
8
9
10
11

8-bit UTOPIA

User Header

SAR PDU

16-bit UTOPIA

1

5
7
9
11
13

2

12
14

User Header

SAR PDU

User Header bytes 0, 1

ATM Header bytes 0, 1

ATM Header bytes 2, 3

SAR PDU bytes 0, 1

SAR PDU bytes 2, 3

SAR PDU bytes 4, 5
SAR PDU bytes 6, 7

0x0000

0x0002

0x0004

0x0006

0x0008

0x000A

0x000C

0x000E

0x0010

0x0036

0x0038

0x003A

0x003C

0x003E
Unused

Unused

Unused

SAR PDU bytes 7, 8

SAR PDU bytes 46, 47

56-byte cell

User Header bytes 2, 3

Receive Cell Status Word

1

ATM Header

--
54
55
56

43

ATM Header
6
8

10

-- --
53 54
55 56
76 Version 4.1 MXT3010 Reference Manual

Receive cell flow

d

is a

a
h
.

r
y
er

ca-
e
 cell

d
Receive cell flow

The UTOPIA Receiver transfers cells from an external framing
device into the Cell Buffer RAM. All cells received from the
physical layer device are written into the Cell Buffer RAM. If
HEC insertion and checking is enabled in the Mode Configura-
tion Register (R42), the validity of the cell’s HEC byte is marke
in bit 9 of the Receive Cell Status field. If HEC insertion and
checking is disabled, bit 9 should be ignored.

Since Header Error Control (HEC) generation and checking
PHY Layer function1, the MXT3010 discards the HEC field
before copying the cell into the Cell Buffer RAM. As a result,
cell in the Cell Buffer RAM consists of 52 contiguous bytes wit
no gap existing between the ATM Header and the SAR PDU

The UTOPIA port writes receive cells into the Cell Buffer RAM
beginning at location 0x0000. The UTOPIA Receiver writes
successive cells into successive cell buffers in the Cell Buffe
RAM. During device initialization, the programmer can specif
how many cells the UTOPIA Receiver can use. If the Receiv
buffer size is set to six cells, for example, the Receiver loops
around after the sixth cell and begins writing cells again at lo
tion 0x0000 in the Cell Buffer RAM. If the Receiver buffer siz
is set to eight cells, the receiver loops around after the eighth
and begins writing cells again at location 0x0000 in the Cell
Buffer RAM.

1. For applications which do not use the UTOPIA port, HEC generation and
checking is provided in the SWAN processor. See “HEC generation an
check circuit” on page 25.
MXT3010 Reference Manual Version 4.1 77

78

The UTOPIA port

 the

”
A Receive Cell Status word is stored in Cell Buffer RAM at the
completion of each receive cell. The format of the Receive Cell
Status word is:

The location of the Receive Cell Status word in the Cell Buffer
RAM is dependent on the configured cell length, 52 or 56 bytes.
For more information, see “Receive Cell Status location” on
page 63.

UTOPIA receiver counters

The UTOPIA Receiver contains two counters, RXBUSY and
RXFULL, that track cells received from the PHY layer and
stored in the Cell Buffer RAM. Figure 33 on page 79 and
Figure 34 on page 81 show how these counters are used in
reception process. A written description follows in “The
RXBUSY counter” on page 79 and in “The RXFULL counter
on page 81.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved HE CE PTI Copy PHY Addr

Bits Name Function

4:0 PHY Address The address of the PHY from which this cell was
received.

7:5 PTI Copy A copy of the Payload Type Indicator field from the
received cell header.

8 CE CRC10 Error
When set to one (1), this bit indicates an erroneous
CRC was received. Otherwise, this bit is zero (0).
This bit should be ignored when CRC10 is not in use.

9 HE HEC Error
When set to one (1), this bit indicates an erroneous
HEC was received. Otherwise, this bit is zero (0).
This bit should be ignored when HEC is not in use.

15:10 Reserved These bits should be ignored on reads.
 Version 4.1 MXT3010 Reference Manual

Receive cell flow

 a
te
FIGURE 33.The RXBUSY counter

The RXBUSY counter

Function The RXBUSY counter tracks the arrival of new cells in the Cell
Buffer RAM awaiting CPU servicing. The device initialization
process clears the RXBUSY counter to zero.

Incrementing As the UTOPIA receiver places the last byte of a cell into the
receive section of the Cell Buffer RAM, it increments the
RXBUSY counter.

Signals driven The RXBUSY signal of the RXBUSY counter drives bit 9 of the
External State Signals (ESS) register (R42). The SWAN proces-
sor tests ESS9 to determine when one or more cells are awaiting
processing by the CPU in the Cell Buffer RAM:

• If ESS9 = 0, no cells are awaiting processing.

• If ESS9 = 1, one or more cells are awaiting processing.

The CPU can use the ESS9 signal to conditionally branch to
receive cell service routine. For example, a Branch Immedia

Decrement Increment

UTOPIA Cell
Received

Receiver Busy Counter
(Cells in Cell Buffer RAM

awaiting CPU Rx servicing)

Decrement Increment

UTOPIA Cell
Received

Receiver Full Counter
(Cells in Cell Buffer RAM
awaiting DMA transfer)

CPU CPU

Port1
Done

Port2
Done

Control Logic

CPU

RXCLAV ESS3 Rx Attention

ESS9 Rx Busyto RXENB_
MXT3010 Reference Manual Version 4.1 79

80

The UTOPIA port

 a

ig-

4

nts

d
era-
instruction (“BI Branch Immediate” on page 272) can specify
conditional branch to $RECV_CELL if ESS9 is a 1:

BI $RECV_CELL ESS9/1

In addition to the RXBUSY indication on ESS9, a receiver
attention output of the RXBUSY counter drives ESS3. This s
nal indicates that the receive buffer is almost full:

• If ESS3 = 0, the Cell Buffer RAM receive buffer contains
less than 4 cells.

• If ESS3 = 1, the Cell Buffer RAM receive buffer contains
or more cells.

Decrementing As the CPU services the newly arrived cell, the CPU decreme
the RXBUSY counter. The CPU decrements the RXBUSY
counter using the Counter System Operation feature of the
Branch instructions. For example, a Branch Immediate (BI)
instruction can specify an unconditional branch to $MAIN an
decrement the RXBUSY counter using a counter system op
tion option. See “Counter system operation” on page 269.

BI $MAIN DRXBUSY
 Version 4.1 MXT3010 Reference Manual

Receive cell flow

the

al
dy
f

y
FIGURE 34.The RXFULL counter

The RXFULL counter

Function The RXFULL counter indicates to the DMA engines and the
CPU that cells are in the Cell Buffer RAM awaiting transfer. The
RXFULL counter also drives the RXENB_ signal to the PHY
devices. The device initialization process:

• Partitions the Cell Buffer RAM.

• Establishes a value for the number of cells that can be
stored in the Cell Buffer RAM receive section.

• Clears the RXFULL counter to zero.

Incrementing As the last byte of a cell is placed into the receive section of
Cell Buffer RAM by the UTOPIA receiver, it increments the
RXFULL counter.

When the MXT3010 receives a cell, it tests the RXCLAV sign
from the PHY device, which signals the presence of a cell rea
for transfer. The UTOPIA Port controller tests the availability o
space in the Cell Buffer RAM by examining the count kept b

Decrement Increment

UTOPIA Cell
Received

Receiver Busy Counter
(Cells in Cell Buffer RAM

awaiting CPU Rx servicing)

Decrement Increment

UTOPIA Cell
Received

Receiver Full Counter
(Cells in Cell Buffer RAM
awaiting DMA transfer)

CPU CPU

Port1
Done

Port2
Done

Control Logic

CPU

RXCLAV ESS3 Rx Attention

ESS9 Rx Busyto RXENB_
MXT3010 Reference Manual Version 4.1 81

The UTOPIA port

SY
ify-
ch
ch
X-

c-
nt

d
rt

the
te
it
it
the RXFULL counter. If the MXT3010 can accept a cell and the
PHY has a cell to send, the UTOPIA port enables the transfer by
asserting the ATM layer Receiver Enable (RXENB_) output.

Decrementing The Port 1/Port 2 DMA controllers can decrement the RXFULL
counter at the completion of a data transfer operation if the
DMA command specifies the UTOPIA post-DMA operative
directive (POD) option in a memory write operation. For further
information on POD and other DMA instruction options, see
“The Control instruction field option” on page 287.

Alternatively, the CPU can decrement the RXFULL counter
after the received cell has been processed. As with the RXBU
counter, the CPU decrements the RXFULL counter by spec
ing a Branch instruction with an option. For example, a Bran
Immediate (BI) instruction can specify an unconditional bran
to $MAIN and decrement the RXFULL counter using the DR
FULL counter system operation option.

BI $MAIN DRXFULL

Whether RXFULL is decremented by use of a Branch instru
tion or by use of a DMA instruction, the CPU must decreme
the RXBUSY counter whenever it finishes handling a cell.

Transmit cell flow

The UTOPIA transmitter transfers cells from the Cell Buffer
RAM to an external framing device. All cells to be transmitte
must reside in the Cell Buffer RAM before transmission. As pa
of the transmit operation when HEC generation is enabled,
UTOPIA transmitter inserts a valid HEC between the last by
of the ATM Header and the first byte of the SAR-PDU. In 8-b
mode, only the 8-bit HEC is inserted; in 16-bit mode, the 8-b
HEC plus an 8-bit stuffer are inserted.
82 Version 4.1 MXT3010 Reference Manual

Transmit cell flow
The UTOPIA port transfers cells from the Cell Buffer RAM
beginning at location 0x0200. The UTOPIA transmitter reads
successive cells from the Cell Buffer RAM. During device ini-
tialization, the programmer can specify how many cells the
UTOPIA transmitter should use. If the transmitter buffer size is
set to two cells, the transmitter loops around after the second cell
and begins reading cells again at location 0x0200 in the Cell
Buffer RAM. For example, if the transmitter buffer size is set to
six cells, the transmitter loops around after the sixth cell and
begins reading cells again at location 0x0200 in the Cell Buffer
RAM.

Each transmit cell buffer is associated with an 16-bit control
word. The transmit control word is written through a FIFO-like
internal memory mapped into R43. Writes to R43 push control
words onto the control byte FIFO for use when the transmit
operation is executed.

The format of the transmit control word is:

The UTOPIA Control FIFO register recirculates its output back
to its input. For applications that only transmit one type of cell,
the 8 locations in R43 can be loaded at initialization time and
need not be written again.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved I CG TXPHY

Bits Name Function

4:0 TXPHY Select the address of the target PHY in a multi-PHY
system

5 CG Generate and insert a CRC10 for this cell

6 I Insert unassigned cell

15:7 Reserved Programs should write a zero to these bits.
MXT3010 Reference Manual Version 4.1 83

The UTOPIA port

r

UTOPIA transmitter counters

The UTOPIA transmitter contains two counters, TXBUSY and
TXFULL, that track cells in the transmit section of the Cell
Buffer RAM. Figure 35 on page 84 and Figure 36 on page 85
show how these counters are used in the transmission process. A
written description follows in “The TXBUSY counter” on
page 84 and in “The TXFULL counter” on page 86.

FIGURE 35.The TXBUSY counter

The TXBUSY counter

Function The CPU uses the TXBUSY counter to inform the UTOPIA
transmitter that a new cell in the Cell Buffer RAM is ready fo
transmission. When the TXBUSY counter is non-zero, the
MXT3010 generates the ATM layer Transmit Enable
(TXENB_) output signal that informs the PHY device that the
MXT3010 is ready to send a cell.

Decrement Increment

UTOPIA Cell
Tx begins

Transmitter Full Counter

Decrement Increment

UTOPIA Cell
Tx begins

Transmitter Busy Counter
(Cells in Cell Buffer RAM
loaded by DMA transfer)

CPU CPU

Port1
Done

Port2
Done

Control Logic

CPU

TXCLAV ESS2 Tx Attention

ESS10 Tx Fullto TXENB_
84 Version 4.1 MXT3010 Reference Manual

Transmit cell flow

y
on

he
Incrementing Program execution can be accelerated if the DMA controller
increments the TXBUSY counter after it reads data. This tech-
nique requires the DMA command to specify a memory read
operation with the POD option (see “Post-DMA Operation
Directives (PODs)” on page 109). For example:

DMA1R rsa/rsb, rla[BC/#, CRC{X Y}, POD, ST]

DMA2R rsa/rsb, rla[BC/#, POD, ST]

Alternatively, the CPU can increment the TXBUSY counter b
specifying a Branch instruction with a counter system operati
option. For example:

BI $MAIN ITXBUSY

Decrementing As the UTOPIA transmitter processes the first byte of a cell, t
transmitter decrements the TXBUSY counter.

FIGURE 36.The TXFULL counter

Decrement Increment

UTOPIA Cell
Tx begins

Transmitter FullCounter

Decrement Increment

UTOPIA Cell
Tx begins

Transmitter Busy Counter
(Cells in Cell Buffer RAM
loaded by DMA transfer)

CPU CPU

Port1
Done

Port2
Done

Control Logic

CPU

TXCLAV ESS2 Tx Attention

ESS10 Tx Fullto TXENB_
MXT3010 Reference Manual Version 4.1 85

The UTOPIA port

to a
g

to
ch-

s

s

nts
or
e
The TXFULL counter

Function The TXFULL counter tracks the number of cells that are avail-
able in the Cell Buffer RAM for transmission. The CPU uses
this counter to determine if space is available in the Cell Buffer
RAM to assemble a cell via DMA transfers.

Signals driven The TXFULL output of the TXFULL counter is connected to
ESS 10.

• If ESS 10 = 0, the Cell Buffer RAM transmit buffer has
space available.

• If ESS 10 = 1, the Cell Buffer RAM transmit buffer queue
is full, and the CPU does not build a cell.

The CPU can use the ESS 10 signal to conditionally branch
transmit cell routine, since available space allows cell buildin
to begin. For example, a Branch Immediate instruction (“BI
Branch Immediate” on page 272) can specify a conditional
branch to $TRANSMIT_CELL if ESS10 is a 0:

BI $TRANSMIT_CELL ESS10/0

The Tx Attention output of the TXFULL counter is connected
ESS 2. This signal indicates that the transmit buffer is approa
ing a drained state.

• If ESS 2 = 0, the Cell Buffer RAM transmit buffer contain
more then 2 cells.

• If ESS 2 = 1, the Cell Buffer RAM transmit buffer contain
2 or fewer cells.

Incrementing As the CPU begins processing a new cell, the CPU increme
the TXFULL counter. Now, the CPU can queue the next cell f
transmission as a background task. The CPU increments th
TXFULL counter by specifying a branch instruction with an
option. For example:

BI $MAIN ITXFULL
86 Version 4.1 MXT3010 Reference Manual

Transmit cell flow

ot
en

 for
 of
 If
n-

rrel-
Decrementing As the UTOPIA transmitter processes the last byte of a cell, the
transmitter decrements the TXFULL counter.

CRC10 generation and checking support

The UTOPIA port can perform CRC10 generation and checking
in support of AAL3/4, OAM cells, and RM cells. Generation of
CRC10 is controlled on a cell-by-cell basis for transmission.
CRC10 checking is performed on all receive cells.

The UTOPIA transmitter generates and inserts a CRC10 for a
cell if a 1 was written into the CG bit of the control byte for the
cell buffer (see “R43-write UTOPIA Control FIFO register” on
page 205). If CG = 1, the UTOPIA transmitter generates and
inserts a CRC10 field into the cell. If CG = 0, the CPU does n
insert a CRC10 field into the cell. The CG bit should be set wh
queuing an AAL3/4, OAM cell, or RM cell for transmission.

The SWAN processor can determine if a CRC10 error exists
a received cell by checking the CE bit in the second halfword
the received cell. If CE = 1, a CRC10 error exists in the cell.
CE = 0, no CRC10 error exists in the cell. If a cell is from a co
nection that does not use a CRC10 field, the state of CE is i
evant and should not be checked.
MXT3010 Reference Manual Version 4.1 87

The UTOPIA port

 of
rt
Multi-PHY support

The MXT3010 supports the connection of up to 16 physical
ports to a single UTOPIA port. The UTOPIA port is compliant1
with the ATM Forum’s Level 2 specification for Multi-PHY
operations, but can also support Level 1 devices. Bits [15:9]
the UTOPIA Configuration register (R62) are used to suppo
multi-PHY operation. The bit assignments are as follows:

1. While the MXT3010 is compliant with the ATM Level 2 specification, it
uses a three-clock polling cycle rather than the two-clock polling cycle
shown in the specification diagrams. In addition, the MXT3010 does not
provide an idle address of 1F between addresses. The three clock polling
cycle reduces the number of PHY devices that can be polled during a 52-
clock cell time from 26 to 14. Thus, if 16 PHY devices are used, more than
one cell time is needed to poll them all. Refer to Application Note 20,
“MXT3010EP UTOPIA Level 1 and Level 2 Interface Operation” for further
infomration.

TABLE 15. Bit assignments for multi-PHY operation

Bits Description

13:9 UTOPIA Port Most Significant PHY Address

The UTOPIA Port Receiver polls PHY devices searching for an
RXCLAV by incrementing the polled address according to the
UTOPIA Level 2 specification. The UTOPIA Port Receiver
knows that it has reached the last address and should begin at
zero again when it reaches this address. For examples of the use
of these bits, see Figure 37 on page 89 and Figure 38 on
page 90.

15:14 Number of Physical PHY devices present

This value tells the UTOPIA Port Receiver the number of physi-
cal PHY devices present. This in turn determines the number of
RXCLAV/TXCLAV and RXENB_/TXENB_ signals that should
be used.

00
01
10
11

Reserved
1-PHY mode
2-PHY mode
Reserved
88 Version 4.1 MXT3010 Reference Manual

Multi-PHY support
The use of bits [15:9] is best understood by considering the con-
figurations shown in Figure 37 and Figure 38.

FIGURE 37.Level 2 PHY configurations

The two implementations shown are logically equivalent Level
2 configurations. Since there is only one logical PHY, bits
[15:14] should be 01 to select 1-PHY mode. Since the most sig-
nificant PHY address is 15, bits [13:9] should be 1111.

MXT3010
16-port
device

15

0
...

MXT3010
4-port
device

3

0

4-port
device

7

4

4-port
device

11

8

4-port
device

15

12

TXCTRL[3:1]

TXCTRL[3:1]

Address control (i.e. which device
is 0-3, which is 4-7, etc.) provided
by host or other external device

Note: While only transmit control
signals (TX) signals are shown, a
corresponding set of receive (RX)
signals is also used.
MXT3010 Reference Manual Version 4.1 89

The UTOPIA port
FIGURE 38.Mixed Level 1 and Level 2 PHY configuration

Notes:1.While only transmit control signals (TX) are shown, a corre-
sponding set of receive (RX) signals is also used.

2. In this configuration, the Level 1 device must tri-state the
RXDATA/RXSOC leads when its RXENB_ pin is de-asserted.

The implementation shown has two logical PHYs. In this con-
figuration, TX/RXCTRL[3] is used as TX/RXCLAV for the sec-
ond PHY, and TX/RXCTRL[2] is used as TX/RXENB_ for the
second PHY. Since there are two logical PHYs, bits [15:14]
should be 10 to select 2-PHY mode. Since the most significant
PHY address is 7, bits [13:9] should be 0111.

Mode TX/RX CLAV TX/RX ENB ADRS

1 PHY TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [3:0]

2 PHY

 PHY 0 TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [1:0]

 PHY 1 TX/RX CTRL [3] TX/RX CTRL [2] TX/RX CTRL [1:0]

MXT3010

Level 1
device

3

0

Level 2
device

7

4

TXCTRL[1:0]

TXCLAV
TXENAB_

TXCTRL[3]/TXCLAV[1]

TXCTRL[2]/TXENAB[1]
90 Version 4.1 MXT3010 Reference Manual

Receive Header Reduction hardware
Receive Header Reduction hardware

The MXT3010 provides receive header reduction via bits [6:0]
of the System register (R63). The results of this reduction can be
used as a Channel ID. The bit definitions are as follows:

TABLE 16. Receive Header Reduction control

Bits Name Function

6:0 VPI/VCI Utopia Receiver Reduction Mask

Setting Value written into ATM Header lower
halfword in CBR

0000001
0000011
0000111
0001111

{0,0,0,0,0,0, vpi(0), vci(7:0), clp}
{0,0,0,0,0, vpi(1:0), vci(7:0), clp}
{0,0,0,0, vpi(2:0), vci(7:0), clp}
{0,0,0, vpi(3:0), vci(7:0), clp}

0000010
0000110
0001110
0011110

{0,0,0,0,0, vpi(0), vci(8:0), clp}
{0,0,0,0, vpi(1:0), vci(8:0), clp}
{0,0,0, vpi(2:0), vci(8:0), clp}
{0,0, vpi(3:0), vci(8:0), clp}

0000100
0001100
0011100
0111100

{0,0,0,0, vpi(0), vci(9:0), clp}
{0,0,0, vpi(1:0), vci(9:0), clp}
{0,0, vpi(2:0), vci(9:0), clp}
{0, vpi(3:0), vci(9:0), clp}

0001000
0011000
0111000
1111000

{0,0,0, vpi(0), vci(10:0), clp}
{0,0, vpi(1:0), vci(10:0), clp}
{0, vpi(2:0), vci(10:0), clp}
{vpi(3:0), vci(10:0), clp}

0010000
0110000
1110000

{0,0,vpi(0), vci(11:0), clp}
{0,vpi(1:0), vci(11:0), clp}
{vpi(2:0), vci(11:0), clp}

0100000
1100000

{0,vpi(0), vci(12:0), clp}
{vpi(1:0), vci(12:0), clp}

1000000 {vpi(0), vci(13:0), clp}

0000000 {vci(14:0), clp}
MXT3010 Reference Manual Version 4.1 91

The UTOPIA port
Receive header reduction mode is enabled by bit 0 of the
UTOPIA Configuration register (R62).

TABLE 17. Receive Header Reduction enable bit

Bits Description

0 UTOPIA Receiver Reduction Mode Enable Bit

0

1

Reduction Function Disabled (ATM Header bytes [2:3] written
into the Cell Buffer RAM unchanged)
Reduction Function Enabled (ATM header bytes [2:3] written
into the Cell Buffer RAM after reduction function performed
according to Reduction Mask Setting selected by R63[6:0]).
92 Version 4.1 MXT3010 Reference Manual

UTOPIA port configuration summary

2
UTOPIA port configuration summary

UTOPIA configuration information is stored in the UTOPIA
Configuration register, R62. The SWAN processor passes this
information to the UTOPIA Port at system initialization. Two
bits (0,1) in the ESS register (R42) are also used in the program-
ming of the UTOPIA port. Descriptions of these bits appear in
the tables referenced in Table 18. For a complete listing and
description of all of the bits in these registers, see “R42-read
External State Signals (ESS) register” on page 200 and “R6
The UTOPIA Configuration register” on page 219.

TABLE 18. UTOPIA configuration information

Bits Function Reference

R42 [0] HEC control Table 13 on page 72

R42 [1] Cell length control Table 13 on page 72

R62 [0] UTOPIA Receiver Reduction mode
enable bit

Table 17 on page 92

R62 [3:1] Receive Cell Buffer size in the Cell
Buffer RAM (000 = Receiver Reset)

Table 9 on page 60

R62 [6:4] Transmit Cell Buffer size in the Cell
Buffer RAM (000 = Transmitter Reset)

Table 9 on page 60

R62 [7] UTOPIA Port operational / output
clock frequency selection

Table 14 on page 73

R62 [8] UTOPIA Port data bus width Table 11 on page 71

R62 [13:9] UTOPIA Port most significant PHY
address

Table 15 on page 88

R62 [15:14] Number of physical PHY devices
present

Table 15 on page 88

R63 [6:0] Receiver Header Reduction control Table 16 on page 91
MXT3010 Reference Manual Version 4.1 93

The UTOPIA port

n
UTOPIA port sequence diagrams

This section shows sequence diagrams for the following
UTOPIA Port operations:

• Receive timing for single PHY, 8-bit mode (Figure 39 on
page 94)

• Transmit timing for single PHY, 8-bit mode (Figure 40 on
page 95)

• Receive full timing for single PHY, 8-bit mode (Figure 41
on page 95)

• Transmit full timing for single PHY, 8-bit mode (Figure 42
on page 95)

Set-up times, propagation times, and other timing informatio
for the UTOPIA Port interface are provided in “Timing” on
page 343.

FIGURE 39.UTOPIA Port receive timing - single PHY, 8-bit mode

Notes for Figure 39, Figure 40, Figure 41, Figure 42:

1. RXSOC must not be asserted outside the scope of a valid cell. That
is, it can only be asserted while RXENB_ is asserted (low).

2. RXCLAV/TXCLAV must be stable during octets 45 through 48.

RXCLK

RXSOC

RXDATA[7:0]

RXENB_

H1

RxPeriod

P48

H2 P47 P48 H1 H2

RXCLAV

Note 1

Note 2
94 Version 4.1 MXT3010 Reference Manual

UTOPIA port sequence diagrams
FIGURE 40.UTOPIA Port transmit timing - single PHY, 8-bit mode

FIGURE 41.UTOPIA Port receive full timing - single PHY, 8-bit mode

FIGURE 42.UTOPIA Port transmit full timing - single PHY, 8-bit mode

TXCLK

TXSOC

TXDATA[7:0]

TXENB_

H1

TxPeriod

P48

H2 P47 P48 H1 H2

TXCLAV

Note 1

Note 2

RXCLK

RXSOC

RXDATA[7:0]

RXENB_

H1

RxPeriod

H2P47 P48

RXCLAV

H3 H4 HEC

Note 1

Note 2

TXCLK

TXSOC

TXDATA[7:0]

TXENB_

H1

TxPeriod

H2P47 P48

TXCLAV

H3 H4 HEC

Note 1

Note 2
MXT3010 Reference Manual Version 4.1 95

The UTOPIA port
96 Version 4.1 MXT3010 Reference Manual

CHAPTER 7 The Port1 and Port2 Interfaces
s

Port1 and Port2 are high-speed interface ports. For each port, this
chapter includes:

Multi-purpose

DMA (Port2)

UTOPIA
Port

Cell Buffer RAM
High

Performance
DMA (Port1)

Instruction Cache

Processor

Fast Memory
Controller

Cell Scheduling
System

Inter-chip
Signalling

Fast Memory

Instructions &
Data Structures

Main Memory
Msg Buffers
 & Other
Information

Host

PHY or
Switch
Fabric

Application
Specific
Devices

Mem Controller

DRAM

SRAM

• Port interface overview • Control signals

• Port operations • Burst and non-burst operation

• Port DMA controllers • Data flow to Cell Buffer RAM
MXT3010 Reference Manual Version 4.1 97

The Port1 and Port2 Interfaces
Port interface overview

Both Port1 and Port2 provide high speed transfer paths to and
from the MXT3010 Cell Buffer RAM. The characteristics of the
two ports differ, however, and are shown in Table 19.

SWAN processor
memory access

The SWAN processor does not access Port1 or Port2 address
space directly. The processor programs the Port DMA Control-
lers to perform a DMA read or write operation to move the data
between the Cell Buffer RAM and Port1/Port2 address space.
The SWAN processor initiates all port operations. It initiates a
port transfer by executing a DMA instruction that writes a DMA
command into the port’s command queue.

DMA commands A typical DMA command format is shown below:

DMA1R rsa/rsb rla [BC/#] [CRCX|CRCY] [POD] [ST]

A single DMA command can transfer of up to 255 bytes of
information. The DMA command specifies:

TABLE 19. Characteristics of Port1 and Port2

Port1 Port2

Supports only burst mode opera-
tions.

Supports both burst and non-burst
mode operations.

Provides a 32-bit, multiplexed
address and data bus.

Provides a 16-bit, multiplexed address
and data bus

Provides access for COMMIN
and COMMOUT register I/O
transfers.

Provides a mechanism for memory-
mapped I/O via non-burst mode. This
can be used to access the program-
ming interface of a PHY device or a
CAM.

Provides CRC-32 generation
and checking.
98 Version 4.1 MXT3010 Reference Manual

Port interface overview

s

s
)

r-
D)

83

A
-

ions
,

d

s
• The transfer’s starting address in memory (from register
rsa and rsb)

• The transfer’s starting address in the Cell Buffer RAM
(from register rla)

• The size of the transfer (from BC/#, or if no BC/# value i
specified, from the Alternate Byte Count/ID register, R52

• The direction of the transfer (Read or Write) (from the
choice of DMA1R or DMA1W, for example)

• A series of instruction field options (IFOs) that control ce
tain aspects of the transfer (BC/#, CRCX|CRCY, ST, PO

For more information about the DMA commands, see page 2.

Instruction field
options supported
with the DMA
instruction

The Port1 instruction field options supported within the DMA
instruction include Byte Count (BC/#), Cyclical Redundancy
Check (CRCX or CRCY), Silent Transfer (ST), and Post-DM
Operation Directive (POD). If no BC/# is specified in the com
mand line, the command executes using a subset of the opt
(BC/#, CRX/CRY) from the Alternate Byte Count/ID register
R52.

The Port2 instruction field options supported within the DMA
instruction include Byte Count (BC/#) and Post-DMA Opera-
tion Directive (POD). If no BC/# is specified in the command
line, the command executes using the byte count (BC/#) fiel
from the Alternate Byte Count/ID register, R52.

Detailed descriptions for instruction field options supported
with Port1 and Port2 DMA instructions appear in the section
cited in the following table.

IFO For Further Information, See

BC “The Byte Count instruction field option (BC)” on page 286

CRCX,
CRCY

“CRC partial result registers and the CRCX/CRCY instruction
field option” on page 103 (Port1 only)

ST “Silent transfers” on page 105

POD “Post-DMA Operation Directives (PODs)” on page 109
MXT3010 Reference Manual Version 4.1 99

The Port1 and Port2 Interfaces
The Port DMA command queues

The Port1 and Port2 DMA Controllers each contain a two-deep
command queue. The MXT3010 processor contains an addi-
tional single-entry command queue for each Port1 and Port2
interface. With these queues, software can have up to three
DMA Controller commands outstanding to each port simulta-
neously.

Port1 and Port2 DMA command queues

The Port1 and Port2 command queues each have two stages
referred to as the queue stage and the active stage. Figure 43
shows the DMA command queues for the MXT3010.

FIGURE 43.DMA command queues for the MXT3010EP

Port2 Active
Stage

Port1 Active
Stage

Port2 Command
Queue Stage

Port1 Command
Queue Stage

MXT3010 Processor

P1RQ_

P2QRQ_P1QRQ_

P2RQ_

Port1 Port2

Processor Command
Queue

Processor Command
Queue
100 Version 4.1 MXT3010 Reference Manual

The Port DMA command queues

sig-
til
ges

is a
g

d 11
1
ller
The DMA command information generated by a DMA read or
write instruction is written into the selected SWAN command
queue. The command is transferred into the associated DMA
controller’s command queue as soon as the queue is available. If
the DMA controller’s active stage is not busy, the DMA com-
mand is transferred from the command queue stage to the active
stage and a port bus DMA operation begins.

If, however, the DMA active stage is busy, the operation remains
in either the SWAN or port DMA Controller queue stage until
the active operation completes. One cycle after the active oper-
ation completes, the DMA command queue operation is trans-
ferred into the active stage, and a new operation begins. If a port
DMA Controller command is issued while the SWAN command
queue is full, the processor stalls until the active operation fin-
ishes.

Bus parking The QRQ_ output signal is asserted whenever a command is
present a port’s DMA queue. An external arbiter can use this
nal to allow the MXT3010 to maintain ownership of a bus un
all commands are drained from both the active and queue sta
of the port DMA Controller. The arbiter does this by not
responding to requests from other devices as long as there
QRQ_ assertion on the port currently being serviced. Allowin
the MXT3010 to maintain bus ownership in this fashion is
referred to as “bus parking”. See “Port2 bus parking” on
page 158.

Testing DMA Controller queues with the ESS bits

Software can monitor the status of the DMA Controller com-
mand queues by testing External State Signals (ESS) 13 an
for Port1 and ESS12 and 14 for Port2. Table 20 and Table 2
show how ESS status bits are used to indicate DMA Contro
status.
MXT3010 Reference Manual Version 4.1 101

The Port1 and Port2 Interfaces
Branch instructions can be used to control program flow based
on the status of these bits. For more information, see “Branch
Instructions” on page 261.

TABLE 20. ESS Bits for DMA Controller status

ESS bit State Function

11 0 Port1 DMA Controller queue stage and active stage empty

1 Port1 DMA Controller queue stage or active stage busy

12 0 Port2 DMA Controller queue stage and active stage empty

1 Port2 DMA Controller queue stage or active stage busy

13 0 Port1 DMA Controller queue stage empty

1 Port1 DMA Controller queue stage busy

14 0 Port2 DMA Controller queue stage empty

1 Port2 DMA Controller queue stage busy

TABLE 21. Example of DMA Controller status bit utilization

ESS 13 & 11 Port1 queue status

00 Controller queue stage and active stage empty

01 Controller queue stage empty; active stage busy

10 Invalid combination

11 Controller queue stage busy; active stage busy
102 Version 4.1 MXT3010 Reference Manual

Port Controller features

Port Controller features

The Cyclical Redundancy Check 32 generator for
Port1

A CRC32 generator is provided in the Port1 DMA Controller to
generate and to check AAL5 CRC32 polynomials during seg-
mentation and reassembly operations. The CRC32 circuit gener-
ates a CRC32 for a Convergence Sublayer (CS) Protocol Data
Unit (PDU) as it is transferred between the host memory and the
Cell Buffer RAM. The CRC32 generator operates on data 16-
bits at a time.

CRC partial result
registers and the
CRCX/CRCY
instruction field
option

To support pipelined DMA operations, the MXT3010 imple-
ments two CRC32 partial result registers, CRC32PRX (R44,
R45), and CRC32PRY (R46, R47). Each DMA instruction spec-
ifies, via an instruction field option (IFO), whether a CRC32 cal-
culation occurs and if so, which of the two CRC32 partial result
registers to use. Specification of the CRCX/CRCY IFO is sum-
marized in Table 22.

Using partial
result registers

To generate CRC32, a program must initialize the CRC32 logic
with any prior partial result before the DMA data transfer
begins. For the first cell of a CS-PDU, initialize the selected par-
tial result register to 0xFFFFFFFF. At the completion of the

TABLE 22. Specification of the CRCX/CRCY instruction field option

IFO Action

none CRC32 partial result registers are not modified

CRCX A CRC32 partial result is generated based on the CRC32PRX
register’s value and the result is deposited into CRC32PRX
(R44/R45).

CRCY A CRC32 partial result is generated based on the CRC32PRY
register’s value and the result is deposited into CRC32PRY
(R46/R47).
MXT3010 Reference Manual Version 4.1 103

The Port1 and Port2 Interfaces
DMA transfer, read the CRC32 partial result from the selected
partial result register and save those results in the Channel
Descriptor to use the next time that a cell arrives. On transmits,
for the last cell of an AAL5 CS-PDU, invert the partial result
before placing it into the last four bytes of the cell. On receives,
the program can test for a CRC32 error by testing the appropri-
ate CRC32 error bit in the Sparse Event Register (R57) when the
final DMA transfer operation finishes.

Pipelined
operation

Although the use of command queueing and pipelined DMA
operations requires that care be taken with CRC32 partial gen-
eration, these operations greatly enhance system performance.
Using dual partial result registers, firmware can keep the DMA
command queue full by managing the CRC32 partial result reg-
isters and the CRC32X/CRC32Y instruction field option bits of
the DMA command.

Cyclical Redundancy Check operation acceleration

The registers for the Cyclical Redundancy Check (CRC) and the
MXT3010 instruction Store Register Halfword (SRH) acceler-
ate the handling of CRC results during AAL5 packet segmenta-
tion or reassembly. Direct Memory Access operations function
independently of MXT3010 code execution once they have been
started. Because of this functional independence, firmware can
process the next channel descriptor in parallel with the DMA
transfer (and CRC accumulation) of the previous channel as
soon as the DMA operation has been committed for that previ-
ous channel. This parallelism provides processing time to the
SWAN that might otherwise be wasted waiting for the transfer
to complete. However, the program must still save the results of
the partial CRC accumulation at the conclusion of a DMA trans-
fer in the previously serviced Channel Descriptor.
104 Version 4.1 MXT3010 Reference Manual

Port Controller features

ra-

,

on-
g
er
ar-
p-

ns

y

r

d

CX
/

di-
CRCX and CRCY
address holding
registers

At the time that a DMA read or write operation with CRCX or
CRCY indicated is initiated to Port1, the MXT3010 automati-
cally stores the address contained in the internal Fast Memory
Link Address register into one of two temporary holding regis-
ters – either that for CRCX operations or that for CRCY ope
tions. Typically, the address stored is the current Channel
Descriptor address.

Upon completion of the DMA transfer, the SWAN instruction
SRH, writes the contents of the CRC partial result registers
(R44/ R45 or R46/ R47) to Fast Memory using the address c
tained in either the CRCX holding register or the CRCY holdin
register as the base address for the transfer. The programm
must specify an offset with the SRH instruction to place the p
tial results at the appropriate field within the Channel Descri
tor.

Silent transfers

On some occasions, it is desirable to perform CRC calculatio
on data that did not traverse Port1.

• For LAN emulation purposes, the MXT3010 program ma
need to add a header to a message from Port1 memory
before transmitting the message.

• In AAL5, the MXT3010 program may need to add a traile
to a message from Port1 memory before transmitting the
message.

The MXT3010 provides this capability via the silent transfer
instruction field option. When a Port1 DMA instruction is issue
with the silent transfer (ST) option specified in the command
line, data is transferred into the Port1 CRC logic, and the CR
or CRCY partial result is updated, as selected by the CRCX
CRCY instruction field option. During a silent transfer, the
Port1 state machine operates with the same timing as an or
MXT3010 Reference Manual Version 4.1 105

The Port1 and Port2 Interfaces

A
om-
o-
 is
fer
d
nary Port1 DMA transfer (see Figure 45 on page 119), but no
P1QRQ_ or P1RQ_ signals are generated, the external arbiter
does not manipulate P1ASEL_ or P1TRDY_, and data is not
transferred on the Port1 bus.

Example 1 of
silent transfer use

Transmission of a typical AAL5 end of message cell typically
involves at least three DMA instructions, represented by the fol-
lowing pseudocode:

DMA1R, 40 bytes, CRCX ; This moves 40 bytes of data into the Cell

; Buffer RAM in preparation for transmission.

; A CRC is accumulated on this data.

DMA1W, 4 bytes, CRCX, ST; This instruction uses an rla value that points

; to the UU, CPI, and length bytes at byte 40.

; This instruction incorporates previously

; written UU, CPI, and length information

; into the CRC without modifying the contents

; of the Cell Buffer RAM.

DMA1R, CRCX, ST, POD ; This instruction complements the CRC and

; writes the result to the location specified in

; rla (typically byte 44 of the cell). The POD

; option increments TXBUSY, informing the

; UTOPIA transmitter that a new cell in the

; Cell Buffer RAM is ready for transmission.

; (See “The TXBUSY counter” on page 84.)

Example 2 of
silent transfer use

It is occasionally useful to provide a silent transfer without CRC
so that the queue state can be predicted. It may be desirable
under some circumstances to fill the SWAN processor’s DM
command queue and intentionally stall the processor. If the c
mand queue is full, a processor stall can be achieved by intr
ducing an additional DMA request. In this case, since a stall
desired rather than a real DMA action, a zero byte silent trans
should be specified, as such a request reaches the comman
queue, but does not reach the designated port queue.
106 Version 4.1 MXT3010 Reference Manual

Port Controller features

.

 The
he
t

Post-increment option on rla operations

The target rla register can automatically increment when the
DMA transfer is completed with the DMA Plus instruction. The
increment is 64 modulo 512. If eight 64-byte Cell Buffer regis-
ters are used, this saves the SWAN processor the code needed to
advance the rla register to the next cell buffer in Cell Buffer
RAM following each DMA transfer.

DMA Plus
instructions

Two steps are necessary to utilize the rla increment option:

1. To enable the rla increment option, set mode bit 5 in the
Configuration Register (R42).

2. Create a DMA Plus instruction by adding a plus sign to any
DMA instruction for which the rla increment option is
desired. The DMA Plus instructions are DMA1R+,
DMA1W+, DMA2R+, and DMA2W+.

If the rla increment mode is not enabled, do not use the DMA
Plus instructions. For more information on the DMA Plus
instructions, see “The RLA increment bit (i-bit)” on page 285

Data alignment

The port DMA Controller operates on halfword-aligned data
located locally, such as in the Cell Buffer RAM, and in host
memory. On memory reads and writes, the local halfword
address is specified in the chosen local address register, rla.
DMA controller programs the external halfword address into t
DMA instruction. The DMA controller performs data alignmen
dynamically in those cases where the starting address of the
source and destination locations are not halfword aligned.
MXT3010 Reference Manual Version 4.1 107

The Port1 and Port2 Interfaces
Byte manipulations on Port1

The Port1 bus supports only word and halfword DMA writes,
with P1HWE [1:0] being used as selects for the half-words.
However, the P1 address leads (P1AD [31:0]) provide a byte
address, and the P1 bus supports byte DMA reads. The DMA
read operations can transfer even or odd byte counts and start or
end transfers on even or odd boundaries in system memory or in
Cell Buffer RAM.

Transfers that end on odd byte boundaries in the Cell Buffer
RAM result in the single byte of the last halfword address being
stored aside in anticipation of the next transfer. This byte is not
accumulated in CRC calculations until the subsequent transfer is
initiated. Multiple transfers must be certain to end with a half-
word-aligned boundary to properly complete the CRC calcula-
tion. Therefore, the beginning and ending of any multi-burst cell
accumulation process must occur on even byte boundaries. New
CRC accumulations that do not begin on an odd byte address in
Fast Memory might include some arbitrary stale byte in the
transfer.

Table 23 shows the valid and invalid transfers to use for the first,
mid-cell, and last transfer for any given cell during cell con-
struction from system memory. Follow the rules in Table 23 to
ensure that the cell accumulation begins and ends on proper
boundaries.

TABLE 23. Valid and invalid first, mid-cell, and last transfers.

rla Start Byte Use of this start address and byte count is valid for:

Address Count First Transfer Mid-Cell Transfer Last Transfer

Even Even Yes Yes Yes

Even Odd Yes Yes Noa

a. Causes cell to end on odd boundary

Odd Even Nob

b. Causes cell to start on odd boundary

Yes Noa

Odd Odd Nob Yes Yes
108 Version 4.1 MXT3010 Reference Manual

Burst and non-burst operation (Port2)

-
d
R

al

e

”
ini-
 that
d-

ore
us
ns-
dels
Post-DMA Operation Directives (PODs)

The port DMA Controllers support a feature referred to as Post-
DMA Operation Directives, or PODs. PODs instruct the DMA
controller to perform UTOPIA port counter manipulations when
the operation ends. For instance, during reassembly, firmware
can instruct the DMA controller to decrement the RXFULL
counter by specifying the POD instruction field option in the
DMA1W command.

When a POD is specified with a DMA write operation, the DMA
controller decrements the UTOPIA port’s RXFULL counter.
(See “UTOPIA receiver counters” on page 78.) The RXFULL
counter is used for UTOPIA RxENB_ assertion at the conclu
sion of the DMA operation. The CPU is finished with a receive
cell once the DMA command required to transfer the cell's SA
SDU to memory is written into the DMA queue. CRC32 parti
results might still need handling.

If the POD directive is specified with a DMA read operation, th
DMA controller increments the TXBUSY counter when the
DMA operation finishes. (See “UTOPIA transmitter counters
on page 84.) The CPU is finished with a transmit cell once it
tiates the data transfer from memory. The CPU must be sure
the appropriate command byte, ATM headers, and AAL Hea
ers/Trailers (if any) are written into the cell holder before the
data transfer completes.

Burst and non-burst operation (Port2)

A burst mode transfer includes an address cycle and one or m
data cycles. Burst mode is used with high-speed synchrono
transfer devices such as SRAMs. In contrast, a non-burst tra
fer includes an address cycle and a single data cycle that mo
MXT3010 Reference Manual Version 4.1 109

The Port1 and Port2 Interfaces

ol”

:
m-
ce.
d

n

en
MA
transfers on a typical asynchronous multiplexed bus. Non-burst
mode is used with low-speed non-synchronous transfer devices
such as PHYs, CAMs, and FLASH memories.

While Port1 supports only burst mode operations, Port2 sup-
ports both burst mode and non-burst mode operations. Port2
burst mode DMA operations proceed similarly to Port1 DMA
burst operations. During non-burst transfers, the Port2 DMA
controller can insert a programmable number of wait states and
can also generate control signals that allow direct connection to
external devices.

Selection of burst mode or non-burst mode operation is accom-
plished via the Port2 basic protocol. See “Port2 basic protoc
on page 137.

Port Operations

Port1 basic protocol

The Port1 DMA interface supports two transfer mechanisms
DMA burst-mode transfers initiated by the MXT3010 and co
munication register I/O transfers initiated by an external devi
For information on DMA burst-mode transfers, see “Burst an
non-burst operation (Port2)” on page 109. For information o
communication register transfers, see “Communications” on
page 177.

Figure 44 and Table 24 illustrate the correspondence betwe
rsa/rsb register values and the Port1 bus signals for Port1 D
transfers.
110 Version 4.1 MXT3010 Reference Manual

Port Operations
FIGURE 44.Diagram of Port1 DMA instruction bits

Port1 control signals

Table 25 describes the signals that control Port1 transfers. Two
additional status signals, CIN_BUSY and COUT_RDY, allow
both an external device and the SWAN processor to determine
the state of the COMMIN/COMMOUT register set.

Restrictions on Port1 Addressing

The address counter for Port1 does not increment across the
boundary between P1AD[15] (rsb[15]) and P1AD[16] (rsa
[00]). Therefore, firmware running on the MXT3010 must
ensure that DMA transfers to/from Port1 do not cross 64K
boundaries.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsa P1AD[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsb P1AD[15:0]

TABLE 24. Port 1 DMA instruction bit mapping

Reg Bits Function Port2 Bus

rsa 15:0 Address P1AD[31:16]

rsb 15:0 Address P1AD[15:0]
MXT3010 Reference Manual Version 4.1 111

The Port1 and Port2 Interfaces
TABLE 25. Signals to control Port1 transfers

Signal Purpose

P1QRQ_ When the Port1 state machine detects the presence of a command in the queue stage
of the Port1 DMA command queue, the state machine asserts this signal to an external
device. This provides an advance indication that P1RQ_ will soon be asserted.

P1RQ_ When the Port1 state machine is in the Idle state and detects the presence of a com-
mand in the active stage of the Port1 DMA command queue, the state machine asserts
this signal to an external device. The external device responds by manipulating
P1ASEL_ and P1TRDY_ to control a DMA transfer.

P1ASEL_ This signal is an input to the MXT3010 and is driven by an external device. The
external device uses this signal to select between address and data cycles. The exter-
nal device can also use this signal in conjunction with P1TRDY_ to deselect (tri-state)
the Port1 DMA engine.

P1TRDY_ This signal is an input to the MXT3010 and is driven by an external device. The
external device uses this signal to insert wait states. The external device can also use
this signal in with P1ASEL_ to deselect (tri-state) the Port1 DMA engine.

P1RD During a DMA transfer, this signal is an output driven by the MXT3010. During a
communication register transfer, this signal is an input to the MXT3010 and is driven
by an external device. In either use, this signal indicates whether the transfer is a read
(1) or a write (0) transfer.

P1END_ This signal indicates the last cycle of a DMA operation.

P1AD[31:0] This is a multiplexed, bi-directional 32-bit bus. Data is read into and out of the
MXT3010 during DMA transfers and during communication register I/O transfers.
P1AD [31] is the most significant bit, and P1AD[0] is the least significant bit.

P1HWE[1:0] During data cycles, P1HWE[1] and P1HWE[0] act as Half Word Enables. If
P1HWE[1] is asserted, P1AD[15:0] should contain valid data. If P1HWE[0] is
asserted, P1AD[31:16] should contain valid data.

P1IRDY_ During DMA write data cycles, the MXT3010 asserts P1IRDY while it is sourcing
valid data on P1AD[31:0]. During DMA read data operations, the MXT3010 asserts
P1IRDY_ if it is able to sample P1AD[31:0] on the next rising edge of clock.

COMMSEL This signal is an input to the MXT3010 and is driven by an external device. The
external device uses this signal to perform communication register I/O.

P1ABORT_ This input signal causes the termination of the data transfer at the completion of the
next data phase. It is used only by the P1 DMA engine, and the SWAN processor has
no knowledge of P1ABORT_ signal indications.

CIN_Busy Driven high when host writes COMMIN; cleared when MXT3010 reads COMMIN.

COUT_Ready Driven high when MXT3010 writes COMMOUT; cleared when host reads COM-
MOUT.

LTN This is an internal signal indicating that the Last Transfer will occur Next (LTN).
112 Version 4.1 MXT3010 Reference Manual

Port Operations

,
a

ed

te.

deter-
t a
the

es

and
fer.
 the
ns-

ep

es
The Port1 control state machine

General information concerning DMA transfers

As indicated in “The Port DMA command queues” on page 100
the MXT3010EP asserts a port’s RQ_ signal if that port has
DMA command active. Additionally, it asserts the associated
QRQ_ signal if there is an additional DMA command enqueu
behind the active command. The port’s RD signal indicates
whether the requested DMA transfer is to be a read or a wri
Arbitration logic external to the MXT3010EP monitors these
signals and, in the case of a shared bus, other requestors to
mine whether to start a DMA transfer. Upon deciding to star
transfer, the external logic steps ASEL_ and TRDY_ through
various states of a DMA transfer, concluding with a Last Trans-
fer during which the MXT3010EP dismisses the current RQ_
request, and during which the arbitration logic again determin
subsequent bus utilization. The MXT3010EP re-asserts RQ_ at
the conclusion of the “Clean Up” state (which follows Last
Transfer) if a queued command exists at that time.

Port1 DMA read
transfers

Table 26 shows the state table for Port1 DMA read transfers,
Figure 45 shows a sequence diagram for a DMA read trans
The table and the figure are best understood by considering
function of the various inputs, outputs, and states for read tra
fers.

Inputs

• ASEL_ and TRDY_

These inputs are manipulated by an external device to st
the state machine through various states.

• LTN

This input (Last Transfer Next) is an internal MXT3010EP
signal based on the byte count. When asserted, it indicat
that the next DMA transfer state will be the last.
MXT3010 Reference Manual Version 4.1 113

The Port1 and Port2 Interfaces

ble

le
_

he

 a
-
eg-

he
D

s
Outputs

• P1AD

This is a bi-directional address/data bus. It has four possi
states: Out-Address, In-Data, In-X (Don’t Care), and Tri-
state.

• IRDY_

When this output is asserted, the MXT3010EP will samp
data on the rising edge of clock. Thus, in Table 26, IRDY
is asserted only when P1AD is presenting In-Data.

• END_

The END_ output is asserted by the MXT3010EP during t
Last Transfer state.

Although not shown in Table 26, the state machine also has
COMMSEL input. During DMA transfers, the COMMSEL sig
nal is low for all states shown. Please see“Communication r
ister I/O transfers” on page 133 for COMMSEL high.

States

• Address 1, Automatic-turnaround, and Address 2

The state machine differentiates between two types of
Address state, Address 1 and Address 2.

- When a DMA transfer begins, and the MXT3010EP
samples both ASEL_ and TRDY_ as asserted (low), t
MXT3010EP drives address information onto the P1A
bus; this is referred to as an Address 1 state.

- At some point after the Address 1 state begins, the
external controller that drives the ASEL_ and TRDY_
leads will de-assert ASEL_ (high) while maintaining
TRDY_ in the asserted state (low). This step prepare
the MXT3010EP for data transfer. When the
MXT3010EP is thus switched, it will interject an
Automatic-turnaround state during which it will not
114 Version 4.1 MXT3010 Reference Manual

Port Operations

the
e

e-

e

,
accept data (IRDY_ will be de-asserted (high)). The
Automatic-turnaround state provides time for the
MXT3010EP to turn off its bus drivers and for the
external device to turn on its bus drivers.

- If the system using the MXT3010EP requires that
address cycles be inserted during a DMA transfer at
some point after data reads have begun, i.e. after the
automatic -turnaround state, these are referred to as
Address 2 states. Address 2 states differ from Address 1
states, as Address 2 states require that the external
controller manipulate ASEL_ and TRDY_
appropriately to insert Tri-state intervals between the
Address 2 states and any data read states to allow time
for the bus direction to be changed.

• Data Read

During a Data Read, an external device drives data onto
P1AD bus and the MXT3010EP reads that data. Thus, th
P1AD column in the state table shows In-Data, and the
IRDY_ column shows assertion (low) indicating that the
MXT3010EP will read the data. There are three common
cases for what happens after a Data Read:

- If ASEL_ remains de-asserted (high) and TRDY_
remains asserted (low), the Data Read is followed by
another Data Read.

- If ASEL_ remains de-asserted (high) and TRDY_ is d
asserted (high), the Data Read is followed by a Data
Wait.

- If ASEL_ remains de-asserted (high) and TRDY_
remains asserted (low), and LTN is asserted (high), th
Data Read is followed by a Last Transfer.

There are two other cases for what happens after a Data
Read, but these are used less often than the three listed
above.

- If the states of ASEL_ and TRDY_ are switched to
ASEL_ asserted (low) and TRDY_ de-asserted (high)
the Data Read is followed by Tri-state (Data)1 and all
outputs are tri-stated.
MXT3010 Reference Manual Version 4.1 115

The Port1 and Port2 Interfaces

he
he

by

),

,

ss
- If ASEL_ is asserted (low) and TRDY_ remains
asserted (low), the Data Read is followed by an Address
cycle. To avoid bus contention when inserting an
Address cycle, it is preferable that ASEL_ /TRDY_ be
low/high such that the Data Read is followed by a Tri-
state (Data) (see previous paragraph), and that the Tri-
state (Data) then be followed by an Address 2 state
(ASEL_/TRDY_ both low).

• Data Wait

During a Data Wait, an external device drives data onto t
P1AD bus, but the MXT3010EP ignores that data. Thus, t
P1AD column in the state table shows In-X, and the IRDY_
column shows de-assertion (high) indicating that the
MXT3010EP will not read the data. There are three com-
mon cases for what happens after a Data Wait:

- If ASEL_ remains de-asserted (high) and TRDY_
remains de-asserted (high), the Data Wait is followed
another Data Wait.

- If TRDY_ is asserted (low) and LTN is de-asserted
(low), the Data Wait is followed by a Data Read.

- If TRDY_ is asserted (low) and LTN is asserted (high
the Data Wait is followed by a Last Transfer.

There are two other cases for what happens after a Data
Wait, but these are used less often than the three listed
above.

- If the states of ASEL_ and TRDY_ are switched to
ASEL_ asserted (low) and TRDY_ de-asserted (high)
the Data Wait is followed by Tri-state (DW) and all
outputs are tri-stated.

- If ASEL_ is asserted (low) and TRDY_ remains
asserted (low), the Data Wait is followed by an Addre
cycle.

1. The state machine keeps track of several versions of the tri-state condition.
For example, Tri-state (Data) refers to a tri-state condition entered from
the Data Read state. See “Tri-state” on page 117.
116 Version 4.1 MXT3010 Reference Manual

Port Operations

e

n-

are

m

fer

e

The
n
f

gic
• Tri-state

During a tri-state condition, all outputs are tri-state. This
condition is always entered whenever ASEL_ is asserted
(low) and TRDY_ is de-asserted (high). The state machin
maintains separate versions of the tri-state condition
depending upon the state from which the state machine
entered the tri-state condition. The versions are Tri-state
(Address 1), Tri-state (Address2), Tri-state (Automatic-tur
around), Tri-state (Data), Tri-state (Data Wait), Tri-state
(Last Transfer), Tri-state (Clean-up), and Tri-state (Turn-
around Wait). As shown in Table 26, four of these states
identical, transitioning to Data Read or Last Transfer
depending upon the state of the LTN input.

• Last Transfer

Last Transfer is a special case of Data Read. It differs fro
Data Read in three ways:

- The END_ output is asserted (low) during Last Trans
- During this state, external logic decides how to

condition the ASEL_ and TRDY_ leads during the
Clean Up state that follows. This, in turn, will determin
the state that follows the Clean Up state.

- It is followed by the Clean Up state.

• Clean Up

During the Clean Up state, the IRDY_ and END_ outputs
are de-asserted (high) and P1RQ_ is de-asserted (high).
state which follows Clean Up is determined by the conditio
of ASEL_ and TRDY_. As indicated above, the condition o
these inputs was determined by the external arbitration lo
during the Last Transfer state.
MXT3010 Reference Manual Version 4.1 117

The Port1 and Port2 Interfaces

 the
 most

.

TABLE 26. State table for the Port1 DMA burst read state machine
Ta

bl
e

L
in

e

Input
Signals

Current State Next State

Outputs in the
Next State

A
SE

L
_

T
R

D
Y

_

L
T

N

P
1A

D

IR
D

Y
_

E
N

D
_

1 L H Xa

a. X = don’t care

Any Tri-state (current_state)Tri-state

2 L L X Any pre Auto-turnaroundb

b. A pre Auto-turnaround state is any state between the most recent Last Transfer state and
Auto-turnaround state of a DMA transfer. A post turnaround state is any state between the
recent auto turnaround and the next Last Transfer state.

Address 1 Out-Addr H H

3 L L X Any post Auto-turnaround Address 2 Out-Addr H H

4 H L X Address 1 Auto-turnaroundc

c. This Auto-turnaround will be Auto-turnaround Wait if there is no RQ_ assertion at this time

Tri-state H H

5 H L L Address 2 Data Read In-Data L H

6 H L H Address 2 Last Transfer In-Data L L

7 H L L Auto-turnaround Data Read In-Data L H

8 H L H Auto-turnaround Last Transfer In-Data L L

9 H L L Data Read Data Read In-Data L H

10 H L H Data Read Last Transfer In-Data L L

11 H L X Auto-turnaround Wait Auto-turnaroundb Tri-state H H

12 H L L Data Wait Data Read In-Data L H

13 H L H Data Wait Last Transfer In-Data L L

14 H L X Last Transfer Clean Up In-X H H

15 H L X Clean Up, Tri-state (Last Transfer) Auto-turnaround Wait Tri-state H H

16 H L X Tri-state (Address 1, Clean Up,
Auto-turnaround Wait)

Auto-turnaroundb Tri-state H H

17 H L L Tri-state (Address 2, Auto-turn-
around, Data Read, or Data Wait)

Data Read In-Data L H

18 H L H Tri-state (Address 2, Auto-turn-
around, or Data Wait)

Last Transfer In-Data L L

19 H H X Address 1, Auto-turnaround Wait,
Tri-state (Address 1, Auto-turn-
around Wait)

Auto-turnaround Wait Tri-state H H

20 H H X Address 2, Auto-turnaround, Data
Read, Data Wait, Clean Up, Tri-
state (Auto-turnaround, Address2,
Data, Data Wait, Last Transfer, or
Clean Up)

Data Wait In-X H H

21 H H X Last Transfer Clean Up In-X H H
118 Version 4.1 MXT3010 Reference Manual

Port Operations
FIGURE 45.Port1 DMA Read transfer with a Wait state

Figure 45 shows the Last Transfer (LTX) and Clean Up (CU)
states of a previous DMA read or write transfer. During the Last
Transfer state, the external logic that controls the ASEL_ and
TRDY_ leads makes a decision as to whether it should:

1. Allow a COMM SEL transfer (having detected a communi-
cation request)

2. Prepare for another DMA transfer (having detected
P1QRQ_ asserted)

3. Relinquish the bus by entering a tri-state condition

4. Perform some other type of bus operation

Having decided on the appropriate course of action, the external
control logic conditions ASEL_ and TRDY_ at the beginning of
the Clean Up state so that the Port1 state machine will enter the
desired state after the Clean Up state.

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 14 2 4 7 9 20 12 9 9 10 14 1 1

P1QRQ_

P1IRDY_

D3P1ADin[31:0]

ADR

D0 D1 D4

QRQ_ reasserts if another DMA enters port queue

P1ADout[31:0]

1111 1111P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU AD1 ATA RD RD DW RD RD RD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write

D2
MXT3010 Reference Manual Version 4.1 119

The Port1 and Port2 Interfaces
In the example shown in Figure 45, the external logic elects to
perform a new DMA transfer, and drives both ASEL_ and
TRDY_ to the asserted (low) state during the Clean Up state.
With ASEL_ and TRDY_ low, the Clean Up state qualifies as
Any pre Auto-turnaround state in the Table 26 state table. Thus,
when the state machine samples the ASEL_ and TRDY_ leads,
line 2 of the state table causes the next state to be Address 1
(AD1).

During Address 1, the MXT3010EP puts address information
onto the P1AD leads. IRDY_ and END_ are high. If, during
Address 1, the external logic drives ASEL_ high while leaving
TRDY_ low, the state machine samples that condition, and line
4 of the state table causes the next state to be Auto-turnaround.

During Auto-turnaround, the MXT3010EP prepares the P1AD
leads for data transfer. IRDY_ and END_ are still high. With
ASEL_ still high and TRDY still low during the Auto-turn-
around state, line 7 of the state table causes the next state to be
a Data Read state.

During Data Read, an external device places data on the P1AD
leads, and the MXT3010EP asserts the IRDY_ lead low to indi-
cate it is going to sample that data. Since ASEL_ is still high and
TRDY_ is low, the state machine samples that condition, and
line 9 of the state table causes the next state to be a Data Read
state.

The second Data Read in the above example is identical to the
previous Data Read, except that the external logic has driven
TRDY_ high. Since TRDY_ has gone high, line 20 of the state
table causes the next state to be a Data Wait state. The use of a
Data Wait state is optional. It is shown in this figure and subse-
quent figures only to illustrate the waveforms that occur during
a Data Wait.
120 Version 4.1 MXT3010 Reference Manual

Port Operations

s
 is
ndi-
e a

AD

gh
tate

e

e
e

sfer

_
next
ate,
d

ws
ple,
 the

During Data Wait, the incoming data is ignored (“In-X”), and
the IRDY_ lead goes high to indicate that the MXT3010EP i
not going to sample the data. In the example, TRDY_ returns
returned to the low state, the state machine samples that co
tion, and line 12 of the state table causes the next state to b
Data Read state.

During Data Read, an external device places data on the P1
leads, and the MXT3010EP asserts the IRDY_ lead (low) to
indicate it is going to sample that data. Since ASEL_ is still hi
and TRDY_ is low, line 9 of the state table causes the next s
to be a Data Read state.

This Data Read is similar to the previous Data Reads. Since
ASEL_ is still high and TRDY_ is low, line 9 of the state tabl
causes the next state to be a Data Read state.

During this Data Read, the LTN signal (generated by the byt
count logic within the MXT3010EP) is asserted. Therefore, lin
10 of the state table causes the next state to be a Last Tran
(LTX).

Last Transfer is similar to a Data Read, except that the END
output is asserted (low). Line 14 of the state table causes the
state to be a Clean Up (CU) state. During the Last Transfer st
the external controller decides what to do with the ASEL_ an
TRDY_ inputs during the Clean Up state. The state that follo
the Clean Up state depends upon that decision. In this exam
the decision was to tri-state the bus. Thus, during Clean Up,
external controller has driven ASEL_ low and TRDY high.
When the state machine samples that condition, line 1 of the
state table causes the next state to be Tri-state (CleanUp).
MXT3010 Reference Manual Version 4.1 121

The Port1 and Port2 Interfaces
FIGURE 46.Port1 DMA Read transfer without a Wait state

Figure 46 is similar to Figure 45, but without a wait state. The
description of the figure is identical, except that there are no
transitions controlled by lines 20 or 12 of the state table, as
P1TRDY_ remains asserted (low) throughout the transfer.
Rather, the read process continues to be determined by line 9 of
the state table until LTN is asserted and state table line 10
applies, causing the next state to be Last Transfer (LTX).

Port1 DMA write transfers

Table 27 shows the state table for Port1 DMA write transfers,
and Figure 47 shows a sequence diagram for a DMA write trans-
fer. The table and the figure are best understood by considering
the function of the various inputs, outputs, and states for write
transfers.

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 14 2 4 7 9 9 9 9 10 14 1 1

P1QRQ_

P1IRDY_

P1ADin[31:0]

ADR

D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P1ADout[31:0]

1111 11P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU AD1 ATA RD RD RD RD RD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write

D2 D3

11
122 Version 4.1 MXT3010 Reference Manual

Port Operations

13.

ble
ri-
d
ut-

g
n

he
nal

 a
-
eg-

nly
e
ted
e
Inputs

• ASEL_, TRDY_, LTN

These inputs have the same definitions as shown page 1

Outputs

• P1AD

This is a bi-directional address/data bus. It has four possi
states: Out-Address, Out-Data, Out-X (Don’t Care), and T
state. In contrast to a DMA read, when the bus is change
from an address mode (outward) to a write data mode (o
ward), no intervening states are required.

• IRDY_

When this output is asserted, the MXT3010EP is sourcin
valid data. Thus, in Table 27, IRDY_ is asserted only whe
the next state is Out-Data.

• END

The END_ output is asserted by the MXT3010EP during t
Last Transfer state. This output can be used by any exter
logic that requires this information.

Although not shown in Table 27, the state machine also has
COMMSEL input. During DMA transfers, the COMMSEL sig
nal is low for all states shown. Please see“Communication r
ister I/O transfers” on page 133 for COMMSEL high.

States

• Address

In contrast to a DMA read, the write state machine has o
one state for Address. When a DMA cycle begins, and th
MXT3010 EP samples both ASEL_ and TRDY_ as asser
(low), the MXT3010EP drives address information onto th
P1AD bus; this is referred to as an Address state.
MXT3010 Reference Manual Version 4.1 123

The Port1 and Port2 Interfaces

e
the

-

y

,

s,

e

• Data Write

During a Data Write, the MXT3010EP drives data onto th
P1AD bus and an external device reads that data. Thus,
P1AD column in the state table shows Out-Data, and the
IRDY_ column shows assertion (low) indicating that the
MXT3010EP is sourcing valid data. There are three com
mon cases for what happens after a Data Write:

- If ASEL_ remains de-asserted (high) and TRDY_
remains asserted (low), the Data Write is followed by
another Data Write.

- If TRDY_ is de-asserted (high), the Data Write is
followed by a Data Wait.

- If LTN is asserted (high), the Data Write is followed b
a Last Transfer.

There are two other cases for what happens after a Data
Write, but these are used less often than the three listed
above.

- If the states of ASEL_ and TRDY_ are switched to
ASEL_ asserted (low) and TRDY_ de-asserted (high)
the Data Write is followed by Tri-state (Data)1.

- If ASEL_ is asserted (low) and TRDY_ remains
asserted (low), the Data Write is followed by an
Address cycle.

• Data Wait

During a Data Wait, the MXT3010EP drives data onto the
P1AD bus, but the external device ignores that data. Thu
the P1AD column in the state table shows Out-X, and the
IRDY_ column shows de-assertion (high) indicating that th
external device should not read the data. There are three
common cases for what happens after a Data Wait:

1. The state machine keeps track of several versions of the tri-state condition.
For example, Tri-state (Data) refers to a tri-state condition entered from
the Data Write state.
124 Version 4.1 MXT3010 Reference Manual

Port Operations

e

le

ta
N
- If ASEL_ remains de-asserted (high) and TRDY_
remains de-asserted (high), the Data Wait is followed by
another Data Wait.

- If TRDY_ is asserted (low) and LTN is de-asserted
(low), the Data Wait is followed by a Data Write.

- If TRDY_ is asserted (low) and LTN is asserted (high),
the Data Wait is followed by a Last Transfer.

There are two other cases for what happens after a Data
Wait, but these are used less often than the three listed
above.

- If the states of ASEL_ and TRDY_ are switched to
ASEL_ asserted (low) and TRDY_ de-asserted (high),
the Data Wait is followed by Tri-state (Data Wait) and
all outputs are tri-stated.

- If ASEL_ is asserted (low) and TRDY_ remains
asserted (low), the Data Wait is followed by an Address
cycle.

• Tri-state

During a tri-state condition, all outputs are tri-state. This
condition is always entered whenever ASEL_ is asserted
(low) and TRDY_ is de-asserted (high). The state machin
maintains separate versions of the tri-state condition
depending upon the state from which the state machine
entered the tri-state condition. The versions are Tri-state
(Address), Tri-state (Data), Tri-state (Data Wait), Tri-state
(Last Transfer), and Tri-state (Clean-up). As shown in Tab
27, three of these states are identical, transitioning to Da
Read or Last Transfer depending upon the state of the LT
input.
MXT3010 Reference Manual Version 4.1 125

The Port1 and Port2 Interfaces
TABLE 27. State table for the Port1 DMA burst write state machine
Ta

bl
e

L
in

e

Input
Signals

Current State Next State

Outputs in the
Next State

A
SE

L
_

T
R

D
Y

_

L
T

N

P
1A

D

IR
D

Y
_

E
N

D
_

1 L H X Any Tri-state (current_state) Tri-state

2 L L X Any Address Out-Addr H H

3 H L L Address Data Write Out-Data L H

4 H L H Address Last Transfer Out-Data L L

5 H L L Data Write Data Write Out-Data L H

6 H L H Data Write Last Transfer Out-Data L L

7 H L L Data Wait Data Write Out-Data L H

8 H L H Data Wait Last Transfer Out-Data L L

9 H L X Last Transfer Clean Up Out-X H H

10 H L X Clean Up Idlea

a. The Idle state will be maintained indefinitely if there is no RQ_ assertion.

Tri-state H H

11 H L L Idle, Tri-state (Address, Data
Write, or Data Wait)

Data Write Out-Data L H

12 H L H Tri-state (Address, Data Write, or
Data Wait)

Last Transfer Out-Data L L

13 H L X Tri-state (Last Transfer, Clean Up) Data Write Out-X H H

14 H H X Address, Data Write, Data Wait,
Clean Up, Tri-state (Address, Data
Write, Data Wait, Last Transfer, or
Clean Up)

Data Wait Out-X H H

15 H H X Last Transfer Clean Up Out-X H H
126 Version 4.1 MXT3010 Reference Manual

Port Operations
FIGURE 47.Port1 DMA Write transfer with a Wait state

Figure 47 shows the Last Transfer (LTX) and Clean Up (CU)
states of a previous DMA read or write transfer. During the Last
Transfer state, the external logic that controls the ASEL_ and
TRDY_ leads makes a decision as to whether it should:

1. Allow a COMM SEL transfer (having detected communi-
cation request)

2. Prepare for another DMA transfer (having detected
P1QRQ_ asserted)

3. Relinquish the bus by entering a tri-state condition

4. Perform some other type of bus operation

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 9 2 3 5 14 7 5 5 6 9 1 1

P1QRQ_

P1IRDY_

D3

P1ADin[31:0]

ADR D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P1ADout[31:0]

1111 1111P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU ADR WD WD WDW WD WD WD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write D2
MXT3010 Reference Manual Version 4.1 127

The Port1 and Port2 Interfaces

-

Having decided on the appropriate course of action, the external
control logic conditions ASEL_ and TRDY_ at the beginning of
the Clean Up state so that the Port1 state machine will enter the
desired state after the Clean Up state.

In the example shown in Figure 47, the external logic elects to
perform a new DMA transfer, and drives both ASEL_ and
TRDY_ to the asserted (low) state during the Clean Up state.
With ASEL_ and TRDY_ low, the Clean Up state qualifies as
Any state in the Table 27 state table. Thus, when the state
machine samples the ASEL_ and TRDY_ leads, line 2 of the
state table causes the next state to be Address (ADR).

During the Address state, the MXT3010EP puts address infor-
mation onto the P1AD leads. IRDY_ and END_ are high. If,
during the Address state, the external logic drives ASEL_ high
while leaving TRDY_ low, the state machine samples that con-
dition, and line 3 of the state table causes the next state to be
Data Write.

During Data Write, the MXT3010EP places data on the P1AD
leads, and the MXT3010EP asserts the IRDY_ lead low to indi-
cate that it has done so. Since ASEL_ is still high and TRDY_ is
low, the state machine samples that condition, and line 5 of the
state table causes the next state to be a Data Write state.

The second Data Write in the above example is identical to the
previous Data Write, except that the external logic has driven
TRDY_ high. Since TRDY_ has gone high, line 14 of the state
table causes the next state to be a Data Wait state. The use of a
Data Wait state is optional. It is shown in this figure and subse-
quent figures only to illustrate the waveforms that occur during
a Data Wait.

During Data Wait, the outgoing data should be ignored (“Out
X”), and the IRDY_ lead goes high to indicate that the
MXT3010EP does not guarantee the data. In the example,
128 Version 4.1 MXT3010 Reference Manual

Port Operations
TRDY_ returns is returned to the low state, the state machine
samples that condition, and line 7 of the state table causes the
next state to be a Data Write state.

During Data Write, the MXT3010EP places data on the P1AD
leads, and the MXT3010EP asserts the IRDY_ lead low to indi-
cate that it has done so. Since ASEL_ is still high and TRDY_ is
low, the state machine samples that condition, and line 5 of the
state table causes the next state to be a Data Write state.

This Data Write is similar to the previous Data Writes. Since
ASEL_ is still high and TRDY_ is low, line 5 of the state table
causes the next state to be a Data Write state.

During this Data Write, the LTN signal (generated by the byte
count logic within the MXT3010EP) is asserted. Therefore, line
6 of the state table causes the next state to be a Last Transfer
(LTX).

Last Transfer is similar to a Data Write, except that the END_
output is asserted (low). Line 9 of the state table causes the next
state to be a Clean Up (CU) state. During the Last Transfer state,
the external controller decides what to do with the ASEL_ and
TRDY_ inputs during the Clean Up state. The state that follows
the Clean Up state depends upon that decision. In this example,
the decision was to tri-state the bus. Thus, during Clean Up, the
external controller has driven ASEL_ low and TRDY high.
When the state machine samples that condition, line 1 of the
state table causes the next state to be Tri-state (CleanUp).
MXT3010 Reference Manual Version 4.1 129

The Port1 and Port2 Interfaces
FIGURE 48.Port1 DMA Write transfer without a Wait state

Figure 48 is similar to Figure 47, but without a wait state. The
description of the figure is identical, except that there are no
transitions controlled by lines 14 or 7 of the state table, as
P1TRDY_ remains asserted (low) throughout the transfer.
Rather, the write process continues to be determined by line 5 of
the state table until LTN is asserted and state table line 6 applies,
causing the next state to be Last Transfer (LTX).

Multiple Port1 Read and Write Transfers

Figure 45 and Figure 47 each show the conclusion of a DMA
transfer followed by the read or write DMA transfer being
described. In each case, the commencement of a DMA transfer
depends upon the states of QRQ_, RQ_, ASEL_ and TRDY_
during the Clean Up phase of the preceding bus cycle. Thus, to

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 9 2 3 5 5 5 5 6 9 1 1

P1QRQ_

P1IRDY_

D3

P1ADin[31:0]

ADR D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P1ADout[31:0]

1111 11P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU ADR WD WD WD WD WD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write D2

11
130 Version 4.1 MXT3010 Reference Manual

Port Operations
create timing diagrams representing an arbitrary sequence of
Port1 reads and writes, photocopy Figure 49 and Figure 50
below, and cut them on the heavy lines shown. Paste them
together to create the desired diagram.

FIGURE 49.Cut-and-Paste Version of Port1 Read

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 14 2 4 7 9 20 12 9 9 10 14 1 1

P1QRQ_

P1IRDY_

D3P1ADin[31:0]

ADR

D0 D1 D4

QRQ_ reasserts if another DMA enters port queue

P1ADout[31:0]

1111 1111P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU ADR1 ATA RD RD DW RD RD RD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write

D2
MXT3010 Reference Manual Version 4.1 131

The Port1 and Port2 Interfaces
FIGURE 50. Cut-and-Paste Version of Port1 Write

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 9 2 3 5 14 7 5 5 6 9 1 1

P1QRQ_

P1IRDY_

D3

P1ADin[31:0]

ADR D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P1ADout[31:0]

1111 1111P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU ADR WD WD WDW WD WD WD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write D2
132 Version 4.1 MXT3010 Reference Manual

Port Operations
Communication register I/O transfers

In addition to monitoring bus request signals from the
MXT3010EP and other devices, arbitration logic external to the
MXT3010EP monitors external requests for Communication
Register I/O transfers. Upon deciding to start a Communication
Register I/O transfer, the external logic asserts ASEL_ (low) and
de-asserts TRDY_ (high) to bring the Port1 bus into a tri-state
condition. The external logic then asserts the COMMSEL input
of the MXT3010EP. The P1RD signal, driven by the external
device, determines whether the I/O transfer is a read or write.
Since the state tables for COMMSEL reads and COMMSEL
writes are so brief, Table 28 shows the combined state table for
both reads and writes. Figure 51 shows a sequence diagram for
a typical COMMIN write followed by a COMMOUT read.

TABLE 28. State table for Port1 communication I/O state machine

Ta
bl

e
L

in
e

Input Signals

Current State Next State

Outputs in the
Next State

A
SE

L
_

T
R

D
Y

_

C
O

M
M

SE
L

P
1R

D
a

a. During Communications I/O, P1RD is driven by an external device

P
1A

D

1 L H L X Any Tri-state (current_state) Tri-state

2 L H H H Tri-state (current_state) Comm Out Read 1 Tri-state

3 L H H H Comm Out Read 1 Comm Out Read 2 Tri-state

4 L H H H Comm Out Read 2 Comm Out Data Valid Data

5 L H H H Comm Out Data Valid Comm Out Data Valid Data

6 L H H L Tri-state (current_state) Comm In Write Tri-stateb

b. During this and the next state, the MXT3010 tristates the bus. The external device drives data
onto the bus.

7 L H H L Comm In Write Comm In Write Tri-state

8 L H L L Comm In Write Comm In Data Strobe Data from external
device
MXT3010 Reference Manual Version 4.1 133

The Port1 and Port2 Interfaces
FIGURE 51.COMMIN write1 followed by COMMOUT read

Figure 51 shows the Last Transfer (LTX) and Clean Up (CU)
states of a previous DMA read or write transfer. During the Last
Transfer state, the external logic that controls the ASEL_ and
TRDY_ leads makes a decision as to whether it should:

1. Allow a COMM SEL transfer (having detected a communi-
cation request)

2. Prepare for another DMA transfer (having detected
P1QRQ_ asserted)

3. Relinquish the bus by entering a tri-state condition

4. Perform some other type of bus operation

Having decided on the appropriate course of action, the external
control logic conditions ASEL_ and TRDY_ at the beginning of
the Clean Up state so that the Port1 state machine will enter the
desired state after the Clean Up state.

1. In a COMMIN write, data is written from an external device into the MXT3010EP. In a COM-
MOUT read, data is read from the MXT3010EP by an external device.

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 ---- ---- 6 8 1 2 3 4 10 1

P1QRQ_

P1IRDY_

DataP1ADin[31:0] Data

P1ADout[31:0]

Next state is determined by table line #

State LTX CU TRI CIW CIS TRI RD1 RD2 DV TRI

If read

If write If write

QRQ_ reasserts if another DMA enters port queue
134 Version 4.1 MXT3010 Reference Manual

Port Operations
In the example shown in Figure 51, the external logic elects to
perform COMMIN and COMMOUT transfers. To do this, it
drives ASEL_ low and TRDY_ high during the Clean Up state.
Sampling ASEL_ low and TRDY_ high, the MXT3010EP
places the P1 bus in the Tri-state condition (see line 1 of Table
26, Table 27, and Table 28).

During the Tri-state condition, the external logic asserts the
COMMSEL input and drives P1RD to select a read or write
transfer. Detecting the assertion of COMMSEL, the
MXT3010EP prepares an internal data path for the read or write
of R40/41, the Host Communication registers.

In Figure 51, the MXT3010EP samples the assertion of COM-
MSEL high and P1RD low, and line 6 of the state table causes
the next state to be Comm In Write. During the Comm In Write
state, the external logic de-asserts COMMSEL while retaining
P1RD low. The MXT3010EP samples these conditions and line
8 of the state table causes the next state to be Comm In Data
Strobe.

During Comm In Data Strobe, data supplied by an external
device is written into the 32-bit register formed by the concate-
nation of R40 and R41 within the MXT3010EP. Also during
Comm In Data Strobe, the states of ASEL_ (low), TRDY_
(high), and COMMSEL (low) are such that line 1 of the state
table causes the next state to be Tri-state.

During this Tri-state condition, the external logic asserts the
COMMSEL input and drives P1RD high to select either a read
transfer. In Figure 51, the MXT3010EP samples the assertion of
COMMSEL high and P1RD high, and line 2 of the state table
causes the next state to be Comm Out Read 1. If the COMMSEL
and P1RD leads are maintained in their high states during
Comm Out Read 1, line 3 of the state table causes the next state
to be Comm Out Read 2.
MXT3010 Reference Manual Version 4.1 135

The Port1 and Port2 Interfaces
If the COMMSEL and P1RD leads are maintained in their high
states during Comm Out Read 2, line 4 of the state table causes
the next state to be Comm Out Data Valid. During Comm Out
Data Valid, data supplied by the concatenation of R40 and R41
within the MXT3010EP is supplied to the external device.

If the external device can sample the data quickly during Comm
Out Data Valid, the external logic can condition the states of
ASEL_ (low), TRDY_ (high), and COMMSEL (low) such that
line 1 of the state table causes the next state to be Tri-state. If the
external device requires more time to sample the data, the exter-
nal logic can condition the states of ASEL_ (low), TRDY_
(high), and COMMSEL (high) such that line 5 of the state table
causes the next state to be an additional period of Comm Out
Data Valid.
136 Version 4.1 MXT3010 Reference Manual

Port Operations
Port2 basic protocol

The Port2 interface supports two transfer mechanisms:
MXT3010-initiated DMA burst mode transfers and non-burst
transfers. Each command issued to the DMA command queue is
tagged as either burst or non-burst, via rsa bit 7. If rsa[7] is 1, the
transfer is a burst transfer. If rsa[7] is 0, the transfer is a non-
burst transfer. Non-burst transfers can insert a programmable
number of wait states.

Figure 52 and Table 29 illustrate the correspondence between
rsa/rsb register values, the Port2 bus signals, and a logical half-
word address for Port2 burst DMA transfers.

FIGURE 52.Diagram of Port2 burst DMA instruction bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsa Unused Burst Unused P2AD [15:11]

A19 A18 A17 A16 A15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsb P2AD[10:0] P2AI [3:0] 0

A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 A00

TABLE 29. Port2 burst DMA instruction bit mapping

Reg Bits Function Port2 Bus
Logical
Halfword Bit

rsa 15:08 Not used - -

07 Burst bit = 1 (selects mode) -

06:05 Not used - -

04:00 Address P2AD[15:11] 19:15

rsb 15:05 Address P2AD[10:0] 14:04

04:01 Address P2AI[3:0] 3:0

00 Discarded - -
MXT3010 Reference Manual Version 4.1 137

The Port1 and Port2 Interfaces
The information in Table 29 can also be expressed as shown in
Table 30.

TABLE 30. Another view of Port2 burst DMA instruction bit mapping

Since the Port2 burst DMA instruction bit mapping permits the
use of 20-bit halfword addressing, one million (1M) 16-bit half-
words can be addressed.

Firmware Byte
Address Bit

MXT3010
Internal Register
Bit

Memory
Halfword
Address Bit

MXT3010 Port2
Pin

A00 (lsb) RSB[0] -- NC

A01 RSB[1] A00 (lsb) HW P2AI[0]

A02 RSB[2] A01 P2AI[1]

A03 RSB[3] A02 P2AI[2]

A04 RSB[4] A03 P2AI[3]

A05 RSB[5] A04 P2AD[0]

A06 RSB[6] A05 P2AD[1]

A07 RSB[7] A06 P2AD[2]

A08 RSB[8] A07 P2AD[3]

A09 RSB[9] A08 P2AD[4]

A10 RSB[10] A09 P2AD[5]

A11 RSB[11] A10 P2AD[6]

A12 RSB[12] A11 P2AD[7]

A13 RSB[13] A12 P2AD[8]

A14 RSB[14] A13 P2AD[9]

A15 RSB[15] A14 P2AD[10]

A16 RSA[0] A15 (msb) HW P2AD[11]

A17 RSA[1] A16 P2AD[12]

A18 RSA[2] A17 P2AD[13]

A19 RSA[3] A18 P2AD[14]

A20 RSA[4] A19 P2AD[15]
138 Version 4.1 MXT3010 Reference Manual

Port Operations
Figure 53 and Table 31 illustrate the correspondence between
rsa/rsb register values, the Port2 bus signals, and a logical half-
word address for Port2 non-burst DMA transfers.

FIGURE 53.Diagram of Port2 non-burst DMA instruction bits

.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsa Unused # of Waits Burst P2A[3:2] P2AD [15:11]

A17 A16 A15 A14 A13 A12 A11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsb P2AD[10:0] Unused

A1 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0

TABLE 31. Port2 non-burst DMA instruction bit mapping

Reg Bits Function Port2 Bus
Logical
Halfword Bit

rsa 15:11 Not used - -

10:08 #waits [2:0] (selects number of wait states) -

07 Burst bit = 0 (selects mode) -

06:05 Address P2AI[3:2] 17:16

04:00 Address P2AD[15:11] 15:11

rsb 15:05 Address P2AD[10:0] 10:0

04:00 Discarded - -
MXT3010 Reference Manual Version 4.1 139

The Port1 and Port2 Interfaces
The information in Table 31 can also be expressed as shown in
Table 32.

TABLE 32. Another view of Port2 non-burst DMA instruction bit
mapping

Since the Port2 non-burst DMA instruction bit mapping permits
the use of 18-bit halfword addressing, 256K 16-bit halfwords
can be addressed.

Firmware Byte
Address Bit

MXT3010
Internal Register
Bit

Memory
Halfword
Address Bit

MXT3010 Port2
Pin

A00 (lsb) RSB[0] -- NC

A01 RSB[1] -- NC

A02 RSB[2] -- NC

A03 RSB[3] -- NC

A04 RSB[4] -- NC

A05 RSB[5] A00 (lsb) HW P2AD[0]

A06 RSB[6] A01 P2AD[1]

A07 RSB[7] A02 P2AD[2]

A08 RSB[8] A03 P2AD[3]

A09 RSB[9] A04 P2AD[4]

A10 RSB[10] A05 P2AD[5]

A11 RSB[11] A06 P2AD[6]

A12 RSB[12] A07 P2AD[7]

A13 RSB[13] A08 P2AD[8]

A14 RSB[14] A09 P2AD[9]

A15 RSB[15] A10 P2AD[10]

A16 RSA[0] A11 P2AD[11]

A17 RSA[1] A12 P2AD[12]

A18 RSA[2] A13 P2AD[13]

A19 RSA[3] A14 P2AD[14]

A20 RSA[4] A15 (msb) HW P2AD[15]

A21 RSA[5] A16 P2AI[2]

A22 RSA[6] A17 P2AI[3]
140 Version 4.1 MXT3010 Reference Manual

Port Operations
Multi-function AI pins (P2AI[3:0])

In burst mode, P2AI [3:0] provide an address index consisting
of the lower four bits of an address (see Table 29). In non-burst
mode, P2AI[3:2] provide the most significant address bits (see
Table 31). Also in non-burst mode, P2AI [1] represents P2RD_,
and P2AI[0] represents Address Latch Enable. These signals
can be used to provide a glueless interface to non-burst devices.

Port2 control signals

Table 33 describes the signals that control Port2 transfers

TABLE 33. Signals to control Port2 transfers

Signal Purpose

P2QRQ_ When the Port2 state machine detects the presence of a command in the queue
stage of the Port2 DMA command queue, the state machine asserts this signal to an
external device; this provides advance indication that P2RQ_ will soon be asserted.

P2RQ_ When the Port2 state machine is in the Idle state and detects the presence of a com-
mand in the active stage of the Port2 DMA command queue, the state machine
asserts this signal to an external device. The external device responds by manipu-
lating P2ASEL_ and P2TRDY_ to control a DMA transfer.

P2TRDY_ This signal is an input to the MXT3010 and is driven by an external device. The
external device uses this signal to insert wait states. The external device can also
use this signal in conjunction with P2ASEL_ to deselect (tri-state) the Port2 DMA
engine.

P2IRDY_ During DMA write data cycles, the MXT3010 asserts P2IRDY while it is sourcing
valid data on P2AD[15:0]. During DMA read data operations, the MXT3010
asserts P2IRDY_ if it is able to sample P2AD[15:0] on the next rising edge of
clock.

P2ASEL_ This signal is an input to the MXT3010 and is driven by an external device. The
external device uses this signal to select between address and data cycles. The
external device can also use this signal in conjunction with P2TRDY_ to deselect
(tri-state) the Port2 DMA engine.

P2QBRST This signal is an output driven by the MXT3010. The MXT3010 uses this signal to
indicate the transfer mode, such as burst or non-burst, of the active command.

P2RD During a DMA transfer, this signal is an output driven by the MXT3010. This sig-
nal indicates whether the transfer is a read (1) or a write (0) transfer.

P2END_ This signal indicates the last cycle of a DMA operation.

P2AD[15:0] This is a multiplexed, bi-directional 16-bit bus. Data is read into and out of the
MXT3010 during DMA transfers.

LTN This is an internal signal indicating that the Last Transfer will occur Next (LTN).
MXT3010 Reference Manual Version 4.1 141

The Port1 and Port2 Interfaces

3.

ad
rt2
6,

hose
nd

as
The Port2 control state machine

Port2 DMA transfers originate and terminate as discussed in
“General information concerning DMA transfers” on page 11

Port2 DMA burst-mode read transfers

Table 34shows the state table for Port2 DMA burst-mode re
transfers and Figure 56 shows a sequence diagram for a Po
DMA burst-mode read transfer. Table 34 is identical to Table 2
“State table for the Port1 DMA burst read state machine,” on
page 118. The inputs, outputs, and states are the same as t
described in “Inputs” on page 113, “Outputs” on page 114, a
“States” on page 114, with four exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD bus is 16 bits; the P1AD bus is 32 bits (and h
HalfWord Enable signals).

3. Only Port1 has a COMMSEL input.

4. Only Port2 has a P2QBRST output.
142 Version 4.1 MXT3010 Reference Manual

Port Operations
TABLE 34. State table for the Port2 DMA burst-mode read state machine

Ta
bl

e
L

in
e

Input
Signals

Current State Next State

Outputs in the
Next State

A
SE

L
_

T
R

D
Y

_

L
T

N

P
2A

D

IR
D

Y
_

E
N

D
_

1 L H X Any Tri-state (current_state) Tri-state

2 L L X Any pre Auto-turnaround Address 1 Out-Addr H H

3 L L X Any post Auto-turnaround Address 2 Out-Addr H H

4 H L X Address 1 Auto-turnaround Tri-state H H

5 H L L Address 2 Data Read In-Data L H

6 H L H Address 2 Last Transfer In-Data L L

7 H L L Auto-turnaround Data Read In-Data L H

8 H L H Auto-turnaround Last Transfer In-Data L L

9 H L L Data Read Data Read In-Data L H

10 H L H Data Read Last Transfer In-Data L L

11 H L X Auto-turnaround Wait Auto-turnaround Tri-state H H

12 H L L Data Wait Data Read In-Data L H

13 H L H Data Wait Last Transfer In-Data L L

14 H L X Last Transfer Clean Up In-X H H

15 H L X Clean Up Data Read In-X H H

16 H L X Tri-state (Address 1) Auto-turnaround Tri-state H H

17 H L L Tri-state (Address 2, Auto-turn-
around, Data Read, or Data Wait)

Data Read In-Data L H

18 H L H Tri-state (Address 2, Auto-turn-
around, or Data Wait)

Last Transfer In-Data L L

19 H L X Tri-state (Last Transfer, Clean Up) Data Read In-X H H

20 H L X Tri-state (Auto-turnaround Wait) Auto-turnaround Tri-state H H

21 H H X Address 1, Tri-state (Address 1,
Auto-turnaround Wait)

Auto-turnaround Wait In-X H H

22 H H X Address 2, Auto-turnaround, Data
Read, Data Wait, Clean Up, Tri-
state (Auto-turnaround, Address2,
Data, Data Wait, Last Transfer, or
Clean Up)

Data Wait In-X H H

23 H H X Last Transfer Clean Up In-X H H
MXT3010 Reference Manual Version 4.1 143

The Port1 and Port2 Interfaces
A sequence diagram for a typical DMA burst-mode read transfer
using the Port2 read state table (Table 34) is shown in Figure 54.
This diagram includes a wait state.

FIGURE 54.Port2 DMA burst-mode Read transfer with a Wait state

Figure 54 is identical to Figure 45 on page 119, with the follow-
ing exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD bus is only16 bits.

3. There are no HalfWord Enable signals, but there are P2AI
[3:0] signals.

4. Port2 has a P2QBRST output and has no COMMSEL
input.

The sequence of states is identical to that shown in conjunction
with Figure 45 on page 119, and the same explanatory text
applies.

CLK

P2END_

P2TRDY_

P2ASEL_

P2RQ_

P2QBRST

P2RD

 14 2 4 7 9 22 12 9 9 10 14 1 1

P2QRQ_

P2IRDY_

D3P2ADin[15:0]

ADR

D0 D1 D4

QRQ_ reasserts if another DMA enters port queue

P2ADout[15:0]

Next state is determined by table line #

LTN (Internal)

State LTX CU ADR1 ATA RD RD RDW RD RD RD LTX CU TRI

D5If read

If write If write

D2

P2AI[3:0] If read A[3:0] A+1 A[3:0] + 2 A+3 A+4 A[3:0] + 2
144 Version 4.1 MXT3010 Reference Manual

Port Operations
A second sequence diagram for a typical DMA burst-mode read
transfer using the Port2 read state table (Table 34) is shown in
Figure 55. This diagram does not include a wait state.

FIGURE 55.Port2 DMA burst-mode Read transfer without a Wait state

Figure 55 is identical to Figure 46 on page 122, with the follow-
ing exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD bus is only16 bits.

3. There are no HalfWord Enable signals, but there are P2AI
[3:0] signals.

4. Port2 has a P2QBRST output and has no COMMSEL
input.

The sequence of states is identical to that shown in conjunction
with Figure 46 on page 122, and the same explanatory text
applies.

CLK

P2END_

P2TRDY_

P2ASEL_

P2RQ_

P2QBRST

P2RD

 14 2 4 7 9 9 9 9 10 14 1 1

P2QRQ_

P2IRDY_

D3P2ADin[15:0]

ADR

D0 D1 D4

QRQ_ reasserts if another DMA enters port queue

P2ADout[15:0]

Next state is determined by table line #

LTN (Internal)

State LTX CU ADR1 ATA RD RD RD RD RD LTX CU TRI

D5If read

If write If write

D2

P2AI[3:0] If read A[3:0] A+1 A+2 A+3 A+4 A[3:0] + 2
MXT3010 Reference Manual Version 4.1 145

The Port1 and Port2 Interfaces

as
Port2 DMA burst-mode write transfers

Table 35 shows the state table for Port2 DMA burst-mode write
transfers and Figure 56 shows a sequence diagram for a Port2
DMA burst-mode write transfer. Table 35 is identical to
Table 27 on page 126. The inputs, outputs, and states are the
same as those described in “Inputs” on page 113, “Outputs” on
page 114, and “States” on page 114, with four exceptions:

1. All signal names bear a P2 prefix instead of P1.

2. The P2AD bus is 16 bits; the P1AD bus is 32 bits (and h
HalfWord Enable signals).

3. Only Port1 has a COMMSEL input.

4. Only Port2 has a P2QBRST output.
146 Version 4.1 MXT3010 Reference Manual

Port Operations
TABLE 35. State table for the Port2 DMA burst write state machine

A sequence diagram for a typical DMA burst-mode write trans-
fer using Table 35 is shown in Figure 56. This diagram includes
a wait state.

Ta
bl

e
L

in
e

Input
Signals

Current State Next State

Outputs in the
Next State

A
SE

L
_

T
R

D
Y

_

L
T

N

P
1A

D

IR
D

Y
_

E
N

D
_

1 L H X Any Tri-state (current_state) Tri-state

2 L L X Any Address Out-Addr H H

3 H L L Address Data Write Out-Data L H

4 H L H Address Last Transfer Out-Data L L

5 H L L Data Write Data Write Out-Data L H

6 H L H Data Write Last Transfer Out-Data L L

7 H L L Data Wait Data Write Out-Data L H

8 H L H Data Wait Last Transfer Out-Data L L

9 H L X Last Transfer Clean Up Out-X H H

10 H L X Clean Up Idlea

a. The Idle state will be maintained indefinitely if there is no RQ_ assertion.

Tri-state H H

11 H L L Idle, Tri-state (Address, Data
Write, or Data Wait)

Data Write Out-Data L H

12 H L H Tri-state (Address, Data Write, or
Data Wait)

Last Transfer Out-Data L L

13 H L X Tri-state (Last Transfer, Clean Up) Data Write Out-X H H

14 H H X Address, Data Write, Data Wait,
Clean Up, Tri-state (Address, Data
Write, Data Wait, Last Transfer, or
Clean Up)

Data Wait Out-X H H

15 H H X Last Transfer Clean Up Out-X H H
MXT3010 Reference Manual Version 4.1 147

The Port1 and Port2 Interfaces
FIGURE 56.Port2 DMA burst-mode write transfer with a Wait state

The sequence of states in Figure 56 is the same as that for
Figure 47, “Port1 DMA Write transfer with a Wait state,” on
page 127, and the same explanatory text applies.

CLK

P2END_

P2TRDY_

P2ASEL_

P2RQ_

P2QBRST

P2RD

 9 2 3 5 14 7 5 5 6 9 1 1

P2QRQ_

P2IRDY_

D3

P2ADin[15:0]

A[19:4] D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P2ADout[15:0]

A+3A+1 A+4A[3:0]+2P2AI[3:0]

Next state is determined by table line #

LTN (Internal)
State LTX CU ADR WD WD WDW WD WD WD LTX CU TRI

D5

A+5

If read

If write If write D2

A[3:0]
148 Version 4.1 MXT3010 Reference Manual

Port Operations

n
A sequence diagram for a typical DMA burst-mode write trans-
fer using Table 35 is shown in Figure 56. This diagram does not
include a wait state.

FIGURE 57.Port2 DMA burst-mode write transfer without a Wait state

The sequence of states in Figure 57 is the same as that for
Figure 48, “Port1 DMA Write transfer without a Wait state,” o
page 130, and the same explanatory text applies.

CLK

P2END_

P2TRDY_

P2ASEL_

P2RQ_

P2QBRST

P2RD

 9 2 3 5 5 5 5 6 9 1 1

P2QRQ_

P2IRDY_

D3

P2ADin[15:0]

A[19:4] D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P2ADout[15:0]

A+3A+1 A+4A+2P2AI[3:0]

Next state is determined by table line #

LTN (Internal)
State LTX CU ADR WD WD WD WD WD LTX CU TRI

D5

A+5

If read

If write If write D2

A[3:0]
MXT3010 Reference Manual Version 4.1 149

The Port1 and Port2 Interfaces

c-

rked
Port2 DMA non-burst-mode read transfers

Table 36shows the state table for Port2 DMA non-burst-mode
read transfers and Figure 59 shows a sequence diagram for a
Port2 DMA non-burst-mode read transfer.

TABLE 36. State table for the Port2 DMA non-burst-mode read state machine

Ta
bl

e
L

in
e

Input
Signals

Current State Next State

Outputs in the Next State

A
SE

L
_

T
R

D
Y

_

L
T

N
a

a. For non-burst-mode operation, the LTN (Last Transfer Next) signal is asserted when the pro-
grammable wait-timer expires. See “#waits [2:0]” in Table 31, “Port2 non-burst DMA instru
tion bit mapping,” on page 139.

P
2A

D

IR
D

Y
_

P
2A

I[
3:

2]

P
2R

D
_

P
2A

L
E

_

E
N

D
_

1 L H X Any Tri-state (current_state)Tri-state

2 L L X Any Address1 Out-Addr H Vb

b. The P2AI[3:2] outputs have valid (V) address information on them throughout all states ma
“V”. These outputs can be decoded to form four chip selects if desired.

L H H

3 H L X Address1 Address2 Out-Addr L V L H H

4 H L X Address2 Address Hold Out-Addr L V L L H

5 H L X Address Hold Data Wait In-X L V L L H

6 H L L Data Wait Data Wait In-X L V L L H

7 H L H Data Wait Last Transfer In-Data L V L L L

8 H L X Last Transfer Clean Up In-X H V L L H

9 H L X Clean Up Idlec

c. The Idle state will be maintained indefinitely if there is no RQ_ assertion.

Tri-state H V L L H

10 H H X Data Wait Data Wait In-X H X X X H
150 Version 4.1 MXT3010 Reference Manual

Port Operations
A sequence diagram for a DMA non-burst-mode read transfer
using Table 36 is shown in Figure 58.

FIGURE 58.Port2 DMA non-burst-mode Read transfer.

Note:During a Port2 Non-Burst DMA Read, an external device places
data on the P2AD leads. The Port2 DMA Read command can spec-
ify, via bits [10:8] of the rsa register, the number of wait states that
occur before the MXT3010EP samples the data. In the example
shown above, 5 wait states have been inserted.

Figure 58 shows the Last Transfer (LTX) and Clean Up (CU)
states of a previous DMA read or write transfer. During the Last
Transfer state, the external logic that controls the ASEL_ and
TRDY_ leads makes a decision as to whether it should:

CLK

P2END_

P2TRDY_

P2ASEL_

P2RQ_

P2QBRST

P2RD

 --- 2 3 4 5 6 6 6 6 7 9 1 1

P2QRQ_

P2IRDY_

P2ADin[15:0]

QRQ_ reasserts if another DMA enters port queue

P2ADout[15:0]

Next state is determined by table line #

LTN (Internal)

State LTX CU AD1 AD2 ADH RDW RDW RDW RDW RDW LTX CU TRI

If read

If write If write

P2AI[3:2] If read ADR[17:16]

ADR[15:0]

P2AI[1]/P2RD_

P2AI[0]/P2ALE_

Data
MXT3010 Reference Manual Version 4.1 151

The Port1 and Port2 Interfaces
1. Prepare for another DMA transfer (having detected
P2QRQ_ asserted)

2. Relinquish the bus by entering a tri-state condition

3. Perform some other type of bus operation

Having decided on the appropriate course of action, the external
control logic conditions ASEL_ and TRDY_ at the beginning of
the Clean Up state so that the Port2 state machine will enter the
desired state after the Clean Up state.

In this example, a non-burst read transfer is performed. During
the Clean Up state, both ASEL_ and TRDY_ are low, and line 2
of the state table indicates that the next state is Address 1 (AD1).
During Address 1, the ASEL_ lead is driven high, and line 3 of
the state table indicates that the next state is Address 2 (AD2).

In the Address 2 state, the ASEL_ lead is still high and the
TRDY_ lead is still low. Line 4 of the state table indicates that
the next state is Address Hold (ADH). At this time, the P2AI[0]
output, functioning as Address Latch Enable (ALE_) transitions
from high to low, performing the address latching function char-
acteristic of asynchronous, multiplexed busses.

During Address 1, Address 2, and Address Hold, the
P2AD[15:0] leads carried the lowest order 16 bits of the desired
address. P2AI[3:2]carried bits A[17:16] during the three address
states and also carry those bits throughout the DMA transfer.
Thus, they can used as chip selects if desired. P2AI[1] creates an
inverted version of P2RD (P2RD_) to provide a glueless inter-
face on the P2 bus.

During the Address Hold state, the ASEL_ lead is still high and
the TRDY_ lead is still low, and line 5 of the state table indicates
that the next state is Data Wait. As indicated by lines 6 and 7 of
the state table, the Data Wait condition persists until the wait
152 Version 4.1 MXT3010 Reference Manual

Port Operations
timer (set by rsa[10:08]) expires. Expiration of the wait timer
asserts LTN, and line 7 of the state table indicates the next state
is Last Transfer (LTX).

As with all of the other DMA transfer types discussed, Last
Transfer is followed by Clean Up; during Last Transfer the
external arbiter selects conditions for ASEL_ and TRDY_ that
determine the bus activity after the Clean Up state. In Figure 58,
ASEL_ is low and TRDY_ is high during the Clean Up state,
and line 1 of the state table indicates the next state is Tri-state.

It is also possible that ASEL_ could be retained high and
TRDY_ could be retained low. In that case, the bus would enter
an Idle state during which the data leads would be tri-state, but
the control leads would still be in their previous state.
MXT3010 Reference Manual Version 4.1 153

The Port1 and Port2 Interfaces
Port2 DMA non-burst-mode write transfers

Table 37shows the state table for Port2 DMA burst-mode write
transfers and Figure 60 shows a sequence diagram for a Port2
DMA burst-mode read transfer.

TABLE 37. State table for the Port2 DMA non-burst-mode write state machine

Ta
bl

e
L

in
e

Input
Signals

Current State Next State

Outputs in the Next State

A
SE

L
_

T
R

D
Y

_

L
T

N
a

a. For non-burst-mode operation, the LTN (Last Transfer Next) signal is asserted when the pro-
grammable wait-timer expires. See “#waits [2:0]” in Table 31, “Port2 non-burst DMA
instruction bit mapping,” on page 139.

P
2A

D

IR
D

Y
_

P
2A

I[
3:

2]

P
2R

D
_

P
2A

L
E

_

E
N

D
_

1 L H X Any Tri-state (current_state)Tri-state

2 L L X Any Address1 Out-Addr H Vb

b. The P2AI[3:2] outputs have valid (V) address information on them throughout all states
marked “V”. These outputs can be decoded to form four chip selects if desired.

H H H

3 H L X Address1 Address2 Out-Addr L V H H H

4 H L X Address2 Address Hold Out-Addr L V H L H

5 H L X Address Hold Data Wait Out-Data L V H L H

6 H L L Data Wait Data Wait Out-Data L V H L H

7 H L H Data Wait Last Transfer Out-Data L V H L L

8 H L X Last Transfer Clean Up Out-X H V H L H

9 H L X Clean Up Idlec

c. The Idle state will be maintained indefinitely if there is no RQ_ assertion.

Tri-state H V H L H

10 H H X Data Wait Data Wait Out-Data H X X X H
154 Version 4.1 MXT3010 Reference Manual

Port Operations
A sequence diagram for a DMA non-burst-mode read transfer
using Table 37 is shown in Figure 59.

FIGURE 59.Port2 DMA non-burst-mode Write transfer.

Note:During a Port2 Non-Burst DMA Write, the MXT3010EP places data
on the P2AD leads for at least one clock cycle. The Port2 DMA
Write command can specify, via bits [10:8] of the rsa register, the
number of additional cycles (wait states) during which the
MXT3010 holds the data on the bus. In the example shown above, 5
wait states have been inserted in addition to the minimum data asser-
tion period of one clock cycle.

The sequence of states shown in Figure 59 is exactly the same
as that shown in Figure 58, except that this is a write. The same
description applies, substituting writes for reads as necessary.

CLK

P2END_

P2TRDY_

P2ASEL_

P2RQ_

P2QBRST

P2RD

 --- 2 3 4 5 6 6 6 6 7 9 1 1

P2QRQ_

P2IRDY_

P2ADin[15:0]

QRQ_ reasserts if another DMA enters port queue

P2ADout[15:0]

Next state is determined by table line #

LTN (Internal)

State LTX CU AD1 AD2 ADH WDW WDW WDW WDW WDW LTX CU TRI

If read

If write If write

P2AI[3:2] If read ADR[17:16]

ADR[15:0]

Write Data (See Note)

P2AI[1]/P2RD_

P2AI[0]/P2ALE_
MXT3010 Reference Manual Version 4.1 155

The Port1 and Port2 Interfaces
Additional Port1 and Port2 Design Information

Arbitrating access to Port1

System configurations utilizing the MXT3010 often have a Host
processor installed on Port1. This allows the Host processor to
access the MXT3010 Communication I/O registers and to
access the SRAM. For example, consider the system shown in
Figure 60.

FIGURE 60.System example for Port1 bus.

The functions of the Bus Controller are as follows:

1. In response to P1QRQ_ and P1RQ_,grant the MXT3010
access to the Memory, manipulating P1ASEL_ and
P1TRDY_ to step the MXT3010 through read (P1RD high)
or write (P1RD low) DMA transfers as described in Figure
45 and Figure 47 respectively.

2. In response to bus request signals from the Host, grant the
Host access to the Memory or to the MXT3010 Communi-
cations I/O register, performing a read or write transfer as
requested by the Host.

MXT3010 Memory

Host

Bus
Controller

Port1
156 Version 4.1 MXT3010 Reference Manual

Additional Port1 and Port2 Design Information
3. An existing DMA transfer should not be interrupted. The
maximum MXT3010/Memory transfer is 255 bytes (64 bus
data cycles). It is recommended that the maximum Host/
Memory transfer also be 64 bus data cycles.

4. The Bus Controller may also include a Port1 to PCI bus
adapter if desired. Also, the Bus Controller may also
include Memory interface logic.

Simplified Port2 interfaces

When the MXT3010 is the only Port2 master, no arbitration
function is required. The following simplified interfaces can be
implemented:

A single master
burst-mode
interface

Logic to manipulate P2ASEL_ and P2TRDY_ can be built into
the slave device attached to Port2. In this configuration,
P2TRDY_ may be tied low if generation of Data Wait states is
not required. When there is no bus activity, P2ASEL_ should
also be held low. Once the slave device samples RQ_ as low, it
samples the DMA address from P2AD and P2AI and drives
P2ASEL_ high on the same or any subsequent clock edge.

Once P2 ASEL_ is high, the subsequent cycles follow the Table
34 or Table 35 sequences as determined by the state of RD (read/
write). As with multi-master bus configurations, P2END_ low
delineates the last halfword transfer. P2ASEL_ should be driven
low when P2END_ is sampled low. P2ASEL_ must be held low
until the next DMA.

A non-burst-only
interface

P2ASEL_ can be tied high and P2TRDY_ can be tied low. Once
RQ_ is low, the state machine begins operation and the slave
device receives the DMA address from P2AD and P2AI. The
slave device samples the address on the falling edge of P2AI[0]/
P2ALE_. Subsequent bus cycles follow the Table 36 or Table 37
sequences as determined by the state of RD (read/write).
MXT3010 Reference Manual Version 4.1 157

The Port1 and Port2 Interfaces

t1
Bus driving, turnaround, and bus parking

The port interfaces can operate in a shared bus environment. In
such an environment, the following port interface signals are
shared between all devices on their respective busses:

To prevent bus contention on shared port interface signals, port
interface controllers should create a tri-state cycle between the
times the MXT3010EP and another device drive the bus. In
addition, to prevent the bus from floating indefinitely, port inter-
face controllers must ensure the bus is driven when there is no
device performing transfers on the bus. This can be done, for
example, by placing the MXT3010EP into address mode. The
MXT3010 enters address mode on the rising edge of clock when
ASEL_ is low, TRDY_ is low, and (for Port1) COMMSEL is
low.

Speeding up
transfers

Many of the timing diagrams for Port1 and Port2 interfaces
show PxASEL_ switching one clock period after PxRQ_ is
asserted to select the data phase. If the MXT3010 is being used
in a system that does not need to tri-state the bus, PxASEL_ can
be negated at the same time PxRQ_ is asserted if PxTRDY_ is
asserted (bus parked). This speeds up Port cycles by one clock
period. This process is described in more detail in “Port2 bus
parking” on page 158.

Port2 bus parking While the following text describes bus parking on Port2, Por
bus parking operates similarly.

Port 1 Port 2

P1AD[31:0] P2AD[15:0]

P1END_ P2END_

P1RD P2RD

P1IRDY_ P2IRDY_

P1HWE[1:0]
158 Version 4.1 MXT3010 Reference Manual

Additional Port1 and Port2 Design Information
When the MXT3010 is the only Port2 Master, the device may be
parked on the bus. Parking minimizes bus handshaking over-
head. While the MXT3010 is parked, it actively drives the
P2AD pins.

In a bus parking configuration, P2TRDY_ may be tied low.
During periods of no bus activity, P2ASEL_ should also be held
low. Once the P2 Slave device samples P2RQ_ low, it samples
the DMA address from P2AD and P2AI and drives P2ASEL_
high on the same or any subsequent clock edge.

Once ASEL_ is deasserted, the MXT3010 drives valid data on
subsequent cycles. As with non-parked bus configurations,
P2END_ low delineates the last halfword transfer. P2ASEL_
should be driven low when P2END_ is sampled low. P2ASEL_

Data Alignment

The MXT3010 can begin Port1 reads on odd byte boundaries
and can begin Port1 writes on odd halfword boundaries. The
reads always appear (on the bus) to be word reads where the
internal Port1 hardware shifts the data appropriately for the byte
address. Although A1 and A0 represent the byte address, they
can be, and usually are, ignored by external hardware. On
writes, the P1HWE1 and P1HWE0 signals determine which half
of the word is being written on 32-bit boundaries, halfword
enabled. The MXT3010 takes care of any shifting/swapping.

DMA transfers in burst mode cause one or more data cycles on
the bus. Each cycle can transfer four bytes (Port1) or two bytes
(Port2). On reads, the MXT3010 can start at an odd byte (or in
the case of Port1, an odd halfword) where it internally deter-
mines which bytes are important and performs lane switching
(shifting). On writes, the MXT3010 can only write on halfword
boundaries and an even number of bytes due to the halfword-ori-
ented write enables. The last byte written for an odd byte trans-
MXT3010 Reference Manual Version 4.1 159

The Port1 and Port2 Interfaces
fer may be ignored if the transfer desired an odd byte size, but
the last byte transfer will be written. Thus, the number of data
cycles for four bytes may be one or two bus data cycles depend-
ing on the byte alignment.
160 Version 4.1 MXT3010 Reference Manual

Transfer complete

ycle
Transfer complete

A DMA transfer can conclude for either of two reasons:

• The byte count (BC/#) has reached zero

• The P1ABORT_ signal has been asserted (Port1 only)

Byte Count zero

Standard end
timing

For both Port1 and Port2, END_ is asserted during the data c
that presents the final data on the bus. The DMA cycle con-
cludes with a “cleanup” cycle.

FIGURE 61.DMA Read transfer with standard END_ signal

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 14 2 4 7 9 9 9 9 10 14 1 1

P1QRQ_

P1IRDY_

P1ADin[31:0]

ADR

D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P1ADout[31:0]

1111 11P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU AD1 ATA RD RD RD RD RD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write

D2 D3

11
MXT3010 Reference Manual Version 4.1 161

The Port1 and Port2 Interfaces

rly
Early end option Mode bits (bit 6 and bit 7) in the Mode Configuration register
(R42) enable an early end option for each port. When enabled,
the End signal asserts concurrent with the request for the next-
to-last data cycle. External circuitry must qualify this signal with
the appropriate control signals (ASEL_ and TRDY_) to deter-
mine that a data cycle is present on the bus. This ensures that the
external controller recognizes the actual end condition and not
that the current clock cycle is a wait state.

FIGURE 62.DMA Read transfer with Early END

Note: External logic must ensure that ASEL_ is high and TRDY_ is low
when END_ is asserted (low). If TRDY_ is high (shown by dashed
lines), a Wait state is indicated and the last data cycle of the DMA
transfer cycle is extended beyond the length indicated. For normal end
conditions this is unimportant, but if a design is relying upon an “ea
end”, this condition is important.

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 14 2 4 7 9 9 9 9* 10 14 1 1

P1QRQ_

P1IRDY_

P1ADin[31:0]

ADR

D0 D1 D4

QRQ_ reasserts if another DMA enters queue

P1ADout[31:0]

1111 11P1HWE[1:0] 10 or 11

Next state is determined by table line #

LTN (Internal)

State LTX CU AD1 ATA RD RD RD RD RD LTX CU TRI

D5

01 or 1101 or 11

If read

If write If write

D2 D3

11

Note

*While line 9 of the state table indicates the END_ output is high in the next state, enabling the Early End option
 allows the LTN signal to assert P1END_ immediately.
162 Version 4.1 MXT3010 Reference Manual

Transfer complete
External DMA cycle abort (P1ABORT_)

The MXT3010 has an input signal (P1ABORT_) that permits an
external device to indicate an early termination of a DMA read
operation from Port1 memory. During a DMA Read operation
on Port1, assertion of the P1ABORT_ signal terminates the read
with the data in the following cycle. For example, asserting
P1ABORT_ during the fifth data phase of a DMA burst termi-
nates the operation after the sixth data phase has completed. The
action of P1ABORT_ is similar to that of the internal signal
LTN, except that when a transfer is terminated by P1ABORT_,
no P1END_ assertion occurs.

FIGURE 63.DMA Read transfer terminated by P1ABORT_

During a DMA Write operation on Port1, assertion of the
P1ABORT_ signal terminates the write of the data in the follow-
ing cycle.

CLK

P1END_

P1TRDY_

P1ASEL_

P1RQ_

COMMSEL

P1RD

 14 2 4 7 9 9 9 9 10* 14* 1 1

P1QRQ_

P1IRDY_

P1ADin[31:0]

ADR

D4

QRQ_ reasserts if another DMA enters queue

P1ADout[31:0]

1111 11P1HWE[1:0] 10 or 11

Next state is determined by table line #

P1ABORT_

State LTX CU AD1 ATA RD RD RD RD RD LTX* CU TRI

D5

01 or 1101 or 11

If read

If write If write

D2 D3

11

*The state table does not show the effects of P1ABORT_. The effects are equivalent to LTN, which is shown in the
 state table (with the line numbers cited here), with the exception that no END_ assertion occurs.

D0 D1
MXT3010 Reference Manual Version 4.1 163

The Port1 and Port2 Interfaces

d

g
d
rob-
ess-

 38.
Endian-ness

Within modern computer systems, there are two ways of
addressing a multi-byte data value such as (hex) ABCD:

FIGURE 64.Most Significant Byte is the Lowest Address (“Big-endian”)

FIGURE 65. Least Significant Byte is the Lowest Address (“Little-
endian”)

The mapping in Figure 64 stores the most significant byte in the
lowest numeric byte address. The mapping in Figure 65 stores
the least significant byte in the lowest numeric byte address;
These methods are commonly referred to as “big-endian” an
“little-endian” respectively.

If a processor that uses big-endian or little-endian addressin
accesses the data shown Figure 64 and Figure 65 on a wor
basis, the entire 32-bit quantity ABCD is accessed, and no p
lems result. However, processsors that use big-endian addr
ing receive different results than those using little-endian
addressing when making word or byte accesses. See Table

Data: A B C D

Address: 0 1 2 3

Data: A B C D

Address: 3 2 1 0
164 Version 4.1 MXT3010 Reference Manual

Endian-ness
TABLE 38. Comparison of Big-endian and Little-endian Read
Operations

A convenient method of dealing with this problem is to use the
swapping instructions available in little-endian processors in
combination with a hardware byte-swapper. A byte-swapper,
implemented in hardware, in shown in Figure 66.

FIGURE 66.Hardware Byte-swapping Circuit

Figure 67 shows what happens when the hardware byte-swapper
is used in conjunction with a software instruction that swaps the
bytes on a word basis within the little-endian processor.

Access Big-Endian Result Little-Endian Result

32-bit ABCD ABCD

16-bit xxx0 AB CD

16-bit xxx2 CD AB

byte xxx0 A D

byte xxx1 B C

byte xxx2 C B

byte xxx3 D A

Big-endian processor

A B C D

0

ABCD
0

Little-endian processor

Hardware

1 2 3

3 2 1
MXT3010 Reference Manual Version 4.1 165

The Port1 and Port2 Interfaces
FIGURE 67.Word Access

The combination of hardware and software shown in Figure 67
produces the same result as shown in Table 38 on page 165, the
first line of which (in an expanded form) is reproduced in Table
39.

TABLE 39. Accesses With Hardware and Software Swaps, 32-bit

At first glance, this appears to be a waste of hardware and soft-
ware. However, the results for halfword (16-bit) and byte (8-bit)
operations are more interesting.

Big-endian processor

A B C D

0

ABCD
0

Little-endian processor

Hardware

C D

0

Software

1 2 3

3 2 1

123
BA

Access
Big-Endian
Result

Little-Endian
Result

Result after H/W-S/W
Swaps

32-bit ABCD ABCD ABCD
166 Version 4.1 MXT3010 Reference Manual

Endian-ness
FIGURE 68.16-bit xxx0 Access

FIGURE 69. 16-bit xxx2 Access

The combinations of hardware and software shown in Figures
68 and 69 produce Table 40.

Big-endian processor

A B C D

0

ABCD
0

Little-endian processor

Hardware

A B

0

Software

1 2 3

3 2 1

123

Big-endian processor

A B C D

0

ABCD
0

Little-endian processor

Hardware

C D

0

Software

1 2 3

3 2 1

123
MXT3010 Reference Manual Version 4.1 167

The Port1 and Port2 Interfaces
TABLE 40. Accesses With Hardware and Software Swaps, 32-bit and 16-bit

FIGURE 70.Byte Access

The combination of hardware and software shown in Figure 70
produces Table 41.

TABLE 41. Accesses With Hardware and Software Swaps, 32-bit, 16-bit, and 8-bit

As indicated in Table 41, the combination of the hardware byte-
swapper and byte swapping instructions within the little-endian
processor allow the little-endian processor to access information
in the big-endian system and receive consistent results.

Access Big-Endian Result
Little-Endian Result
Per Table 38 Result after H/W-S/W Swaps

32-bit ABCD ABCD ABCD

16-bit xxx0 AB CD AB

16-bit xxx2 CD AB CD

Big-endian processor

A B C D

0

ABCD
0

Little-endian processor

Hardware

1 2 3

3 2 1

Access Big-Endian Result
Little-Endian Result
(Per Table 38) Result after H/W-S/W Swaps

32-bit ABCD ABCD ABCD

16-bit xxx0 AB CD AB

16-bit xxx2 CD AB CD

byte xxx0 A D A

byte xxx1 B C B

byte xxx2 C B C

byte xxx3 D A D
168 Version 4.1 MXT3010 Reference Manual

Port1 and Port2 Reference Designs

or

ler
,

on-
-
g

6
to
tes

ot
See “Endian Implementation in P1MemMaker” on page 171
and “Endian Implementation in P2MemMaker” on page 174 f
examples of endian treatment in reference designs.

Port1 and Port2 Reference Designs

P1MemMaker

The MXT3010EP Port1 interface requires a memory control
function to support bus arbitration, bus selection, bus driving
bus turnaround, and bus holding operations. In Maker’s
MXT3025 evaluation Board and similar designs, Maker uses
P1MemMaker, a device that is a integrated memory system c
troller, integrated PCI interface, COMMIN/COMMOUT Regis
ter, and MXT3010EP Port1 interface. It performs the followin
functions:

• Memory System Controller

The Memory System Controller (MSC) provides the bus
arbitration and selection functions for the PCI or Port1
access for tranfers to shared memory. It controls up to 4
Mbytes of shared DRAM. The typical memory system is
organized as 1Mx32 and implemented with two (2) 1Mx1
EDO DRAMs. The memory system is usually mapped in
the PCI memory space and mapped into the lower 4 Mby
of the MXT3010EP Port1 address space. The MSC sup-
ports full speed burst transfers of up to 256 bytes to the
memory system, but transfers must not cross 4-Kbyte
boundaries. Also, the MSC controls the resetting and bo
loading of the MXT3010EP through a 128 Kbyte boot
PROM.
MXT3010 Reference Manual Version 4.1 169

The Port1 and Port2 Interfaces

, a

n

-
I
ia

-

the
ro-
• PCI Interface

The PCI bus interface is a 32-bit, 33 Mhz PCI Version 2.1
implementation supporting the PCI configuration registers
slave-only interface, and no support for initiating transfers
from the host processor to shared memory or the
MXT3010EP device.

• COMMIN/COMMOUT Register

The P1MemMaker also controls communications betwee
the MXT3010EP COMMIN/COMMOUT register and the
PCI host. The CINBUSY, COUTRDY, and COMMSEL sig
nals are connected to the P1MemMaker. Typically the PC
host communicates to code running in the MXT3010EP v
commands passed through the MXT3010EP’s COMMIN
register. The code running in the MXT3010EP communi-
cates to the PCI host via commands passed through the
MXT3010EP’s COMMOUT register, writing to command
responses and to indication queues. The COMMIN/COM
MOUT register (32-bits) thus provides the two-way com-
munications. Details of CINBUSY and COUTRDY
operation are provided in Chapter 8 of the MXT3010 Refer-
ence Manual.

• MXT3010EP Port1 interface

The Port1 Controller is a 32-bit multiplexed address and
data bus operating at 50 Mhz supporting MXT3010EP
accesses to shared memory.

Maker’s P1MemMaker reference design is available through
WEB under the "Hardware Development Tools" page and p
vides the following verilog files:

• arbiter.v

This module defines the memory arbiter.
170 Version 4.1 MXT3010 Reference Manual

Port1 and Port2 Reference Designs

R.

to
.
n
nd
• dp.v

This module defines the data paths.

• dram_cntrl.v

This module defines the DRAM controller.

• p1orca.v

This module defines the top level of P1MemMaker

• p1ctrl.v

This module defines the Port 1 A/B controller.

• pci_be.v

This module defines the PCI back end controller with CS

Endian
Implementation in
P1MemMaker

Several Maker products utilize the Port1 MemMaker FPGA
allow the MXT3010 and a PCI bus to share a Port1 memory
Within Port1 MemMaker, the address and data information o
the time-multiplexed Port1 and PCI busses are registered, a
the data leads are transposed as shown in Figure 72. No lead
transpositions are performed on the address information.

FIGURE 71.The Port1 MemMaker FPGA

D C B A

P1
MemMaker

A

 B

 C

 D

A B C D

Host (Little-endian)

MXT3010 (Big-endian)

PCI Bus

Port1 Bus

Shared Memory
(Big-endian)
MXT3010 Reference Manual Version 4.1 171

The Port1 and Port2 Interfaces

on-
 It

m
ed
FIGURE 72.Data Path Connections - Shared Memory to PCI

FIGURE 73.Data Path Connections - Shared Memory to MXT3010

P2MemMaker

The MXT3010EP Port2 interface requires a memory controller
function to support bus arbitration, bus selection, bus driving,
bus turnaround, and bus holding operations. In Maker’s
MXT3025 evaluation Board and similar designs, Maker uses
P2MemMaker, a device that is a integrated memory system c
troller, a PCI interface, and an MXT3010EP Port2 interface.
performs the following functions:

• Memory System Controller

The Memory System Controller (MSC) provides the bus
arbitration and selection functions for the PCI or Port2
access for tranfers to shared memory. It controls up to 2
Mbytes of shared SRAM. The typical memory system is
organized as two (2) 64kx16 SRAMs. The memory syste
is typically mapped into the PCI memory space and mapp

A B C D

ABCD

Port1 Shared Memory
(Big-endian)

PCI Bus
(Little-endian)

P1 MemMaker

0

0

31

31

A B C D

DCBA

Port1 Shared Memory
(Big-endian)

MXT3010 Port1 Pins
(Big-endian)

P1 MemMaker

P1AD[31] P1AD[0]

31 0
172 Version 4.1 MXT3010 Reference Manual

Port1 and Port2 Reference Designs

s,
rs

ta
es

the
ro-
into the lower 256Kbytes of the MXT3010EP Port2 address
space. The MSC supports full speed burst tranfers up to 256
bytes to the memory system, but transfers must not cross 4-
Kbyte boundaries. The MSC also controls transfers to the
non-burst memory space.

• PCI Interface

The PCI Bus interface is a 32-bit, 33 Mhz PCI Version 2.1
Implementation supporting the PCI configuration register
a slave only interface, and no support for initiating transfe
from the host processor to shared memory or the
MXT3010EP device.

• Port2 Interface

The Port2 Controller is a 16-bit multiplied Address and Da
bus operating at 50 Mhz supporting MXT3010EP access
to shared memory.

Maker’s P2MemMaker reference design is available through
WEB under the "Hardware Development Tools" page and p
vides the following verilog files:

• mem_cntrl.v

This module defines the SRAM controller.

• p2_arbiter.v

This module defines the memory arbiter.

• p2_dp.v

This module defines the data paths.

• p2_ORCA.v

• p2_pci_be.v

This module defines the PCI back end controller.

• p2ctrl.v
MXT3010 Reference Manual Version 4.1 173

The Port1 and Port2 Interfaces
This module defines the Port 2 Rx/Tx controller.

Endian
Implementation in
P2MemMaker

Several Maker products utilize the Port2 MemMaker FPGA to
allow the MXT3010 and a PCI bus to share a Port2 memory.
Within the Port2 MemMaker, the address and data information
on the time-multiplexed Port2 and PCI busses are registered,
and the data leads are transposed as shown in Figure 75. No lead
transpositions are performed on the address information.

FIGURE 74.The Port2 MemMaker FPGA

FIGURE 75.Data Path Connections - Shared Memory to PCI

B A

P2
MemMaker A

 B

A B

Host (Little-endian)

MXT3010 (Big-endian)

PCI Bus

Port2 Bus

Shared Memory
(Big-endian)

A B

AB

Port2 Shared Memory
(Big-endian)

PCI Bus
(Little-endian)

P2 MemMaker

31

31 0

0

174 Version 4.1 MXT3010 Reference Manual

Port1 and Port2 Reference Designs
FIGURE 76.Data Path Connections - Shared Memory to MXT3010

A B

BA

Port2 Shared Memory
(Big-endian)

MXT3010 Port2 Pins
(Big-endian)

P2 MemMaker

P2AD[15] P2AD[0]

31 0
MXT3010 Reference Manual Version 4.1 175

The Port1 and Port2 Interfaces
176 Version 4.1 MXT3010 Reference Manual

CHAPTER 8 Communications
Host/MXT3010 communications include the COMMIN/COM-
MOUT register and the eight pins the MXT3010 assigns for inter-
chip communications. This chapter describes the communications
functions of the COMMIN/COMMOUT register and inter-chip
signalling pins.

Data
Stream

Cell
Stream

Multi-purpose

DMA (Port2)

UTOPIA
Port

Cell Buffer RAM
High

Performance
DMA (Port

Data
Stream

Instruction Cache

SWANTM Processor

Fast Memory
Controller

Cell Scheduling
System

Control
Memory
SRAMInter-chip

Signalling
MXT3010 Reference Manual Version 4.1 177

Communications
The COMMIN/COMMOUT register
The MXT3010 device implements a two-way communications
channel with the host processor. The communication channel
consists of a 32-bit COMMIN/COMMOUT register imple-
mented as a set of two 16-bit registers, R40 [31:16] and R41
[15:0]. Accessing the COMMIN/COMMOUT register via
Port1, the host processor uses the register as a COMMIN regis-
ter to write information (commands/status/addresses) into the
device, and as a COMMOUT register to read information from
the device.

CIN_BUSY and
COUT_RDY

The MXT3010 device implements two output signals that allow
both the host and the SWAN processor to determine the state of
the COMMIN/COMMOUT register set. Definitions for these
signals are provided in Table 42, and timing for these signals is
shown in Figure 77 on page 180.

Register Function

COMMIN Host to MXT3010 communications

COMMOUT MXT3010 to host communications

TABLE 42. Definitions of CIN_BUSY and COUT_RDY

Signal Function

CIN_BUSY The CIN_BUSY signal is used for host to MXT3010
communications (R40/R41 used as COMMIN).

1 The host has written information into R40/R41
that has not yet been read by the SWAN processor.

0 The SWAN has read the information in R40.

COUT_RDY The COUT_RDY signal is used for MXT3010 to host
communications (R40/R41 used as COMMOUT).

1 The SWAN processor has written information into
R40 that has not yet been read by the host.

0 The host has read the information in R40/R41.
178 Version 4.1 MXT3010 Reference Manual

The COMMIN/COMMOUT register
As shown above, when the host processor writes to COMMIN
(R40/R41), CIN_BUSY is asserted until the SWAN processor
reads R40. Before writing the next word into the register R40/
R41, the host must be sure that the SWAN processor has pro-
cessed the previous word. The host does this by testing the state
of CIN_BUSY. The state of CIN_BUSY is accessible to the
SWAN as ESS6.

When the SWAN processor writes to COMMOUT _HIGH
(R40), the COUT_RDY output is asserted until the host reads
the COMMOUT register. The COUT_RDY output is accessible
to the SWAN processor as ESS7. Therefore, the SWAN can
check that the host has read COMMOUT by testing ESS7.

Restrictions on
CIN_BSY and
COUT_RDY

Since reads and writes to R40 affect the CIN_BUSY and
COUT_RDY signals, the SWAN program should read or write
R41 before reading or writing R40 when performing 32-bit
communication. No such restriction applies to the host, as it uses
32-bit transfers that access R40 and R41 simultaneously. Since
R40 controls the flags, COMMOUT_LOW (R41) can be used
during debugging to pass data without affecting the flags.

The CIN_BSY flag is cleared when a nullified instruction
accesses the COMMIN_HIGH register (R40). Therefore, do not
place an instruction that accesses COMMIN_HIGH in a slot that
may be nullified. For more information on the nullify operator,
see “The Nullify operator” on page 265.
MXT3010 Reference Manual Version 4.1 179

Communications
FIGURE 77.Timing of CIN_BUSY and COUT_RDY

Interchip communications

Besides the COMMIN/COMMOUT register, the MXT3010
dedicates eight pins for interchip communication: four input
pins, ICSI_[D:A], and four output pins, ICSO_[D:A].

The ICSI pins The input pins are listed in Table 43.

The appearances of ICSI_A and ICSI_B in the ESS register are
synchronized to the MXT3010 input clock, but are not latched.

STATE

CLK

P1TRDY_

P1AD[31:0]

P1ASEL_

P1RQ_

COMMSEL

P1RD

DMA transfer COMMIN Write COMMOUT Read

OUT OUTIN

DMA LAST DATA DATA

RQ_asserts if a DMA command enters the port active stage

 Idle CIW CIS Idle CO1 CO2 CODV Idle
CIW = Comm In Write; CIS = Comm In Data Strobe; C01,2 = Comm Out Read1,2; CODV = Comm Out Data Valid

COUTRDY

CIN_BUSY

TABLE 43. ICSI pins

Pin I/O Connected to

ICSI_A Input Sparse Event/ICS register (R57) bit 12 (read)
External State Signals (ESS) register (R42) bit 0

ICSI_B Input Sparse Event/ICS register (R57) bit 13 (read)
External State Signals (ESS) register (R42) bit 1

ICSI_C Input Sparse Event/ICS register (R57) bit 14 (read)

ICSI_D Input Sparse Event/ICS register (R57) bit 15 (read)
180 Version 4.1 MXT3010 Reference Manual

Interchip communications

e
gis-
In contrast, the appearances of these bits in the Sparse Events/
ICS register (R57) include both a masking feature and latching.

The appearances of ICSI[D:A] in the Sparse Events/ICS register
(R57) are enabled by masking conditions in the System register
(R63). If enabled, each input is sampled by the clock. If the sig-
nal is asserted for two successive clock cycles, this condition is
latched until cleared by the SWAN processor.

The ICSO pins The output pins are listed in Table 44.

The output pins are sourced from four Sparse Event/ICS register
(R57) outputs. The SWAN processor can change the state of any
one of the output pins by changing the state of the Sparse Event
register output bit associated with the pin.

Enabling the
ICSO pins

The SWAN processor reads configuration information from
ICSO_(D:A) during reset. To ensure that the SWAN processor
does not drive these pins at reset, the pins are reset in input
mode. The SWAN processor senses configuration information
from them as it exits reset. To use these pins as outputs, the soft-
ware must enable these pins by setting the EN bit in the System
register (R63).

For more information on the Sparse Event/ICS register, see
“R57-read Sparse Event/ICS register” on page 213. For mor
information on the System register, see “R63 The System re
ter” on page 221.

TABLE 44. ICSO pins

Pin I/O Connected to

ICSO_A Output Sparse Event/ICS register (R57) bit 12 (set/clear)

ICSO_B Output Sparse Event/ICS register (R57) bit 13 (set/clear)

ICSO_C Output Sparse Event/ICS register (R57) bit 14 (set/clear)

ICSO_D Output Sparse Event/ICS register (R57) bit 15 (set/clear)
MXT3010 Reference Manual Version 4.1 181

Communications
182 Version 4.1 MXT3010 Reference Manual

Section 2 Register and
Instruction
Reference

p,
This section includes register descriptions and the SWAN instruc-
tion set.

Registers

The register descriptions are organized by location, starting with
the register file in locations R(31:0) and continuing with registers
R32 through R63. A table is provided that includes the register
location, name, size, and whether it’s a read or write register.

Each register description includes the register location, bit ma
description, reset value, bit definitions, and notes.

Table 45 lists the registers.
MXT3010 Reference Manual Version 4.1 183

TABLE 45. Hardware registers

Location Name Read/Write

R32 General Purpose - 0000 R/W

R33 General Purpose - FFFF R/W

R34 General Purpose - FF00 R/W

R35 General Purpose - 0040 R/W

R36-Write The Bit Bucket W

R37 General Purpose R/W

R38 General Purpose R/W

R39 General Purpose R/W

R40 COMMOUT/COMMIN(31:16) R/W

R41 COMMOUT/COMMIN(15:0) R/W

R42-Read ESS register R

R42-Write Mode Configuration register Set/Clear

R43-Read Fast Memory Bit Swap register R

R43-Write UTOPIA TX Control FIFO register W

R44 CRC32PRX (15:0) R/W

R45 CRC32PRX (31:16) R/W

R46 CRC32PRY (15:0) R/W

R47 CRC32PRY (31:16) R/W

R48 rla Address register R/W

R49 rla Address register R/W

R50 rla Address register R/W

R51 rla Address register R/W

R52 Alternate Byte Count /ID register R/W

R53 Instruction Base Address register R/W

R54 Programmable Interval Timer (PIT0) R/W

R55 Programmable Interval Timer (PIT1) R/W

R56 The Fast Memory Data register R/W

R57-Read Sparse Event/ICS register R

R57-Write Sparse Event/ICS register Set/Clear

R58 Fast Memory Shadow register R/W

R59 Branch register R/W

R60 CSS Configuration register R/W

R61-Read Scheduled Address register R

R62 UTOPIA Configuration register R/W

R63 System register R/W
184 Version 4.1 MXT3010 Reference Manual

Instructions

at,
Instructions

The SWAN instruction set is organized functionally. The
instructions are described in alphabetical order within each
functional area. Also included in this section is a list of the
functional groups and an alphabetical list of the instructions.

The specific instruction reference includes the instruction’s full
name, mnemonic, the layout of the 32-bit instruction word, form
purpose, description, fields, restrictions and any information
specific to a functional area.

The functional groups of the instructions are:

• ALU instructions

• Branch instructions

• Cell Scheduling instructions

• DMA instructions

• Load and Store internal RAM and Fast Memory instructions

Table 46 lists the instructions alphabetically.
MXT3010 Reference Manual Version 4.1 185

TABLE 46. Alphabetical list of instructions

Instruction
Mnemonic Instruction Functional Group Page

ADD Add Registers ALU 234

ADDI Add Register and Immediate ALU 235

AND And Registers ALU 236

ANDI And Register and Immediate ALU 237

BF Branch Fast Memory First Word
Shadow Register

Branch 270

BFL Branch Fast Memory First Word
Shadow Register and Link

Branch 271

BI Branch Immediate Branch 272

BIL Branch Immediate and Link Branch 273

BR Branch Register Branch 274

BRL Branch Register and Link Branch 275

CMP Compare two Registers ALU 238

CMPI Compare Register and Immediate ALU 239

CMPP Compare two Registers with Previ-
ous

ALU 240

CMPPI Compare Register and Immediate
with Previous

ALU 241

DMA1R,
DMA1W,
DMA2R,
DMA2W

DMA Operations DMA 289,
290,
291,
292

FLS Find Last Set ALU 242

LIMD Load Immediate ALU 243

LD Load Register Load and Store
Internal RAM

321

LDD Load Double Register Load and Store
Internal RAM

322

LMFM Load Multiple from Fast Memory Load and Store Fast
Memory

308

MAX Maximum of two Registers ALU 244

MAXI Maximum of Register and Immedi-
ate

ALU 245

MIN Minimum of two Registers ALU 246
186 Version 4.1 MXT3010 Reference Manual

Instructions
Instruction
Mnemonic Instruction Functional Group Page

MINI Minimum of Register and Immedi-
ate

ALU 247

OR Or Registers ALU 248

ORI Or Register and Immediate ALU 249

POPC Service Schedule Cell Scheduling 278

PUSHC Schedule Cell Scheduling 280

SFT Shift Right or Left based on Signed
Shift Amount

ALU 250

SFTA Shift Right Arithmetic ALU 251

SFTAI Shift Right Arithmetic Immediate ALU 252

SFTC Shift Right Circular ALU 253

SFTCI Shift Circular Immediate ALU 254

SFTRI/
SFTLI

Shift Right or Left Immediate ALU 255

SHFM Store Halfword to Fast Memory Load and Store Fast
Memory Instructions

311

SRH Store Register Halfword Load and Store Fast
Memory Instructions

312

ST Store Register Load and Store
Internal RAM

323

STD Store Double Register Load and Store
Internal RAM

324

SUB Subtract Registers ALU 256

SUBI Subtract Register and Immediate ALU 257

XOR Exclusive-or Registers ALU 258

XORI Exclusive-or Register and Immedi-
ate

ALU 259
MXT3010 Reference Manual Version 4.1 187

Instruction description notations

The following table lists the abbreviations used in the SWAN
processor, describes them briefly, and indicates the functional
instruction group(s) within which that abbreviation is used.

TABLE 47. Abbreviations used in SWAN instructions

Abbreviation Description Usage

rsa Source register, software or hardware ALU, DMA

rsb Source register, software ALU, DMA

rd Destination register, software or hardware ALU, Load/
Store

abc ALU branch condition IFOa

a. IFO = Instruction Field Option

ALU

UM Automatic update memory IFO ALU

MODx Modulo arithmetic IFO ALU

AE Always execute IFO ALU

usi Unsigned immediate value ALU

si Sign-extended 10-bit immediate value ALU

usa Unsigned shift amount ALU

tcsa Two’s-complement shift amount ALU

li Long immediate value ALU

ESS# External State Signals register bit position Branch

s State of ESS bit for comparison Branch

C Conditional execution operator Branch

cso Counter system operation IFO Branch

wadr Target word address Branch

rla Load address register Load/Store

IDX/# Load address index Load/Store

LNK Linking IFO Load/Store

#HW Halfword count Load/Store

BC/# Byte count DMA

CRCX,
CRCY

CRC generation control DMA

POD DMA post-operation directive DMA
188 Version 4.1 MXT3010 Reference Manual

CHAPTER 9 Registers
This chapter describes the registers associated with the SWAN
processor.

Register types

The two types of registers in the SWAN processor are general-
purpose and control/status. The general-purpose registers are
classified as software registers because their usage and content is
firmware dependent. The registers that control functions and pro-
vide status information are classified as hardware registers.

Software registers

The SWAN processor has 32 general-purpose software registers,
R0-R31, each 16-bits wide. The software registers have no man-
datory implicit hardware or software usage conventions. How-
ever, restrictions apply when software registers are used with the
Load Multiple Fast Memory (LMFM) instruction. The specified
MXT3010 Reference Manual Version 4.1 189

Registers

c-

gis-
ra-

ify
ia-
r as
ter.
register is restricted based on the use of the Link instruction field
option and the length of the transfer. For further information, see
“General information for Load and Store Fast Memory instru
tions” on page 294.

Hardware registers

The SWAN processor has 32 control and status hardware re
ters, R32-R63. In certain cases the MXT3010 mode configu
tion affects the register function. For more information on
modes, see “R42-write Mode Configuration register” on
page 201.

Specifying registers in SWAN instructions

Most of the SWAN instructions include register read or write
operations. In those instructions, fields are provided to spec
which registers are used. The fields are identified by abbrev
tions that indicate whether the register is used as a source o
a destination, and whether any restrictions apply to that regis
The following table lists the field abbreviations used, their
descriptions, and the permitted registers for that field.

TABLE 48. Field abbreviations

Abbrev
iation Description

Permitted
Registers

Instruction
Type

rsa Source register, software or
hardware

R0-R63 ALU, DMA

rsb Source register, software R0-R31 ALU, DMA

rd Destination register, software
or hardware

R0-R63 ALU, Load/
Store

rla Load address register R48-R51
GA, GB, GC, GD

Load/Store
190 Version 4.1 MXT3010 Reference Manual

Register types
Initializing software and hardware registers

The software registers R0-R31 are unchanged by device initial-
ization and therefore are indeterminate at power up. Initializa-
tion software should clear these registers before use. The
hardware register descriptions (R32-R63) indicate which regis-
ters are unchanged by device initialization and which are initial-
ized to specific values.

TABLE 49. Hardware registers

Location Name Read/Write

R32 General Purpose - 0000 R/W

R33 General Purpose - FFFF R/W

R34 General Purpose - FF00 R/W

R35 General Purpose - 0040 R/W

R36-write The Bit Bucket W

R37 General Purpose R/W

R38 General Purpose R/W

R39 General Purpose R/W

R40 COMMOUT/COMMIN(31:16) R/W

R41 COMMOUT/COMMIN(15:0) R/W

R42-read ESS register R

R42-write Mode Configuration register Set/Clear

R43-read Fast Memory Bit Swap register R

R43-write UTOPIA TX Control FIFO register W

R44 CRC32PRX (15:0) R/W

R45 CRC32PRX (31:16) R/W

R46 CRC32PRY (15:0) R/W

R47 CRC32PRY (31:16) R/W

R48 rla Address register R/W

R49 rla Address register R/W

R50 rla Address register R/W

R51 rla Address register R/W

R52 Alternate Byte Count /ID register R/W

R53 Instruction Base Address register R/W
MXT3010 Reference Manual Version 4.1 191

Registers
R54 Programmable Interval Timer (PIT0) R/W

R55 Programmable Interval Timer (PIT1) R/W

R56 The Fast Memory Data register R/W

R57-read Sparse Event/ICS register R

R57-write Sparse Event/ICS register Set/Clear

R58 Fast Memory Shadow register R/W

R59 Branch register R/W

R60 CSS Configuration register R/W

R61-read Scheduled Address register R

R62 UTOPIA Configuration register R/W

R63 System register R/W

TABLE 49. Hardware registers

Location Name Read/Write
192 Version 4.1 MXT3010 Reference Manual

R32 General Purpose - 0000

R
eg

is
te

rs

is
R32 General Purpose - 0000

Description: This is a general purpose read/write register that is initialized to
0x0000. This register is also used during HEC generation (see
“HEC generation and check circuit” on page 25.)

Reset value: 0x0000

Bit definitions: N/A

Note: Restrictions apply to the use of LD, LDD instructions with th
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General Purpose register
MXT3010 Reference Manual Version 4.1 193

Registers

is
R33 General Purpose - FFFF

Description: This is a general purpose read/write register that is initialized to
0xFFFF. This register is also used during HEC generation (see
“HEC generation and check circuit” on page 25.)

Reset value: 0xFFFF

Bit definitions: N/A

Note: Restrictions apply to the use of LD, LDD instructions with th
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General Purpose register
194 Version 4.1 MXT3010 Reference Manual

R34 General Purpose - FF00

R
eg

is
te

rs
R34 General Purpose - FF00

Description: This is a general purpose read/write register that is initialized to
FF00.

Reset value: 0xFF00

Bit definitions: N/A

Note: Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General Purpose register
MXT3010 Reference Manual Version 4.1 195

Registers
R35 General Purpose - 0040

Description: This is a general purpose read/write register that is initialized to
0040.

Reset value: 0x0040

Bit definitions: N/A

Note: Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General Purpose register
196 Version 4.1 MXT3010 Reference Manual

R36-write Bit Bucket register

R
eg

is
te

rs
R36-write Bit Bucket register

Description: The Bit Bucket register provides the SWAN processor with a
location that can be written without any possibility of functional
side effects. Information written to R36 is discarded. Thus, soft-
ware can specify R36 as a destination and discard the results of
any operation. R36 is used to emulate a no-op, as well as to
implement testing pseudo-ops, such as TSET and TCLR.

Reset value: N/A

Bit definitions: N/A

Notes: The Bit Bucket register should not be read or otherwise speci-
fied as a source register. Because of the special treatment of this
register location, a read operation can stall the SWAN processor
indefinitely.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Bucket register
MXT3010 Reference Manual Version 4.1 197

Registers
R37-R39 General Purpose registers

Description: Registers R37, R38, and R39 are 16-bit read/write general pur-
pose registers. They are unchanged by device initialization, and
therefore the contents are indeterminate at power-up.

Reset value: Indeterminate

Bit definitions: N/A

Note: Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General Purpose register
198 Version 4.1 MXT3010 Reference Manual

R40-R41 Host Communication registers

R
eg

is
te

rs
R40-R41 Host Communication registers

R40 COMMIN_HIGH/COMMOUT_HIGH

R41 COMMIN_LOW/COMMOUT_LOW

Description: The Host Communication registers provide a 32-bit data transfer
path between the SWAN processor and the external host proces-
sor. These registers, combined with their associated status flags
and pins, form a bi-directional command and response mecha-
nism for host communications.

Reset value: Indeterminate

Bit definitions: N/A

Notes: 1. When the SWAN processor reads location R40, CIN_BUSY
(ESS6) is cleared. When the SWAN processor writes location
R40, COUT_RDY (ESS7) is set. Since reads or writes to R40
affect the flags, the programmer should read or write R41 before
reading or writing R40 to perform 32-bit communications with a
host processor.

2. For more information on the Host Communications registers oper-
ation, see CHAPTER 8 "Communications" on page 177.

3. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMMIN/COMMOUT bits [31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMMIN/COMMOUT bits [15:0]
MXT3010 Reference Manual Version 4.1 199

Registers

8.

is

es
 that

a

-6

se
l

bit,
CSI
R42-read External State Signals (ESS) register

Description: The SWAN processor can examine the state of certain internal
conditions and pins by examining the External State Signals reg-
ister.

Reset value: See “Initializing the Mode Configuration register” on page 40

Bit definitions:

Note: Restrictions apply to the use of LD, LDD instructions with th
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

See “Bit Definitions” below

Bit Read Definition Bit Read Definition

15 Unconditional brancha

a. ESS15 is hardwired to the asserted state. If a Branch instruction do
not contain a specified value for the ESS field, the assembler codes
field as 1111, and an unconditional branch is taken.

7 COUT_RDYb

b. After the SWAN processor writes the COMMOUT register, there is
5-6 instruction delay before the COUT_RDY bit is set.

14 DMA2 queue stage busy 6 CIN_BUSYc

c. After the SWAN processor reads the COMMIN register, there is a 5
instruction delay before the CIN_BUSY bit is cleared.

13 DMA1 queue stage busy 5 CSS operation in progress

12 DMA2 out or queue stage busy 4 Assigned Cell flag register

11 DMA1 out or queue stage busy 3 RXBUSY Counter > 4

10 TXFULL Counter = full 2 TXFULL Counter < 2

9 RXBUSY Counter = /0 1 ICSI_Ba

8 Sparse Event register bit ORd

d. When an external event occurs that is being monitored by the Spar
Events register, there is a 3-4 instruction delay between the externa
event and the Sparse Events OR indication of that event.

0 ICSI_Ae

e. When an external event occurs that is being monitored by an ICSI
there is a 3-4 instruction delay between the external event and the I
indication of that event.
200 Version 4.1 MXT3010 Reference Manual

R42-write Mode Configuration register

R
eg

is
te

rs

8.
R42-write Mode Configuration register

Description: The Mode Configuration register includes provision for mode 0
and mode 1 operations. The SWAN processor does not write to
the Mode Configuration register directly. Instead, it writes a
control byte to the Mode Configuration register to set and clear
certain bits. If bit 7 of the control byte is 0, the target bit is
cleared (unless it is triggered simultaneously). If bit 7 is 1, the
target bit is set.

Reset value: See “Initializing the Mode Configuration register” on page 40

Bit definitions:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SF Set Reserved
Target Bit
Selector

Bit Name Function

15:9 Reserved Programs should write zeroes to these bits.

8 Special Features This bit enables special features in R43-write
and R43-read. (See page 204 and page 205)
0 Special features disabled (normal operation)
1 Special features enabled

7 Set The state of this bit determines whether the bit
selected by the Target Bit Selector is set or
cleared
0 The target bit is cleared
1 The target bit is set

6:4 Reserved Programs should write zeroes to these bits.

3:0 Target Bit Selector These bits select which bit is set or cleared.

R42
Bit

Target Bit
Selected Bit State and Function

0 0000 HEC Control

0 HEC is generated and inserted

1 HEC is omitted

1 0001 Cell Length Control

0 52 byte cells

1 56 byte cells
MXT3010 Reference Manual Version 4.1 201

Registers
Notes: Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

2 0010 Programs should write zeroes to these bits.

3 0011 Programs should write zeroes to these bits.

4 0100 Fast Memory Mode Control

0 Fast Memory is in Mode 0

1 Fast Memory is in Mode 1

5 0101 DMA Plus Control

0 DMA Plus disabled

1 DMA Plus performs automatic rla

6 0110 Port1 Operation Control

0 Port1 normal operation

1 Port1 Early End enabled

7 0111 Port2 Operation Control

0 Port2 normal operation

1 Port2 Early End enabled

8 1000 Reserved

0 Reserved

1 Reserved for PLL test mode

9 1001 R32 Control

0 R32 in normal operation

1 HEC8 circuit enabled on R32

10 1010 R55 Control

0 PIT1 is disabled; R55 is a 16-bit R/W register

1 PIT1 is enabled; R55 operates as a timer

11 1011 R54 Control

0 PIT0 is disabled; R54 is a 16-bit R/W register

1 PIT0 is enabled; R54 operates as a timer

13,12 1100, 1101 Programs should write zeroes to these bits.

14,15 1110, 1111 Reserved

R42
Bit

Target Bit
Selected Bit State and Function
202 Version 4.1 MXT3010 Reference Manual

R43-read Fast Memory Bit Swap register (R42w[8]=0)

R
eg

is
te

rs
R43-read Fast Memory Bit Swap register (R42w[8]=0)

Description When bit [8] of R42-write is zero (0), this register contains the
same data as the Fast Memory Byte register (R56) with the bit
order reversed.

Reset value: Indeterminate

Bit definitions: N/A

Notes: R43 can be used to implement a Find First Set instruction by
loading a value into R56 and applying the Find Last Set (FLS)
instruction (page 242) to R43.

Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fast Memory Bit Swap register (Note bit order)
MXT3010 Reference Manual Version 4.1 203

Registers

t

R43-read Special Features register (R42w[8]=1)

Description When bit [8] of R42-write is one (1), this register implements
special configuration features.

Reset value: Indeterminate

Bit definitions:

Notes: Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Port2 DMAs Reserved URX Count UTX Count

Bit Name Function

15:14 Reserved Programs should write zeroes to these bits.

13:11 Port2 DMAs Port2 DMAs completed. This three-bit counter
is incremented on the last transfer of a DMA2
operation. It is decremented in software by a
branch instruction with the following syntax:
bi$label DMA count.

10:8 Reserved Programs should write zeroes to these bits.

7:4 URX Count This four-bit counter can read either the current
state of the UTOPIA Receiver’s Busy or Full
Counter, depending upon R43-write [9].

3:0 UTX Count This four-bit counter can read either the curren
state of the UTOPIA Transmitter’s Busy or Full
Counter, depending upon R43-write [8].
204 Version 4.1 MXT3010 Reference Manual

R43-write UTOPIA Control FIFO register

R
eg

is
te

rs
R43-write UTOPIA Control FIFO register

Description: Data written to the UTOPIA Control FIFO register provides cer-
tain characteristics for cells scheduled for transmission from
Cell Buffer RAM through the UTOPIA port. The data written to
this register is stored in a FIFO-like internal memory until an
actual cell transmission by the UTOPIA port controller removes
it. Up to eight control entries can be stored in the FIFO.

The upper byte of this register implements special configuration
features controlled by bit [8] of “R42-write Mode Configuration
register” on page 201.

Reset value: Indeterminate

Bit definitions
(Lower byte):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Configuration Options Rsv I CG TXPHY

Bit Name Function

7 Reserved Programs should write zero to this bit.

6 I Insert unassigned cell

5 CG Generate and insert a CRC10 for this cell

4:0 TXPHY Select the address of the target PHY in a multi-
PHY system
MXT3010 Reference Manual Version 4.1 205

Registers
Bit definitions
(Upper byte):

If R42w [8] = 0, these bits are reserved, and programs should
write zeroes to them. If R42w [8] = 1, these definitions apply:

Notes: 1. Software should write the control entry into the UTOPIA Control
FIFO before incrementing TXBUSY. For more information on
UTOPIA port operation, see CHAPTER 6 "The UTOPIA port" on
page 69.

2. The FIFO is a hardware-managed 8-deep circular list. Entries can
be re-used without writing new data.

3. CRC10 overwrites the last ten bits of the cell with the computed
CRC value.

4. When bit I is set, the MXT3010 hardware stuffs an unassigned cell
into the UTOPIA Control Byte FIFO without accessing the Cell
Buffer RAM.

5. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Bit Name Function

15:14 Reserved Programs should write zeroes to theses bits

13 PIT1 Sel PIT1 External Select Pin
0 = URX_CTRL4
1 = ICSI_C

12 PIT0 Sel PIT0 External Select Pin
0 = UTX_CTRL4
1 = ICSI_D

11 PIT1 Mode PIT1 External Mode
0 = Disabled
1 = PIT1 is clocked by the rising edge of the exter-
nal bit selected by bit [13]

10 PIT0 Mode PIT0 External Mode
0 = Disabled
1 = PIT0 is clocked by the rising edge of the exter-
nal bit selected by bit [12]

9 URX Count
Select

UTOPIA Receiver Count Select
0 = URX Count in R43read is Receiver Busy
1 = URX Count in R43read is Receiver Full

8 UTX Count
Select

UTOPIA Receiver Count Select
0 = UTX Count in R43read is Transmitter Busy
1 = UTX Count in R43read is Transmitter Full
206 Version 4.1 MXT3010 Reference Manual

R44-R47 CRC32PRX and CRC32PRY registers

R
eg

is
te

rs
R44-R47 CRC32PRX and CRC32PRY registers

R44 CRC32PRX [15:0], R46 CRC32PRY [15:0]

R45 CRC32PRX [31:16], R47 CRC32PRY [31:16]]

Description: These registers contain the partial results of CRC32 calcula-
tions. The CRCX and CRCY bits in the DMA instruction or the
X and Y bits in the Alternate Byte Count/ID register (R52)
determine which, if any, register set is used. Use of CRCX/
CRCY control or X/Y control depends on whether the DMA
instruction contains a BC/# instruction field option.

Reset value: 0x0000

Bit definitions: N/A

Notes: If R44-R47 are not used for CRC calculations, they can be used
as general purpose registers. When used as general purpose reg-
isters, register access rules apply. See Table 3 on page 23.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC Partial Result registers (bits [15:0])

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CRC Partial Result registers (bits [31:16])
MXT3010 Reference Manual Version 4.1 207

Registers
R48-R51 Local Address registers (rla)

Description: The Local Address registers provide four hardware registers that
are used as address registers by local (internal) memory loads
and stores.

Reset value: Indeterminate

Bit definitions:

Notes: 1. The MXT3010 implements four fixed value registers that can also
be used as address registers. These rla constants are GA, GB, GC,
and GD that are fixed at 0x400, 0x420, 0x440, and 0x460, respec-
tively.

2. For more information on the Load and Store instructions, see
“General information for Load and Store internal RAM instruc-
tions” on page 314.

3. Register access rules apply. See Table 3 on page 23.

4. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved S G MEM

Bit Name Function

15:12 Reserved Read, and should be written, as zeroes.

11 S Scoreboard/Cell Buffer selection

0
1

Cell Buffer RAM access
Scoreboard access

For Cell Buffer RAM access, the following bit definitions apply:

10 G Cell Buffer RAM Address Method

0
1

Linear Address
Gather Address

9:0 MEM These 10 bits provide byte addressing for the 512
16-bit halfwords in the Cell Buffer RAM.

For Scoreboard access, the following bit definitions apply.

10:0 MEM These 11 bits provide byte addressing for the 512
32-bit words in the Scoreboard.
208 Version 4.1 MXT3010 Reference Manual

R52 Alternate Byte Count/ID register

R
eg

is
te

rs
R52 Alternate Byte Count/ID register

Description: Software can use the Alternate Byte Count/ID register to pro-
vide DMA instruction information to either the Port1 or Port2
interface when executing a DMA instruction. DMA operations
use the contents of R52 if a DMA instruction is executed without
a BC/# instruction field option.

Reset value: 0x0000

Bit definitions:

Note: Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REV Reserved X Y Count

Bits Name Function

15:13 REV Device ID field. On reads, returns a value of 000xb for
MXT3010 revision A, 001xb for MXT3010 revision B/
C.

12:10 Reserved Read, and should be written, as zeroes.

9 X CRCX bit
If set, a CRC32 partial result is generated based on
CRC32PRX register’s initial value and the result is
deposited into CRC32PRX

8 Y CRCY bit
If set, a CRC32 Partial Result is generated based on
CRC32PRY register’s initial value and the result is
deposited into CRC32PRY

7:0 Count DMA Byte Count
00 = Zero byte operation
FF = 255 byte operation
MXT3010 Reference Manual Version 4.1 209

Registers
R53 Instruction Base Address register

Description: The SWAN processor supports an instruction space of 128K 32-
bit instructions, organized as 32 segments of 4K words each.
The lowest order 5 bits of this register provide the ability to
select any of the 32 segments for user code.

Reset value: The Reset value is initially 0x0040, and then is dependent upon
the starting address of the bootstrap loader.

Bit definitions:

 Note: Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Boot NC Segment ID

Bits Name Function

15:7 Reserved Read, and should be written, as zeroes.

6 Boot This flag is set by the SWAN processor during its
power-up initialization routine, and disables the exe-
cution of user instructions until the boot process is
finished. This bit is cleared by the SWAN processor at
the conclusion of power-up initialization.

5 NC Non-Cached. Instructions executed while this bit is
set will not be cached.

4:0 Segment ID These bits are used as Fast Memory Address bits
[18:14] during instruction fetches from the Fast Mem-
ory, and thus select which of 32 segments of 4K
words will be addressed.
210 Version 4.1 MXT3010 Reference Manual

R54-R55 Programmable Interval Timer registers

R
eg

is
te

rs

is
R54-R55 Programmable Interval Timer registers

R54 PIT0 [15:0], R55 PIT1 [15:0]

Description: The MXT3010 contains two 16-bit programmable interval tim-
ers (PITs), PIT0, and PIT1.

The present values of the PITs are mapped into the Programma-
ble Interval Timer registers R54 (PIT0) and R55 (PIT1). The
SWAN processor can read the present value of a PIT by specify-
ing either R54 or R55 in an ALU operation.

Firmware sets an initial value by writing into R54 (PIT0) or R55
(PIT1). When firmware writes an initialization value, that value
is immediately transferred into the PIT. PIT0 decrements by one
on each rising edge of the external clock. PIT1 decrements by
one on each rising edge of the CPU clock, which operates at
twice the frequency of the external clock. When PIT0 times out,
Bit 4 of the Sparse Events register (R57) is set. When PIT1 times
out, Bit 5 of the Sparse Events register (R57) is set. Upon time-
out of a PIT, it is automatically reloaded with its count initializa-
tion value and the count down process begins anew.

Reset value: 0x0000

Bit definitions: N/A

Notes: Firmware enables/disables a PIT from counting, timing out, and
setting its bit in the Sparse Event register via enable bits in
“R42-write Mode Configuration register” on page 201.

Restrictions apply to the use of LD, LDD instructions with th
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Programmable Interval Timer registers
MXT3010 Reference Manual Version 4.1 211

Registers

te

is
R56 Fast Memory Data register

Description: The Store Halfword to Fast Memory (SHFM) instruction writes
the contents of R56, the Fast Memory Data register, into the Fast
Memory location specified by registers rsa and rsb. The contents
of R56 are first entered into the Fast Memory Controller’s wri
buffer before being written out to memory.

Reset value: Indeterminate

Bit definitions: N/A

Notes: An SHFM can immediately follow an instruction that modifies
R56.

Restrictions apply to the use of LD, LDD instructions with th
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fast Memory Data register
212 Version 4.1 MXT3010 Reference Manual

R57-read Sparse Event/ICS register

R
eg

is
te

rs

 a 3-

.

R57-read Sparse Event/ICS register

Description: This register records events that occur infrequently. Hardware
performs a logical OR operation on bits (5:0) of this register and
provides the result in ESS8. Hardware clears bits [9:6]when the
condition causing the bit to be set is no longer true. Other bits
(marked R/W) are cleared by the software via the “R57-write
Sparse Event/ICS register (Set/Clear)” on page 214.

Reset value: N/A

Bit definitions:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

See “Bit Definitions” below

Bits Description R/W

15:12 ICSO_(D:A)a

These bits control the ICSO_(D:A) pins if the ICSO Out-
put Enable bit of the System register is set. The SWAN
can set and clear these bits to signal external devices.

a. When the SWAN processor changes the state an ICSO bit, there is
4 instruction delay before the new state appears at the ICSO pin.

R/W

11 ICSO_A Select: 0 = ICSO_A_SEL; 1 = TX_IDLE_SOCR/W

10 ICSO_B_SEL: 0 = ICSO_B; 1 = STALL_DLY. R/W

9 TXBUSY state indicator R

8 RXFULL state indicator R

7 CRC32X Error Indicator from Port1
Test only at the completion of a DMA operation.

R

6 CRC32Y Error Indicator from Port1
Test only at the completion of a DMA operation.

R

5 PIT1 Time Out
Set when PIT1 counts down to 0.

R/W

4 PIT0 Time Out
Set when PIT0 counts down to 0.

R/W

3:0 ICSI_(D:A)b

Set if corresponding MXT3010 input is set and corre-
sponding SER enable bit is set in the System register.

b. When an external event occurs, there is a 3-4 instruction delay
between the external event and the ICSI indication of that event.

c. LD, LDD restrictions apply. See “Register access rules” on page 22

R/W
MXT3010 Reference Manual Version 4.1 213

Registers
R57-write Sparse Event/ICS register (Set/Clear)

Description: The SWAN processor does not write to the Sparse Event register
directly. Instead, it writes a control byte to the Sparse Event reg-
ister to set and clear certain bits. If bit 7 of the control byte is 0,
the target bit is cleared (unless held set by hardware conditions).
If bit 7 is 1, the target bit is set (unless held clear by hardware
conditions).

Reset value: N/A

Bit definitions:

Examples:

Notes: 1. Bits [9:6] are read only.

2. Register access rules apply. See Table 3 on page 23.

3. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Set Reserved Target Bit Selector

Bit Name Function

15:8 Reserved Programs should write zeroes to these bits.

7 Set The state of this bit determines whether the bit
selected by the Target Bit Selector is set or cleared
0 The target bit is cleared
1 The target bit is set

6:4 Reserved Programs should write zeroes to these bits.

3:0 Target Bit
Selector

These bits select which bit is set or cleared. The tar-
get bits are listed in “R57-read Sparse Event/ICS
register” on page 213.

Bit To Set, Write To Clear, Write Bit To Set, Write To Clear, Write

0 0x80 0x00 10 0x8A 0x0A

1 0x81 0x01 11 0x8B 0x0B

2 0x82 0x02 12 0x8C 0x0C

3 0x83 0x03 13 0x8D 0x0D

4 0x84 0x04 14 0x8E 0x0E

5 0x85 0x05 15 0x8F 0x0F
214 Version 4.1 MXT3010 Reference Manual

R58 Fast Memory Shadow register

R
eg

is
te

rs
R58 Fast Memory Shadow register

Description: The Fast Memory Shadow register is automatically loaded with
the first 16-bit word returned from Fast Memory during a read
operation (LMFM instruction) that specifies the Link (LNK)
instruction field option. The Branch Fast Memory instructions,
BF and BFL, use the contents of this register as the target
address of the branch operation.

Reset value: Indeterminate

Bit definitions: The Branch Target Field specifies the absolute word address
within the current code segment (4096 words) at which execu-
tion is to continue when using the Branch Fast Memory instruc-
tions, BF and BFL. The reserved bits (15:12) are read, and
should be written, as zeroes.

Notes: 1. Software can read and write the Fast Memory Shadow register in
the same fashion as the Branch register (R59). To avoid accessing
a stale value, separate the BF or BFL instruction from a preceding
write to R58 by at least one instruction. See Table 3 on page 23

2. Software can use BF/BFL to gain fast access to a service address
contained in the first halfword of a Channel Descriptor. Execution
of a BF/BFL following execution of an LMFM instruction with
LNK causes a CPU stall until the first halfword is read from mem-
ory. When the first halfword is returned, the stall condition termi-
nates. Software can avoid a stall by separating the LMFM from
the BF/BFL by at least five instructions.

3. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Branch Target Field
MXT3010 Reference Manual Version 4.1 215

Registers
R59 Branch register

Description: The Branch register instructions, BR and BRL, use the content
of this register as the target address of the branch operation. The
address in R59 represents an absolute address to branch to
within the active segment.

Reset value: Indeterminate

Bit definitions: The Branch Target Field specifies the absolute word address
within the current code segment (4096 words) at which execu-
tion is to continue when using the Branch Register instructions,
BR and BRL. The reserved bits (15:12) are read, and should be
written, as zeroes.

Notes: Software can read and write the Branch register. To avoid
accessing a stale value, separate the BR or BRL instruction from
a preceding write to R59 by at least one instruction. See Table 3
on page 23

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Branch Target Field
216 Version 4.1 MXT3010 Reference Manual

R60 The Cell Scheduling System (CSS) Configuration register

R
eg

is
te

rs
R60 The Cell Scheduling System (CSS)
Configuration register

Description: The CSS Configuration register indicates the base address in
memory of the Connection ID table. It also indicates the size of
the Scoreboard to be used.

Reset value: 0x00FF

Bit definitions:

Notes: 1. Software must initialize the CSS Configuration register before
using the Cell Scheduling System.

2. Register access rules apply. See Table 4 on page 24.

3. Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E CR SZ CID Reserved

Bits Name Description

15 E CSS error flag

14 CR 0 = No CCS Reset
1 = CSS Reset

13:12 SZ Scoreboard Section Size
00 = 2,048 bits/entries per section; up to 8 sections
01 = 4,096 bits/entries per section; up to 4 sections
10 = 8,192 bits/entries per section; up to 2 sections
11 = 16,384 bits/entries per section; 1 section

11:8 CID Connection ID Table Base Address:
Used as FADRS(18:15) on Connection ID Table
accesses for PUSHC and POPC.

7:0 Reserved Reserved. The bits are undefined on reads and should
be written as zeroes.
MXT3010 Reference Manual Version 4.1 217

Registers

0
n

le
ple-
 15

ee
-
ge

is
R61-read Scheduled Address register

Description: At the completion of a PUSHC operation (as indicated by the
clearing of ESS5 in R42), the SWAN processor can read the
selected Connection ID Table address (FADRS [18:1]). The
number presented in this register is the 14-bit halfword address
offset (FADRS [14:1]) within the table, and the table base
address (FADRS [18:15]) is obtained from the CID bits in “R6
The Cell Scheduling System (CSS) Configuration register” o
page 217.

Reset value: Indeterminate

Bit definitions: Bits 13:0 are automatically loaded with the Connection ID Tab
address selected by the Cell Scheduling System at the com
tion of a scheduled write operation, PUSHC and PUSHF. Bits
and 14 are reserved. They should be ignored.

Notes: For more information on the Cell Scheduling System (CSS), s
“The Cell Scheduling System” on page 27. For more informa
tion on the PUSHC operation, see “PUSHC Schedule” on pa
280.

Software must not check this register until an outstanding
PUSHC/PUSHF is complete. See “Scheduling” on page 32.

Restrictions apply to the use of LD, LDD instructions with th
register. See “Register access rules” on page 22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Connection ID Table Address
218 Version 4.1 MXT3010 Reference Manual

R62 The UTOPIA Configuration register

R
eg

is
te

rs

s-
r

ion

les
38

.)
R62 The UTOPIA Configuration register

Description: The UTOPIA Configuration register determines the operating
characteristics of the UTOPIA port. In addition to the R62 reg-
ister, two target bits ([0] and [1]) from R42 (the Mode Configu-
ration register) are used to program the UTOPIA port.

Reset value: 0x0000

Bit definitions:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

See “Bit Definitions” below

Bits Description

15:14 Number of Physical PHY devices present

00
01
10
11

This value tells the UTOPIA Port Receiver the number of phy
ical PHY devices present. This in turn determines the numbe
of RXCLAV/TXCLAV and RXENB_/TXENB_ signals that
should be used. Please see the UTOPIA port chapter in Sect
1 and Table 50 below.

Reserved
1-PHY mode
2-PHY mode
Reserved

13:9 UTOPIA Port Most Significant PHY Address

. The UTOPIA Port Receiver polls PHY devices searching for
an RXCLAV by incrementing the polled address according to
the UTOPIA Level 2 specification. The UTOPIA Port Trans-
mitter knows that it has reached the last address and should
begin at zero again when it reaches this address. For examp
of the use of these bits, see Figure 37 on page 89 and Figure
on page 90.

8 UTOPIA Port Data Bus Width

0
1

16 Bits Wide
8 Bits Wide
Direction is determined by which device is not in Reset
Mode. (See “Selecting transmit or receive mode” on page 72
MXT3010 Reference Manual Version 4.1 219

Registers
Note: See “Register access rules” on page 22.

Bits Description

7 UTOPIA Port Operational / Output Clock Frequency Selection

0
1

TXCLK and RXCLK operate at 1/2 of internal CLK frequency.
TXCLK and RXCLK operate at 1/4 of internal CLK frequency.
Note: 1/2 the internal CLK frequency is on the FN pin.

6:4 Transmit Cell Buffer Size in the Cell Buffer RAM

001
010
011
100
101
110
111

Transmitter Buffer Size in the Cell Buffer RAM = 2 cells
Transmitter Buffer Size in the Cell Buffer RAM = 3 cells
Transmitter Buffer Size in the Cell Buffer RAM = 4 cells
Transmitter Buffer Size in the Cell Buffer RAM = 5 cells
Transmitter Buffer Size in the Cell Buffer RAM = 6 cells
Transmitter Buffer Size in the Cell Buffer RAM = 7 cells
Transmitter Buffer Size in the Cell Buffer RAM = 8 cells

3:1 Receive Cell Buffer Size in the Cell Buffer RAM

000

001
010
011
100
101
110
111

UTOPIA Port Receiver in Reset Mode. All Rx outputs are
tristated. This includes RXDATA (a bidirectional signal), but
does not include RXCLK. All inputs are pulled to their inactive
states by the MXT3010.
Receiver Buffer Size in the Cell Buffer RAM = 2 cells
Receiver Buffer Size in the Cell Buffer RAM = 3 cells
Receiver Buffer Size in the Cell Buffer RAM = 4 cells
Receiver Buffer Size in the Cell Buffer RAM = 5 cells
Receiver Buffer Size in the Cell Buffer RAM = 6 cells
Receiver Buffer Size in the Cell Buffer RAM = 7 cells
Receiver Buffer Size in the Cell Buffer RAM = 8 cells

0 UTOPIA Receiver Reduction Mode Enable Bit

0

1

Reduction Function Disabled (ATM Header bytes [2:3] written
into the Cell Buffer RAM unchanged)
Reduction Function Enabled (ATM header bytes [2:3] written
into the Cell Buffer RAM after reduction function performed
according to Reduction Mask Setting selected by R63[6:0]).

TABLE 50. Signal utilization for 1-PHY and 2-PHY modes

Mode TX/RX CLAV TX/RX ENB ADRS

1 PHY TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [3:0]

2 PHY

 PHY 0 TX/RX_CLAV TX/RX_ENB_ TX/RX CTRL [1:0]

 PHY 1 TX/RX CTRL [3] TX/RX CTRL [2] TX/RX CTRL [1:0]
220 Version 4.1 MXT3010 Reference Manual

R63 The System register

R
eg

is
te

rs
R63 The System register

Description: The System register determines the operating characteristics of
the MXT3010.

Reset value: 0x0000

Bit definitions:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OD OC BS IMASK EN VPI/VCI

Bits Name Function

15:14 OD, OC Reflect the state of ICSO_(D:C) at reset
removal.

13:12 BS Boot
Source

These bits indicate the source that was used
to boot the MXT3010

00
01
10
11

Via Fast Memory (used only in simulation)
Via Port 1
Via Port 2
Via COMMIN register

11:8 IMASK ICSI_(D:A) Sparse Event register enable

0

1

Bit in Sparse Event register is not set when
ICSI_x is high.
Bit in Sparse Event register is set when
ICSI_x is high.

7 EN ICSO_(D:A) Output Enable

0
1

Outputs Tristates (default at reset)
Outputs Actively Driving
Note:
The MXT3010 reads configuration informa-
tion from ICSO_(D:A) during reset. To
ensure that the MXT3010 does not drive
these pins at reset, the pins are reset in input
mode. The MXT3010 senses configuration
information from them as it exits reset. Soft-
ware can enable these pins as outputs by set-
ting this bit to one.
MXT3010 Reference Manual Version 4.1 221

Registers
Note: Register access rules apply. See Table 4 on page 24.

Restrictions apply to the use of LD, LDD instructions with this
register. See “Register access rules” on page 22.

Bits Name Function

6:0 VPI/VCI UTOPIA Receiver Reduction Mask

Setting Value written into ATM Header lower
halfword in CBR

0000001
0000011
0000111
0001111

{0,0,0,0,0,0, vpi(0), vci(7:0), clp}
{0,0,0,0,0, vpi(1:0), vci(7:0), clp}
{0,0,0,0, vpi(2:0), vci(7:0), clp}
{0,0,0, vpi(3:0), vci(7:0), clp}

0000010
0000110
0001110
0011110

{0,0,0,0,0, vpi(0), vci(8:0), clp}
{0,0,0,0, vpi(1:0), vci(8:0), clp}
{0,0,0, vpi(2:0), vci(8:0), clp}
{0,0, vpi(3:0), vci(8:0), clp}

0000100
0001100
0011100
0111100

{0,0,0,0, vpi(0), vci(9:0), clp}
{0,0,0, vpi(1:0), vci(9:0), clp}
{0,0, vpi(2:0), vci(9:0), clp}
{0, vpi(3:0), vci(9:0), clp}

0001000
0011000
0111000
1111000

{0,0,0, vpi(0), vci(10:0), clp}
{0,0, vpi(1:0), vci(10:0), clp}
{0, vpi(2:0), vci(10:0), clp}
{vpi(3:0), vci(10:0), clp}

0010000
0110000
1110000

{0,0,vpi(0), vci(11:0), clp}
{0,vpi(1:0), vci(11:0), clp}
{vpi(2:0), vci(11:0), clp}

0100000
1100000

{0,vpi(0), vci(12:0), clp}
{vpi(1:0), vci(12:0), clp}

1000000 {vpi(0), vci(13:0), clp}

0000000 {vci(14:0), clp}
222 Version 4.1 MXT3010 Reference Manual

CHAPTER 10 Arithmetic Logic Unit
Instructions
The arithmetic and logical instructions of the SWAN processor
manipulate data contained in the register set.

Addressing modes

Two addressing modes are supported for arithmetic and logical
instructions: triadic register and immediate.

Triadic register

Triadic register addressing mode uses three fields in the instruc-
tion to specify two source registers (rsa and rsb) and a destination
register (rd). The rsa and rd registers might be any of the software
registers (R0-R31) or any of the hardware registers (R32-R63).
The rsb register can only be one of the software registers.
MXT3010 Reference Manual Version 4.1 223

Arithmetic Logic Unit Instructions
FIGURE 78.Triadic register operation

FIGURE 79.Triadic instruction format

Immediate

Immediate addressing mode uses two bit fields in the instruction
to specify one source register (rsa) and a destination register
(rd). The second operand is provided as an immediate value in
the instruction word.

The width of the immediate value and its format (signed,
unsigned) is instruction dependent. Arithmetic instructions
(ADDI, SUBI) use a 6-bit unsigned immediate value. Logical
instructions (ANDI, CMPI, CMPPI, MAXI, MINI, ORI, XORI)
use a 10-bit sign-extended immediate value. Shift instructions
(SFTAI, SFTCI, SFTRI, SFTLI) use instruction-specific for-
mats similar to the 6-bit immediate field used in arithmetic oper-
ations.

15

15

150 0

0

ALU Operation

rsa

rd

rsb

31 26 25 20 19 16 15 10 9 5 4 0

opcode rd - - - - rsa - - - - - rsb

- - - Instruction specific fields
224 Version 4.1 MXT3010 Reference Manual

Overflow flag
FIGURE 80.Immediate 10-bit instruction format

FIGURE 81.Immediate 6-bit instruction format

Overflow flag

Signed arithmetic is supported by an Overflow flag. During
addition operations, the Overflow flag is set when both source
operands have the same sign, and the sign of the result is differ-
ent. During subtraction operations, the Overflow flag is set
when the signs of the source operands differ, and the sign of the
result matches the sign of the second operand.

Instructions that
use this flag

Only add and subtract operations affect the Overflow flag. None
of the other ALU instructions can change the state of this flag,
nor can add and subtract operations that specify the use of mod-

15

15

0 n

0

ALU Operation

rsa

rd

rsb

31 26 25 20 19 16 15 10 9 0

opcode rd - - - - rsa 10-bit signed immediate

- - - Instruction specific fields

31 26 25 20 19 16 15 10 9 6 5 0

opcode rd - - - - rsa - - - - 6-bit unsigned im.

- - - Instruction specific fields
MXT3010 Reference Manual Version 4.1 225

Arithmetic Logic Unit Instructions
ulo arithmetic. Other ALU instructions can test the state of this
flag that resulted from the last arithmetic operation by using the
Branch No Overflow ALU branching option.

Instruction options

Certain options are common to many of the ALU instructions.
These options include modulo arithmetic, automatic memory
updating, and ALU branching.

Modulo arithmetic

The ALU in the SWAN processor supports modulo arithmetic.
With modulo arithmetic, the operation of an ALU instruction is
constrained to the number of bit positions specified in the
instruction word. Bits outside the specified operation width are
not affected. Source bits from rsa are simply copied to the cor-
responding destination bits in rd.

Modulo arithmetic can be specified for any field width, from
one bit to fifteen bits. The width of the desired modulo arith-
metic is specified in ALU instructions with an instruction field
option. Full 16-bit operation is the default width for ALU
instructions where no modulo arithmetic instruction field option
is specified. Table 51 on page 227 lists the modulo arithmetic
options.
226 Version 4.1 MXT3010 Reference Manual

Instruction options
TABLE 51. Modulo arithmetic options

A modulo arithmetic operation does not affect the ALU flag reg-
isters or Overflow.

Using modulo
arithmetic and
branch conditions

The Branch On Zero and the Branch On Non-Zero ALU branch
conditions are evaluated based on the bits within the modulo
field only. This allows one to test, for example, for the occur-
rence of a boundary crossing by a memory pointer that has a
non-zero base address.

Modulo arithmetic
example

In the following example, two Load Immediate (LIMD) instruc-
tions are used to load the hex numbers 1234 and 1111 into reg-
isters r0 and r1 respectively. A modulo 16 addition of these two
registers is then performed, and the result is placed in r2. Note
that due to the modulo 16 addition, only bits [3:0] have been
affected by the addition process.

IFO Width rd IFO Width rd

MOD2 1 rsa[15:1] |
alu[0]

MOD512 9 rsa[15:9] |
alu[8:0]

MOD4 2 rsa[15:2] |
alu[1:0]

MOD1K 10 rsa[15:10] |
alu[9:0]

MOD8 3 rsa[15:3] |
alu[2:0]

MOD2K 11 rsa[15:11] |
alu[10:0]

MOD16 4 rsa[15:4] |
alu[3:0]

MOD4K 12 rsa[15:12] |
alu[11:0]

MOD32 5 rsa[15:5] |
alu[4:0]

MOD8K 13 rsa[15:13] |
alu[12:0]

MOD64 6 rsa[15:6] |
alu[5:0]

MOD16K 14 rsa[15:14] |
alu[13:0]

MOD128 7 rsa[15:7] |
alu[6:0]

MOD32K 15 rsa[15] |
alu[14:0]

MOD256 8 rsa[15:8] |
alu[7:0]

blank 16 alu[15:0]

Address Instruction Result

0x0000 LIMD r0, 0x1234 r0 <- 0x1234

0x0001 LIMD r1, 0x1111 r1 <- 0x1111

0x0002 ADD r0, r1, r2 MOD16 r2 <- 0x1235
MXT3010 Reference Manual Version 4.1 227

Arithmetic Logic Unit Instructions

nd

s

an
the

rd-
i-
e
Automatic memory updates

When the automatic memory update feature is enabled, the Fast
Memory controller writes the results of the ALU operation back
into the linked Fast Memory location associated with the desti-
nation register, rd. This feature eliminates the need for separate
store instructions to write results back to memory, thus saving
machine cycles and reducing latency.

The Update Memory field (UM)

All ALU instructions except the compare instructions (CMP,
CMPI, CMPP, CMPPI) can specify the automatic memory
update option by including the letters UM in the command line.

For complete details on the operation of the automatic memory
update feature, see “Memory update protocol” on page 49 a
“Linking (the LNK bit)” on page 299.

ALU branching

The ALU in the SWAN processor provides all ALU instruction
with an integrated conditional branching capability. In one
instruction executing in a single machine cycle, the program c
modify a register, test the results of that operation, and use
results to affect program flow.

The target address of an ALU branch operation is fixed in ha
ware at four instructions past the ALU instruction. If the spec
fied condition code evaluates as true, the SWAN executes th
instruction immediately following the ALU instruction (the

IFO Result

UM Cause automatic memory update

blank No memory update
228 Version 4.1 MXT3010 Reference Manual

Instruction options

the
ues

”
n-
“committed slot”) and then branches to the target address. If
specified condition code evaluates as false, the SWAN contin
with sequential program flow.

Note 1:See “Example” on page 231 and “The Always Execute field (AE)
on page 231 for further details on program flow when the branch co
dition evaluates as false.

The SWAN core is optimized to take the ALU branch. Where
the results of an ALU branch operation can be predicted, the
programmer should write the code such that branches are taken
more often than not.

The ALU Branch Condition field (abc)

The abc instruction field option (IFO) specifies the ALU branch
condition to be tested during an ALU instruction. The absence
of an abc IFO results in normal sequential program flow.

Instruction Sequence

Address Contents
Branch
Condition True

Branch
Condition False

N ALU Instruction with
branch

Executed Executed

N+1 Committed slot, always
executed

Executed Executed

N+2 Instruction executed if
branch condition not met

Skipped Executed
(Note 1)

N+3 Instruction executed if
branch condition not met

Skipped Executed
(Note 1)

N+4 Branch target instruction Executed Executed
(Note 1)

N+5 Sequential flow continuesExecuted Executed
(Note 1)
MXT3010 Reference Manual Version 4.1 229

Arithmetic Logic Unit Instructions
TABLE 52. ALU Branch Conditions for all instructions except
Compare and Min/Max instructions

TABLE 53. ALU Branch Conditions for Compare and Min/Max
instructions

IFO
Condition
(branch if…) IFO

Condition
(branch if…)

Blank No branch BLZ Less-than zero

BGEZ Greater-than or equal
zero

BNZ Not equal zero

BZ Equal zero BNO No overflow flag set

BLEZ Less-than or equal
zero

IFO
Condition
(branch if…) IFO

Condition
(branch if…)

Blank No branch BALEB rsa < or = rsb

BAGB rsa > rsb BALB rsa < rsb

BAGEB rsa > or = rsb BANEB rsa not equal to rsb

BAEB rsa = rsb
230 Version 4.1 MXT3010 Reference Manual

Instruction options
Example Consider the following program:

Notes: 1. Locations N+1 and N+3 are the committed slots for the ADD and
BIL instructions respectively. Any instruction can be placed here
except a Branch instruction or any instruction that could generate a
branch (for example, an instruction containing a non-blank abc field).

2. The LIMD instructions are shown only for convenience in discuss-
ing possible rearrangement of the program. See “The Always Execute
field (AE)” on page 231.

In this program, the ADD instruction result is predicted to eval-
uate to non-zero more often than zero. Thus, a majority of times
through the ADD instruction, the SWAN executes the instruc-
tion at the committed slot (N+1), skips over the instructions at
locations N+2 and N+3, and goes directly to the LIMD R4, 0
instruction at location N+4. If the ADD instruction result is zero,
the SWAN executes the instruction at the committed slot (N+1)
and then executes the BIL instruction at location N+2 and the
instruction in its committed slot (N+3).

The Always Execute field (AE)

In the previous example, the ADD instruction result was pre-
dicted to evaluate to non-zero more often than zero. The result-
ing code sequence (N, N+1, N+4, N+5) executes with maximum
efficiency. If the result of the ADD instruction evaluates to zero
however, the SWAN processor instruction pipeline still fetches
the instructions at N+4 and N+5, but discards the instructions
before they are executed. Discarding these instructions (and

Address Instruction

N-2 LIMD R2, 0

N-1 LIMD R3, 0

N ADD r0, r1 BNZ

N+1 (Note 1)

N+2 BIL $SERVICE_CMD1

N+3 (Note 1)

N+4 LIMD R4, 0

N+5 BIL $SERVICE_CMD2
MXT3010 Reference Manual Version 4.1 231

Arithmetic Logic Unit Instructions

E
ys
e,
 the

ot
e
ch

 is

it
fetching the instructions at N+2 and N+3 instead) causes the
equivalent of a two-cycle pipeline stall for the SWAN. The
resulting code sequence is N, N+1, stall, stall, N+2, N+3.

To improve throughput, the MXT3010 provides an “Always
Execute” option. When this option is enabled (by setting the A
bit in the branch instruction to 1), the SWAN processor alwa
executes the instructions gathered by the instruction pipelin
rather than discarding them when the branch is not taken. If
AE option is specified, the instructions at N+4 and N+5 are
always executed following the instruction in the committed sl
(N+1) of the ALU branch. Thus, when using the AE option, th
instructions placed at N+4 and N+5 must be instructions whi
the programmer wants executed regardless of whether the
branch is taken.

To demonstrate use of the AE option, the previous example
presented again, but with these two minor changes:

• The ADD instruction now has its Always Execute (AE) b
set.

• The LIMD instructions for R2 and R3 have been moved
down into positions N+4 and N+5 respectively.

The changes are shown in italics for emphasis.

Address Instruction

N ADD r0, r1, BNZ, AE

N+1 (See Note 1 in “Example” on page 231)

N+2 BIL $SERVICE_CMD1

N+3 (See Note 1 in “Example” on page 231)

N+4 LIMD R2, 0

N+5 LIMD R3, 0

N+6 BIL $SERVICE_CMD2

N+7 LIMD R4, 0
232 Version 4.1 MXT3010 Reference Manual

Instruction options
With the Always Execute option enabled, and the ALU branch
condition code evaluated as true, the branch is taken normally.
The sequence is: N, N+1, N+4, N+5, which is the same as it was
without the Always Execute option enabled.

With the Always Execute option enabled, and the ALU branch
condition code evaluated as false, the branch is not taken, but the
instructions fetched by the pipeline process are executed rather
than being discarded, and no stalls occur. The sequence is: N,
N+1, N+4, N+5, N+2, N+3.

In summary, by using the Always Execute option and using the
fourth and fifth locations beyond the branch instruction for
instructions that are needed regardless of the branch results, the
programmer can enjoy the performance advantages of the
SWAN instruction pipeline without paying a performance pen-
alty when the branch is not taken.

Committed slot
restrictions

The ALU branch committed slot (N+1 in the example above)
should not contain another ALU branch instruction nor a condi-
tional branch instruction. ALU instructions without branch
options and unconditional branch instructions can be placed in
the committed slot.

If the Always Execute instruction field option is specified, the
instruction at the branch target address (N+4 in the example
above) and its following instruction should not contain another
ALU branch instruction nor a conditional Branch instruction.
ALU instructions without branch options and unconditional
Branch instructions can be placed in these slots.
MXT3010 Reference Manual Version 4.1 233

Arithmetic Logic Unit Instructions

r-

on-

the
y-

sec-
ADD Add Registers

Format ADD (rsa, rsb) rd [MODx] [abc] [AE] [UM]

Purpose • To add two registers together using modulo arithmetic.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The ADD instruction adds the contents of register rsa to the c
tents of register rsb, placing the result in register rd.

Flags If the source operands have the same sign, and the sign of
result is different, the Overflow flag is set. Operations specif
ing the modulo arithmetic option do not affect this flag.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
234 Version 4.1 MXT3010 Reference Manual

ADDI Add Register and Immediate

A
L

U

In
st

ru
ct

io
ns

r-

ded

the
y-

sec-
ADDI Add Register and Immediate

Format ADDI (rsa, usi) rd [MODx] [abc] [UM]

Purpose • To add a register and a zero extended 6-bit immediate
together using modulo arithmetic.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The 6-bit unsigned immediate (usi) is zero extended and ad
to the contents of register rsa using modulo arithmetic. The
result is placed in register rd.

Flags If the source operands have the same sign, and the sign of
result is different, the Overflow flag is set. Operations specif
ing the modulo arithmetic option do not affect this flag.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 rd
U
M

abc rsa MODx usi

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 235

236

Arithmetic Logic Unit Instructions

g

r-

b

sec-
AND And Registers

Format AND (rsa, rsb) rd [MODx] [abc] [AE] [UM]

Purpose • To perform a Boolean AND function on two registers usin
modulo arithmetic.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of rsa are AND’ed together with contents of rs
using modulo arithmetic. The result is placed in register rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
 Version 4.1 MXT3010 Reference Manual

ANDI And Register and Immediate

A
L

U

In
st

ru
ct

io
ns

r-

’ed
ed

sec-
ANDI And Register and Immediate

Format ANDI (rsa, si) rd [abc] [UM]

Purpose • To perform a Boolean AND function on a register and an
immediate.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The 10-bit immediate operand (si) is sign extended and AND
with the contents of register rsa, bit for bit. The result is plac
in register rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 rd
U
M

abc rsa si

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 237

Arithmetic Logic Unit Instructions

r-

 reg-
e

rd

sec-

2

CMP Compare Two Registers

Format CMP (rsa, rsb) [abc] [AE]

Purpose • To compare the contents of two registers.

• To alter program flow based on the result of the ALU ope
ation (abc field).

Description The contents of register rsa are compared to the contents of
ister rsb. Both registers are treated as unsigned integers. Th
result can be used to alter program flow.

The results of the CMP instruction are produced without rega
for previous compare results.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 0 0 0 abc rsa 1 1 1 1
A
E

rsb

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5

AE “The Always Execute field (AE)” on page 231
238 Version 4.1 MXT3010 Reference Manual

CMPI Compare Register and Immediate

A
L

U

In
st

ru
ct

io
ns

er-

s of
gers.

sec-

2

CMPI Compare Register and Immediate

Format CMPI (rsa, usi) [abc]

Purpose • To compare the contents of a register and a 10-bit sign
extended immediate.

• To alter program flow based on the result of the ALU op
ation (abc field).

Description The 10-bit unsigned immediate (usi) has the value of bit 9
extended through bits [31:10] and is compared to the content
the rsa register. Both operands are treated as unsigned inte

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 abc rsa usi

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5
MXT3010 Reference Manual Version 4.1 239

Arithmetic Logic Unit Instructions

r-

 reg-
e

m-
 16

ter-
o a

sec-

2

CMPP Compare Two Registers with Previous

Format CMPP (rsa, rsb) [abc] [AE]

Purpose • To compare the contents of two registers.

• To alter program flow based on the result of the ALU ope
ation (abc field).

Description The contents of register rsa are compared to the contents of
ister rsb. Both registers are treated as unsigned integers. Th
result can be used to alter program flow.

The Compare with Previous instruction can be used to acco
plish the compare operation on integers that are larger than
bits. With this instruction, the compare should begin with the
most significant halfwords and the simple CMP instruction.
Only use the abc IFO with the last CMPP. For example, to de
mine whether a 32-bit number stored in [R16, R17] is equal t
32-bit number stored in [R18,R19]:

CMP r16, r18

CMPP r17, r19, BAEB

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 0 0 abc rsa 1 1 1 1
A
E

rsb

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5

AE “The Always Execute field (AE)” on page 231
240 Version 4.1 MXT3010 Reference Manual

CMPPI Compare Register and Immediate with Previous

A
L

U

In
st

ru
ct

io
ns

r-

s of
gers.

ra-
n,

s
he

 be

sec-

2

CMPPI Compare Register and Immediate with
Previous

Format CMPPI (rsa, usi) [abc]

Purpose • To compare the contents of a register and a 10-bit sign
extended immediate

• To alter program flow based on the result of the ALU ope
ation (abc field).

Description The 10-bit unsigned immediate (usi) has the value of bit 9
extended through bits [31:10] and is compared to the content
the rsa register. Both operands are treated as unsigned inte

This instruction can be used to accomplish the compare ope
tion on integers that are larger than 16 bits. With this instructio
the compare should begin with the most significant halfword
and the simple CMPI instruction. Only use the abc IFO with t
CMPPI. For example, to determine whether a 32-bit number
stored in (R16, R17) is equal to 0x012301FF:

CMPI r16, 0x0123

CMPPI r17, 0x01FF BAEB

Since usi is a 10-bit field, 1FF is the largest number that can
used there, unless extension of bit 9 through bits [15:10] is
desired.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 0 abc rsa usi

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5
MXT3010 Reference Manual Version 4.1 241

Arithmetic Logic Unit Instructions

r-

 the
st
he
he

sec-

g-
ng
FLS Find Last Set

Format FLS rsa, rd [abc] [AE] [UM]

Purpose • To determine the bit position of the MSB bit of a 16-bit
halfword that is set to one.

• To alter program flow based on the result of the ALU ope
ation (abc field).

Description The contents of register rsa are examined. The bit position of
most significant bit that is set is placed into rd. If bit 0 is the la
bit set, the value 0x0000 is placed into rd. If bit position 15 is t
last bit set, the value 0x000F is written into rd. If no bit is set, t
value 0x8000 is placed into rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

Note A “Find First Set” instruction can be implemented by loading
the halfword to be examined into “R56 Fast Memory Data re
ister” on page 212 and performing an FLS instruction specifyi
“R43-read Fast Memory Bit Swap register (R42w[8]=0)” on
page 203 as rsa.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 rd
U
M

abc rsa 1 1 1 1
A
E

0 0 0 0 0

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
242 Version 4.1 MXT3010 Reference Manual

LIMD Load Immediate

A
L

U

In
st

ru
ct

io
ns

ra-

e-

sec-
LIMD Load Immediate

Format LIMD rd, li [UM]

Purpose • To initialize a 16-bit register in a single instruction.

• To update a linked location in Fast Memory with the ope
tion result (UM field).

Description The contents of register rd are loaded with the 16-bit long imm
diate (li) value.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 rd
U
M

0 0 0 li

Field For Further Information, See

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 243

Arithmetic Logic Unit Instructions

r-

 reg-
e

sec-

2

MAX Maximum of Two Registers

Format MAX (rsa, rsb) rd [MODx] [abc] [AE] [UM]

Purpose • To choose the maximum of two registers.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa are compared to the contents of
ister rsb. Both registers are treated as unsigned integers. Th
maximum of the two registers is placed into rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
244 Version 4.1 MXT3010 Reference Manual

MAXI Maximum of Register and Immediate

A
L

U

In
st

ru
ct

io
ns

r-

ned
bits

ax-

sec-

2

MAXI Maximum of Register and Immediate

Format MAXI (rsa, usi) rd [abc] [UM]

Purpose • To choose the maximum of a register and an immediate
value.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa are compared to the 10-bit unsig
immediate (usi) after bit 9 of usi has been extended through
[31:10]. Both values are treated as unsigned integers. The m
imum of the two registers is placed into rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 rd
U
M

abc rsa usi

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 245

Arithmetic Logic Unit Instructions

r-

 reg-
e

sec-

2

MIN Minimum of Two Registers

Format MIN (rsa, rsb) rd [MODx] [abc] [AE] [UM]

Purpose • To choose the minimum of two registers.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa are compared to the contents of
ister rsb. Both registers are treated as unsigned integers. Th
minimum of the two registers is placed into rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 1 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
246 Version 4.1 MXT3010 Reference Manual

MINI Minimum of Register and Immediate

A
L

U

In
st

ru
ct

io
ns

r-

ned
bits
ini-

sec-

2

MINI Minimum of Register and Immediate

Format MINI (rsa, usi) rd [abc] [UM]

Purpose • To choose the minimum of a register and an immediate
value.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa are compared to the 10-bit unsig
immediate (usi) after bit 9 of usi has been extended through
[31:10]. Both values are treated as unsigned integers. The m
mum of the two registers is placed into rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 rd
U
M

abc rsa usi

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229
Note: This instruction uses Table 53 rather than Table 5

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 247

Arithmetic Logic Unit Instructions

g

r-

lo

sec-
OR Or Registers

Format OR (rsa, rsb) rd [MODx] [abc] [AE] [UM]

Purpose • To perform a Boolean OR function on two registers usin
modulo arithmetic.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of rsa and rsb are OR’ed together using modu
arithmetic. The result is placed in register rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 1 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
248 Version 4.1 MXT3010 Reference Manual

ORI Or Register and Immediate

A
L

U

In
st

ru
ct

io
ns

r-

ith

sec-
ORI Or Register and Immediate

Format ORI (rsa, si) rd [abc] [UM]

Purpose • To perform a Boolean OR function on a register and an
immediate.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The 10-bit immediate operand is sign extended and OR’ed w
the contents of register rsa, bit for bit.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 rd
U
M

abc rsa si

Field For Further Information, See

abc “The ALU Branch Condition field (abc)” on page 229

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 249

Arithmetic Logic Unit Instructions

d
is-

r-

the
e
re

. A
ive
eg-
m-

sec-
SFT Shift Signed Amount

Format SFT (rsa, rsb) rd [MODx] [abc] [UM]

Purpose • To shift a register to the right or left based on the sign an
magnitude of the shift amount contained in a second reg
ter.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa shift to the right or left based on
contents of register bits rsb(4:0) using modulo arithmetic. Th
result is placed in register rd. On a right shift, high-order bits a
zero-filled. On a left shift, low-order bits are zero-filled.

The value of rsb(4:0) is interpreted as a signed shift amount
negative number (bit 4=1) causes a shift to the right. A posit
number (bit 4=0) causes a shift to the left. If the number is n
ative, the shift amount to the right is represented in two’s co
plement form. See “Shift amount chart for SFT, SFTLI, and
SFTRI” on page 414.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 rd
U
M

abc rsa MODx 0 rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
250 Version 4.1 MXT3010 Reference Manual

SFTA Shift Right Arithmetic

A
L

U

In
st

ru
ct

io
ns

ed

r-

 bit
or
d

m-
 in

sec-
SFTA Shift Right Arithmetic

Format SFTA (rsa, rsb) rd [MODx] [abc] [UM]

Purpose • To shift a register to the right in an arithmetic fashion bas
on the shift amount contained in a second register.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa shift to the right by the number of
positions specified in bits rsb(3:0). See “Shift amount chart f
SFTA” on page 415. The original value of bit rsa(15) is copie
into all MSBs made vacant by the shift operation, thus acco
plishing a sign extension/arithmetic shift. The result is placed
register rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 rd
U
M

abc rsa MODx 0 rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 251

Arithmetic Logic Unit Instructions

ed

r-

 bit
rt
d

m-
 in

sec-
SFTAI Shift Right Arithmetic Immediate

Format SFTAI (rsa, usa) rd [MODx] [abc] [UM]

Purpose • To shift a register to the right in an arithmetic fashion bas
on the shift amount in an immediate value.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa shift to the right by the number of
positions as specified in the usa field. See “Shift amount cha
for SFTAI” on page 415. The original value of rsa(15) is copie
into all MSBs made vacant by the shift operation, thus acco
plishing a sign extension/arithmetic shift. The result is placed
register rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 rd
U
M

abc rsa MODx 0 1 usa

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

UM “The Update Memory field (UM)” on page 228
252 Version 4.1 MXT3010 Reference Manual

SFTC Shift Left Circular

A
L

U

In
st

ru
ct

io
ns

n

r-

on
art

si-

sec-
SFTC Shift Left Circular

Format SFTC (rsa, rsb) rd [MODx] [abc] [UM]

Purpose • To shift a register to the left in a circular fashion based o
the shift amount contained in a second register.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa shift to the left in a circular fashi
based on the value in register rsb(3:0). See “Shift amount ch
for SFTC and SFTCI” on page 414. Bits shifted out of bit po
tion 15 are shifted into bit position 0.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 253

Arithmetic Logic Unit Instructions

n

r-

on
See

sec-
SFTCI Shift Circular Immediate

Format SFTCI (rsa, usa) rd [MODx] [abc] [UM]

Purpose • To shift a register to the left in a circular fashion based o
an immediate shift amount.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa shift to the left in a circular fashi
based on the value in the usa field, using modulo arithmetic.
“Shift amount chart for SFTC and SFTCI” on page 414. For
example, if MOD16 is specified, bits rd(15:4) are taken from
bits rsa(15:4) while bit rd(3:0), the modulo field, is taken from
the Arithmetic Logic Unit result. Bits shifted out of bit position
15 are shifted into bit position 0.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 rd
U
M

abc rsa MODx
A
E

1 usa

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
254 Version 4.1 MXT3010 Reference Manual

SFTRI/SFTLI Shift Right or Left Immediate

A
L

U

In
st

ru
ct

io
ns

r
d

d

r-

the

ift

sec-
SFTRI/SFTLI Shift Right or Left Immediate

Format SFTRI (rsa, usa) rd [MODx] [abc] [UM]

SFTLI (rsa, usa) rd [MODx] [abc] [UM]

Purpose • To shift the contents of register rsa to the right (SFTRI) o
to the left (SFTLI) by the amount specified in the unsigne
shift amount (usa). The assembler converts the unsigne
shift amount provided in the command line into a two’s
complement shift amount (tcsa) for compatibility with the
hardware.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa shift to the right or left based on
contents of the usa field. See “Shift amount chart for SFT,
SFTLI, and SFTRI” on page 414. Bits made vacant by the sh
operation are filled with 0’s.

Flags The Overflow flag is not affected by this operation.

 Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 rd
U
M

abc rsa MODx
A
E

tcsa

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 255

Arithmetic Logic Unit Instructions

-

r-

s of

nds
nd

 do

sec-
SUB Subtract Registers

Format SUB (rsa, rsb) rd [MODx] [abc] [AE] [UM]

Purpose • To subtract one register from another using modulo arith
metic.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsb are subtracted from the content
register rsa. The result is placed in register rd.

Flags The Overflow flag is set when the signs of the source opera
differ, and the sign of the result matches the sign of the seco
operand. Operations specifying the modulo arithmetic option
not affect this flag.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
256 Version 4.1 MXT3010 Reference Manual

SUBI Subtract Register and Immediate

A
L

U

In
st

ru
ct

io
ns

d-

r-

d
lo

nds
nd

 do

sec-
SUBI Subtract Register and Immediate

Format SUBI (rsa, usi) rd [MODx] [abc] [UM]

Purpose • To subtract an immediate value from a register using mo
ulo arithmetic.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The 6-bit unsigned immediate (usi) operand is zero extende
and subtracted from the contents of register rsa, using modu
arithmetic. The result is placed in register rd.

Flags The Overflow flag is set when the signs of the source opera
differ, and the sign of the result matches the sign of the seco
operand. Operations specifying the modulo arithmetic option
not affect this flag.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 rd
U
M

abc rsa MODx usi

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 257

Arithmetic Logic Unit Instructions

s-

r-

n-

ci-
),
t.

sec-
XOR XOR Registers

Format XOR (rsa, rsb) rd [MODx] [abc] [AE] [UM]

Purpose • To perform a Boolean exclusive-OR function on two regi
ters using modulo arithmetic.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The contents of register rsa are logically XOR’ed with the co
tents of register rsb, bit for bit using modulo arithmetic. The
result is placed in register rd. For example, if MOD16 is spe
fied, bits rd(15:4) are taken from bits rsa(15:4) while bit rd(3:0
the modulo field, is taken from the Arithmetic Logic Unit resul

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 rd
U
M

abc rsa MODx
A
E

rsb

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

AE “The Always Execute field (AE)” on page 231

UM “The Update Memory field (UM)” on page 228
258 Version 4.1 MXT3010 Reference Manual

XORI XOR Register and Immediate

A
L

U

In
st

ru
ct

io
ns

r-

’ed
ced

sec-
XORI XOR Register and Immediate

Format XORI (rsa, si) rd [abc] [UM]

Purpose • To perform a Boolean XOR function on a register and an
immediate operand.

• To alter program flow based on the result of the ALU ope
ation (abc field) and to update a linked location in Fast
Memory with the operation result (UM field).

Description The 10-bit immediate operand (si) is sign extended and XOR
with the contents of register rsa, bit for bit. The results are pla
in register rd.

Flags The Overflow flag is not affected by this operation.

Fields A summary of all fields for ALU instructions appears on
page 413. Detailed descriptions for each field appear in the
tions cited in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 rd
U
M

abc rsa si

Field For Further Information, See

MODx “Modulo arithmetic” on page 226

abc “The ALU Branch Condition field (abc)” on page 229

UM “The Update Memory field (UM)” on page 228
MXT3010 Reference Manual Version 4.1 259

Arithmetic Logic Unit Instructions
260 Version 4.1 MXT3010 Reference Manual

CHAPTER 11 Branch Instructions

all

by

ne-
n.
This chapter describes the suite of Branch instructions provided in
the MXT3010. Branch instructions are one of two methods pro-
vided in the MXT3010 for altering the sequential execution
stream of the SWAN processor. The other method uses branch
condition fields in the ALU instructions to modify instruction
execution flow. For details on ALU branching, see “Arithmetic
Logic Unit Instructions” on page 223.

The first part of this chapter presents information common to
branch instructions. This information includes target address,
condition codes, committed slot execution, subroutine linking,
and counter system operations. Following the general branch
information is a list of specific branch instructions, organized
name. For each branch instruction, there is a description, its m
monic, purpose, and any information specific to that instructio
MXT3010 Reference Manual Version 4.1 261

Branch Instructions

al
e
ich
ns

n-

e
nd
General Branch instruction information

Introduction

A simplified version of the basic MXT3010 Branch instruction
format is shown below:

FIGURE 82.Branch instruction format (simplified)

Basic Branch instructions allow the programmer to specify con-
ditional branching decisions which will alter the instruction exe-
cution sequence based on the state of the MXT3010’s intern
subsystems and certain external subsystems. The point to b
tested is specified by the ESS field, and the state (1 or 0) wh
will cause a branch is specified by the s-bit. Branch instructio
can also be used to manipulate the UTOPIA port’s control
counters via the counter system operation (cso) field.

Target address

The branch target address is the address at which execution co
tinues if the specified branch condition is satisfied. The full
branch target address within Fast Memory is formed from th
Segment ID in the Instruction Base Address register (R53) a
the branch target field.

FIGURE 83.Target address format in Fast Memory

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code ESS# s C cso -

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment ID Branch Target Field 0 0
262 Version 4.1 MXT3010 Reference Manual

General Branch instruction information
MXT3010 Reference Manual Version 4.1 263

Segment ID The SWAN processor supports an instruction space of 128K
instructions. This 128K instruction space consists of 32 seg-
ments of 4K instructions each. A typical user code set fits within
one segment. The current segment ID (5 bits to represent one of
32 segments) is changed by writing a new segment number to
the Instruction Base Address register (R53).

Target Field The branch target field is a 12-bit field that specifies the absolute
word address within the current code segment (4096 words) at
which execution is to continue. The branch target field may be
specified in one of three manners, as indicated in the following
table:

Note 1:The Fast Memory shadow register is loaded with the first halfword
returned from memory during a Fast Memory read operation that
specifies the LNK Instruction Field Option. The target field in R58
represents an absolute address to branch to within the active segment.

Condition code (ESS Field)

When using a conditional branch, the programmer can specify
which bit in the External State Signals register (R42) is tested to
determine the outcome of the branch instruction. If no condition
code is specified, the assembler codes the ESS field as 1111, the
unconditional branch.

TABLE 54. Methods of specifying the Branch target field

Method Instructions Using This Method

As bits [11:0] of the instruction “BI Branch Immediate” on page 272
and “BIL Branch Immediate and Link”
on page 273

As bits [11:0] of the Fast Mem-
ory Shadow register (R58).
(Note 1)

“BF Branch Fast Memory Shadow
Register” on page 270 and “BFL
Branch Fast Memory Shadow Register
and Link” on page 271

As bits [11:0] of the Branch
register (R59)

“BR Branch Register” on page 274 and
“BRL Branch Register and Link” on
page 275

Branch Instructions
TABLE 55. External State Signals register (R42) bits

The logical state identifier (S-Bit)

In addition to specifying the condition code tested via the ESS
field, the programmer uses the logical state identifier, S, to indi-
cate which state of the specified condition code results in the
branch being taken.

TABLE 56. Use of the S-bit

If the programmer knows that a bit will usually be asserted or
will usually be de-asserted, he or she can optimize software for
the expected branch condition by carefully selecting the logical
state that will cause the branch to be taken.

Committed slot instructions

Execution The SWAN processor implements a delayed branching tech-
nique in order to prevent pipeline delays during branch opera-
tions. When the SWAN processor encounters a branch

ESS Condition ESS Condition

ESS0 ICSI_A ESS8 Sparse event register, bit OR

ESS1 ICSI_B ESS9 RXBUSY counter > 0

ESS2 TXFULL counter ≤ 2 ESS10 TXFULL counter = full

ESS3 RXBUSY counter ≥ 4 ESS11 DMA1 Output or Queue
stage busy

ESS4 Assigned Cell Flag ESS12 DMA2 Output or Queue
stage busy

ESS5 CSS operation in progress ESS13 DMA1 Queue stage busy

ESS6 CIN_BSY ESS14 DMA2 Queue stage busy

ESS7 COUT_RDY blank Unconditional Branch

S Branch Result

0 Branch is taken if condition = 0

1 Branch is taken if condition = 1
264 Version 4.1 MXT3010 Reference Manual

General Branch instruction information

kes
de,

the
-bit

or,
Nul-
t or

ify/
 is
the
instruction, the instruction immediately following the branch,
referred to as the committed slot instruction, is always fetched
and entered into the execution pipeline. The programmer can
control whether the committed slot instruction is executed or not
by specifying options in the branch instruction.

The Conditional operator (C-bit)

If a conditional branch operation is specified, and the tested con-
dition code is satisfied (branch is taken), the committed slot
instruction is executed, and the instruction at the branch target
address follows the committed slot instruction.

If a conditional branch operation is specified, and the tested con-
dition code is not satisfied (branch is not taken), the execution
of the committed slot instruction is determined by the presence
of the Conditional operator, C, in the branch instruction. If the
Conditional operator is absent, the committed slot instruction is
executed. If the Conditional operator is present, the committed
slot instruction is not executed, that is, the committed slot
becomes “conditional” as well. In essence, this operator ma
the committed slot instruction part of the targeted branch co
rather than part of the locally sequenced code.

The Nullify
operator

If no ESS condition code is specified, the assembler codes
ESS field as 1111 (the unconditional branch) and codes the S
as zero (0). In this case, the execution of the committed slot
instruction is determined by the presence of the Nullify operat
N, in the branch instruction. The absence or presence of the
lify operator codes the Conditional operator (C-bit) as absen
present respectively. If the Nullify/Conditional operator is
absent, the committed slot instruction is executed. If the Null
Conditional operator is present, the committed slot instruction
not executed. Table 57 on page 266 summarizes the use of
conditional and nullify operators.
MXT3010 Reference Manual Version 4.1 265

Branch Instructions
TABLE 57. Use of the Conditional and Nullify operators

Committed slot
restrictions for
Branch
instructions

The committed slot instruction of a branch should not be another
branch unless the Nullify operator is specified with the first
branch. In addition, the committed slot instruction of a branch
should not contain an ALU instruction with an abc field.

Examples TABLE 58. Example - conditional branch, condition satisfied

Type of
Branch

Condition
Code
Satisfied?

Applicable
Operator

Operator
Existence

Committed
Slot
Instruction
Executed?

Conditional Yes None N/A Yes

Conditional No Conditional Absent Yes

Conditional No Conditional Present No

Unconditional N/A Nullify Absent Yes

Unconditional N/A Nullify Present No

Address Instruction Flow Description

0010 ADD r0,r1,r2 0010

0011 BI 0x045 ESS1/1 0011 Branch to 0x045 if condition ESS1
= 1, assume success

0012 ADD r3,r4,r5 0012 Committed slot instruction is exe-
cuted

0013 ADD r6,r7,r8

… …

0045 ADD r9,r10,r11 0045 Execution continues at branch tar-
get address
266 Version 4.1 MXT3010 Reference Manual

General Branch instruction information
TABLE 59. Example - conditional branch, condition not met

TABLE 60. Example - unconditional branch

TABLE 61. Example - conditional operator, conditional branch,
condition satisfied

Address Instruction Flow Description

0010 ADD r0,r1,r2 0010

0011 BI 0x045 ESS1/1 0011 Branch to 0x045 if condition
ESS1 = 1, assume failure

0012 ADD r3,r4,r5 0012 Committed slot instruction is
executed

0013 ADD r6,r7,r8 0013 No branch occurs, sequential
execution continues

… … …

0045 ADD r9,r10,r11

Address Instruction Flow Description

0010 ADD r0,r1,r2 0010

0011 BI 0x045 0011 Branch to 0x045, no condition code
specified

0012 ADD r3,r4,r5 0012 Committed slot instruction is exe-
cuted

0013 ADD r6,r7,r8

… …

0045 ADD r9,r10,r11 0045 Execution continues at branch tar-
get address

Address Instruction Flow Description

0010 ADD r0,r1,r2 0010

0011 BI 0x045 ESS1/1/C 0011 Branch to 0x045 if condition
ESS1 = 1, assume success

0012 ADD r3,r4,r5 0012 Committed slot instruction is
executed

0013 ADD r6,r7,r8

… …

0045 ADD r9,r10,r11 0045 Sequential execution continues
at branch target address
MXT3010 Reference Manual Version 4.1 267

Branch Instructions

rn

ow
ch

n,
s

 a
c-

lue.
TABLE 62. Example - conditional operator, conditional branch,
condition not satisfied

Subroutine linking

The Branch Fast Memory (BF), Branch Immediate (BI), and
Branch Register (BR) instructions are each available with a
return address linking option. If the linking form of the branch
instruction is specified (BFL, BIL, and BRL instructions), the
address of the instruction immediately following the branch’s
committed slot is saved in the Branch register (R59). To retu
from the subroutine at a later time, the SWAN processor can
execute a Branch Register (BR) instruction that returns the fl
of execution to continue from the point where the linked bran
occurred.

The Branch register (R59) is only written if the branch is take
and is always written with the branch address instruction plu
two, even if the branch was an unconditional branch with the
nullify operator.

Restrictions for
BFL,BIL, BR,
BRL, and the
Branch register
(R59)

Whenever the Branch register (R59) is modified, whether by
load instruction directed to that register or by a branch instru
tion with linking, the modified value is not immediately avail-
able for use. Thus, any instruction which follows the
modification must have at least one intervening instruction
(after the modifier) to avoid using a stale Branch register va

Address Instruction Flow Description

0010 ADD r0,r1,r2 0010

0011 BI 0x045 ESS1/1/
C

0011 Branch to 0x045 if condition
ESS1 = 1, assume failure

0012 ADD r3,r4,r5 Committed slot is nullified due to
C operator

0013 ADD r6,r7,r8 0013 Branch not taken, sequential exe-
cution continues

… … …

0045 ADD r9,r10,r11
268 Version 4.1 MXT3010 Reference Manual

General Branch instruction information
TABLE 63. Example - Branch with link, and return

Counter system operation

Branch instructions are used to implement all counter system
operations (CSO). These operations are used to increment and
decrement the UTOPIA port control counters TXBUSY,
TXFULL, RXBUSY, and RXFULL. A CSO can be specified as
an optional operator on any branch instruction.

If a conditional branch instruction is executed, any CSO speci-
fied is unconditional. That is, the counter manipulation is per-
formed without regard to whether the condition code is satisfied
and the branch is taken.

TABLE 64. The CSO field

Address Instruction Flow Description

0010 ADD r0,r1,r2 0010

0011 BIL 0x045 ESS1/1 0011 Branch to 0x045 if condition
ESS1 = 1, assume success

0012 ADD r3,r4,r5 0012 Committed slot is executed,
0x013=>R59

0013 ADD r6,r7,r8

… …

0045 ADD r9,r10,r11 0045 R59=0x013

0046 BR N 0046 Branch register specified return to
saved address

0047 FOO Committed slot not executed due
to N operator

0013 Sequential execution returns to
saved link address

CSO Hex / Binary Value Operation

DRXBUSY E0 / 1110 0000 Decrement RXBUSY counter

DRXFULL E1 / 1110 0001 Decrement RXFULL counter

ITXBUSY C2 / 1100 0010 Increment TXBUSY counter

ITXFULL C3 / 1100 0011 Increment TXFULL counter
MXT3010 Reference Manual Version 4.1 269

Branch Instructions

ls,
rs

a
ess.

ion
 a
ister.

til
ast

e

sec-
BF Branch Fast Memory Shadow
Register

Format BF [ESS#/(0|1)/[C]] [cso] [N]

Purpose • To allow for changes in program flow using conditional
branching that tests the MXT3010’s external state signa
and to increment and decrement UTOPIA control counte

• To provide a service routine address as the first word in
channel descriptor, and then branch to this service addr

Description Based on the result of a specified condition code, this instruct
can modify the SWAN processor’s sequential flow resulting in
branch to the target address in the Fast Memory Shadow reg

Subsequent BF instructions will stall the SWAN processor un
the first word is read from Fast Memory and copied into the F
Memory Shadow (FMSR) register. If an LMFM instruction is
executed, the FMSR is loaded only if the LMFM specified th
LNK IFO with a non-zero halfword field. After the FMSR has
been loaded by the LMFM, software can read and write the
FMSR and use it as a second Branch register.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the
tions cited in the following table

Restrictions See “Committed slot restrictions for Branch instructions” on
page 266.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 ESS# s C cso 0 0 0 0 0 0 0 0 0 0 0 0

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264

C “The Conditional operator (C-bit)” on page 265

cso “Counter system operation” on page 269
270 Version 4.1 MXT3010 Reference Manual

BFL Branch Fast Memory Shadow Register and Link

B
ra

nc
h

In
st

ru
ct

io
ns

ls,
rs.

a
ess.

e

).
es-
rns

sec-
BFL Branch Fast Memory Shadow
Register and Link

Format BFL [ESS#/(0|1)/[C]] [cso] [N]

Purpose • To allow for changes in program flow using conditional
branching that tests the MXT3010’s external state signa
and to increment and decrement UTOPIA control counte

• To provide a service routine address as the first word in
channel descriptor, and then branch to this service addr

• To provide subroutine linking capability. (See “Subroutin
linking” on page 268.)

Description The BFL instruction is identical to the BF instruction, except
that the address of the instruction immediately following the
branch’s committed slot is saved in the Branch register (R59
To return from the subroutine at a later time, the SWAN proc
sor can execute a Branch Register (BR) instruction that retu
the flow of execution to continue from the point where the
linked branch occurred.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the
tions cited in the following table

Restrictions See “Committed slot restrictions for Branch instructions” on
page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 ESS# s C cso 0 0 0 0 0 0 0 0 0 0 0 0

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264

C “The Conditional operator (C-bit)” on page 265

cso “Counter system operation” on page 269
MXT3010 Reference Manual Version 4.1 271

Branch Instructions

ls,
rs.

:0]

sec-
BI Branch Immediate

Format BI wadr [ESS#/(0|1)/[C]] [cso] [N]

Purpose • To allow for changes in program flow using conditional
branching that tests the MXT3010’s external state signa
and to increment and decrement UTOPIA control counte

Description Based on the results of the specified condition code, the BI
instruction can modify the SWAN processor’s sequential flow
resulting in a branch to the target address in the wadr field [11
of the BI instruction.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the
tions cited in the following table

Restrictions See “Committed slot restrictions for Branch instructions” on
page 266.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 ESS# s C cso word address (wadr)

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264

C “The Conditional operator (C-bit)” on page 265

cso “Counter system operation” on page 269

wadr “Target address” on page 262
272 Version 4.1 MXT3010 Reference Manual

BIL Branch Immediate and Link

B
ra

nc
h

In
st

ru
ct

io
ns

ls,
rs.

e

at

).
es-
rns

sec-
BIL Branch Immediate and Link

Format BIL wadr [ESS#/(0|1)/[C]] [cso] [N]

Purpose • To allow for changes in program flow using conditional
branching that tests the MXT3010’s external state signa
and to increment and decrement UTOPIA control counte

• To provide subroutine linking capability. (See “Subroutin
linking” on page 268.)

Description The BIL instruction is identical to the BI instruction, except th
the address of the instruction immediately following the
branch’s committed slot is saved in the Branch register (R59
To return from the subroutine at a later time, the SWAN proc
sor can execute a Branch Register (BR) instruction that retu
the flow of execution to continue from the point where the
linked branch occurred.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the
tions cited in the following table

Restrictions See “Committed slot restrictions for Branch instructions” on
page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 ESS# s C cso word address (wadr)

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264

C “The Conditional operator (C-bit)” on page 265

cso “Counter system operation” on page 269

wadr “Target address” on page 262
MXT3010 Reference Manual Version 4.1 273

Branch Instructions

ls,
rs.

sec-
BR Branch Register

Format BR [ESS#/(0|1)/[C]] [cso] [N]

Purpose • To allow for changes in program flow using conditional
branching that tests the MXT3010’s external state signa
and to increment and decrement UTOPIA control counte

• To branch to and return from subroutine operations.

Description Based on the results of the specified condition code, the BR
instruction can modify the SWAN processor’s sequential flow
resulting in a branch to the target address in the Branch register
(R59).

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the
tions cited in the following table

Restrictions See “Committed slot restrictions for Branch instructions” on
page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 ESS# s C cso 0 0 0 0 0 0 0 0 0 0 0 0

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264

C “The Conditional operator (C-bit)” on page 265

cso “Counter system operation” on page 269

wadr “Target address” on page 262
274 Version 4.1 MXT3010 Reference Manual

BRL Branch Register and Link

B
ra

nc
h

In
st

ru
ct

io
ns

ls,
rs.

e

t

).
es-
rns

sec-
BRL Branch Register and Link

Format BRL [ESS#/(0|1)/[C]] [cso] [N]

Purpose • To allow for changes in program flow using conditional
branching that tests the MXT3010’s external state signa
and to increment and decrement UTOPIA control counte

• To branch to and return from subroutine operations.

• To provide subroutine linking capability. (See “Subroutin
linking” on page 268.)

Description The BRL instruction is identical to the BR instruction, excep
that the address of the instruction immediately following the
branch’s committed slot is saved in the Branch register (R59
To return from the subroutine at a later time, the SWAN proc
sor can execute a Branch Register (BR) instruction that retu
the flow of execution to continue from the point where the
linked branch occurred.

Fields A summary of all fields for Branch instructions appears on
page 416. Detailed descriptions for each field appear in the
tions cited in the following table

Restrictions See “Committed slot restrictions for Branch instructions” on
page 266 and “Restrictions for BFL,BIL, BR, BRL, and the
Branch register (R59)” on page 268.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 ESS# s C cso 0 0 0 0 0 0 0 0 0 0 0 0

Field For Further Information, See

ESS# “External State Signals register (R42) bits” on page 264

s “The logical state identifier (S-Bit)” on page 264

C “The Conditional operator (C-bit)” on page 265

cso “Counter system operation” on page 269

wadr “Target address” on page 262
MXT3010 Reference Manual Version 4.1 275

Branch Instructions
276 Version 4.1 MXT3010 Reference Manual

CHAPTER 12 Cell Scheduling Instructions
This chapter describes the Cell Scheduling instructions, POPC,
POPF, PUSHC, and PUSHF. Each command reference page
includes the instruction name, its mnemonic, format, purpose,
descriptions, fields, and restrictions.

Cell Scheduling System target address

All Cell Scheduling instructions utilize the rsb field to specify a
register that contains a 14-bit target address for the Cell Schedul-
ing operation. The target address specifies a location within the
Connection ID table, and via logic within the MXT3010, a corre-
sponding bit position in the Scoreboard. The complete Fast Mem-
ory halfword address (FADRS [19:1]) used to access the
Connection ID table is formed using FADRS [19] hardwired to
zero (0), the base address information from bits [11:8] of the Cell
Scheduling System Configuration register(R60) as FADRS
[18:15] and the target address from rsb [13:0] as FADRS [14:1].
See Table 6 on page 44.
MXT3010 Reference Manual Version 4.1 277

Cell Scheduling Instructions

3)
POPC Service Schedule

Format POPC rd @rsb

Purpose To identify the Connection ID associated with a specified loca-
tion in the Cell Scheduling System Scoreboard and to determine
whether a connection is scheduled for servicing at that location.

Description The target address specified by register rsb is translated into a
Cell Scheduling System Scoreboard bit position. The state of
that bit is copied into the Assigned Cell flag (see below), and the
bit location is cleared. In addition, the Connection ID table is
accessed in Fast Memory, and the associated Connection ID is
read into the destination register, rd.

Assigned Cell flag The Assigned Cell flag output is connected to ESS4 (R42). The
SWAN processor can test to see if a connection was scheduled
to become active in the current cell slot time by testing ESS4. If
ESS4 is set to 1, then a connection was scheduled for the current
cell time and the processor uses the Connection ID returned
from the Connection ID table to access the Channel Descriptor
for the connection. If the ESS4 is set to 0, no cell is scheduled
for transmission at the cell current time, and the Connection ID
shown in rd is stale information and should be ignored. For more
information on the Cell Scheduling System, see CHAPTER 3
"The Cell Scheduling System" on page 27.

Restrictions The instruction immediately following POPC must not access
the destination register, rd. If a subsequent instruction accesses
rd, the correct value is read, but a stall may occur. See “Register
access rules” on page 22.

The MXT3010 does not support hardware registers (R32-R6
as the destination of a POPC instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 rd 0 000 000000 0 0 0 0 0 rsb
278 Version 4.1 MXT3010 Reference Manual

POPF POP Fast

C
SS

In

st
ru

ct
io

ns
POPF POP Fast

Format POPF rd @rsb

Purpose To manipulate the Cell Scheduling System. This instruction
manipulates the internal Scoreboards without accessing the
Connection ID Table in Fast Memory. POPF can improve the
speed of scheduling algorithms that scan multiple Scoreboard
entries before connecting. By eliminating unnecessary accesses
to Fast Memory, memory read/write latencies are avoided.

Description The target address specified by register rsb is translated into a
Cell Scheduling System Scoreboard bit position. The state of
that bit is copied into the Assigned Cell flag (see below), and the
bit location is cleared. The Fast Memory is not accessed, and
location rd is not modified.

Assigned Cell flag The Assigned Cell flag output is connected to ESS4 (R42). The
SWAN processor can test to see if a connection was scheduled
to become active in the current cell slot time by testing ESS4. If
ESS4 is set to 1, then a connection was scheduled for the current
cell time. If the ESS4 is set to 0, no cell is scheduled for trans-
mission at the cell current time. For more information on the
Cell Scheduling System, see CHAPTER 3 "The Cell Scheduling
System" on page 27.

Restrictions There must be at least three instructions between one POPF
instruction and another POPF instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 rd 0 001 000000 0 0 0 0 0 rsb
MXT3010 Reference Manual Version 4.1 279

Cell Scheduling Instructions
PUSHC Schedule

Format PUSHC rsa @rsb

Purpose To dispatch a scheduling request to the Cell Scheduling System.

Description The target address specified by register rsb is translated into a
Cell Scheduling System Scoreboard bit position. The Cell
Scheduling System searches for the first available location in the
Scoreboard at or after that bit position and sets the bit for that
location to reserve it. It also writes the 16-bit user-defined Con-
nection ID from the rsa register into the Connection ID table
location corresponding to the reserved Scoreboard bit. The
address contained in rsb is the earliest that the connection can
become active.

During a PUSHC instruction, if the Scoreboard is full, the Cell
Scheduling System returns an error by setting bit 15 in the CSS
Configuration register (R60). For more information on the Cell
Scheduling System, see CHAPTER 3 "The Cell Scheduling Sys-
tem" on page 27.

Note Execution of this instruction updates the Scheduled Address
register (R61).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 000000 0 000 rsa 0 0 0 0 0 rsb

280 Version 4.1 MXT3010 Reference Manual

PUSHF Push Fast

C
SS

In

st
ru

ct
io

ns
PUSHF Push Fast

Format PUSHF rsa @rsb

Purpose To manipulate the Cell Scheduling System. This instruction
manipulates the internal Scoreboards without accessing the
Connection ID table in Fast Memory. PUSHF can improve the
speed of scheduling algorithms that rely on reserved Scoreboard
locations when fixing bandwidth connections. By eliminating
unnecessary accesses to Fast Memory, memory read/write laten-
cies are avoided.

Description The target address specified by register rsb is translated into a
Cell Scheduling System Scoreboard bit position. The Cell
Scheduling System searches for the first available location in the
Scoreboard at or after that bit position and sets the bit for that
location to reserve it. No new Connection ID is written into the
Connection ID table location corresponding to the reserved
Scoreboard bit. Rather, the existing Connection ID at that loca-
tion will be scheduled. The address contained in rsb is the earli-
est that the connection can become active.

During a PUSHF instruction, if the Scoreboard is full, the Cell
Scheduling System returns an error by setting bit 15 in the CSS
Configuration register (R60). For more information on the Cell
Scheduling System, see CHAPTER 3 "The Cell Scheduling Sys-
tem" on page 27.

Note Execution of this instruction updates the Scheduled Address
register (R61).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 000000 0 001 rsa 0 0 0 0 0 rsb

MXT3010 Reference Manual Version 4.1 281

Cell Scheduling Instructions
282 Version 4.1 MXT3010 Reference Manual

CHAPTER 13 Direct Memory Access
Instructions
This chapter describes the Direct Memory Access (DMA) instruc-
tions, beginning with information common to all DMA instruc-
tions. This information includes op codes, byte counts, and
control fields. Following the general information is a list of spe-
cific DMA instructions, organized by name. For each instruction,
there is a description, its mnemonic, purpose, and any information
specific to that instruction.
MXT3010 Reference Manual Version 4.1 283

Direct Memory Access Instructions
General DMA instruction information

Introduction

A simplified version of the basic MXT3010 DMA instruction
format is shown below:

FIGURE 84.DMA instruction format (simplified)

Basic DMA instructions allow the programmer to add read or
write DMA transfer requests to either the Port1 or Port2 com-
mand queue by selecting the appropriate Op Code. The length of
the transfer and various control features are determined by the
Byte Count (BC) Instruction Field Option and the Control field.
In addition, a feature is provided which permits the Alternate
Byte Count register (R52) to provide control of the transfer
length and other features. The rla, rsa, and rsb fields identify the
registers used in the transfer.

Op codes for DMA instructions

The following table applies:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code i BC rla rsa Control rsb

TABLE 65. Op codes for DMA instructions

Bits [31:29] Bits [28:27] Description

011 00 DMA Read, Port1 (DMA1R instruction)

011 01 DMA Write, Port1 (DMA1W instruction)

011 10 DMA Read, Port2 (DMA2R instruction)

011 11 DMA Write, Port2 (DMA2W instruction)
284 Version 4.1 MXT3010 Reference Manual

General DMA instruction information

-
on

l
 are

re-

he
ed
The RLA increment bit (i-bit)

The MXT3010 DMA instructions include an option that pro-
vides an automatic increment to the target rla register upon dis-
patch of the DMA instruction. The increment is 64 modulo 512
and saves the SWAN processor the code needed to advance the
rla register to the next cell buffer in the Cell Buffer RAM follow-
ing each DMA transfer. To make this option available, Target Bit
0101 (“DMA Plus Control”) in the Mode Configuration Regis
ter (R42) must be set to 1. (See “R42-write Mode Configurati
register” on page 201.)

Use of bit 26 The instruction used and the status of the DMA Plus Contro
affect how bit 26 is coded by the assembler. The possibilities
shown in the table.

Timing
considerations for
accessing rla

If the instruction immediately following a DMA operation with
rla increment accesses the rla register, it will see the non-inc
mented value. If the second following instruction accesses t
rla register, it will see the incremented or the non-increment

TABLE 66. Use of Bit 26

Instruction
Used

DMA Plus
Control Bits [26] Description

DMA1R
DMA1W
DMA2R
DMA2W

Disabled x This bit is available as the highest
order bit of the byte count field

DMA1R
DMA1W
DMA2R
DMA2W

Enabled 0 Do not increment the rla register

DMA1R+
DMA1W+
DMA2R+
DMA2W+

Enabled 1 Increment rla register upon com-
pletion of DMA operation
MXT3010 Reference Manual Version 4.1 285

Direct Memory Access Instructions

to
er-
value depending on the correlation of pipeline stalls and the
DMA commitment. After the second following instruction, all
further instructions will see the incremented rla value.

Note: The information in this table differs from that in Table 3 on page 23
and “Avoiding stale rla values” on page 315 because those refer
simple read/write operation, whereas this table refers to DMA op
ation.

The Byte Count instruction field option (BC)

The Byte Count field indicates the length1 of the DMA transfer
in accordance with the following table:

TABLE 67. Timing chart for accessing rla after a DMA

Instruction rla value

DMA instruction non-incremented value

Instruction following the DMA non-incremented value

Second instruction following the DMA indeterminate

Third instruction following the DMA incremented value

Subsequent instructions following the DMA incremented value

1. See “Use of odd BC values” on page 287.

TABLE 68. Use of the BC field

Without DMA Plus Enabled With DMA Plus Enabled

Bits [26:19] Description Bits [25:19] Description

0 Transfer 0 bytes. 0 Transfer 0 bytes.

1 Transfer 1 byte 1 Transfer 1 byte

2 Transfer 2 bytes 2 Transfer 2 bytes

3 Transfer 3 bytes 3 Transfer 3 bytes

- - - -

127 Transfer 127 bytes 127 Transfer 127 bytes

- -
Transfers larger than 127 bytes are
not available when the DMA Plus
Control is enabled.

255 Transfer 255 bytes

Transfers larger than 255 bytes are
not available.
286 Version 4.1 MXT3010 Reference Manual

General DMA instruction information

ns.
ill

The “Use Alternate Byte Count Register (R52)” Feature

If the programmer does not specify the BC/# Instruction Field
Option, the length of the transfer and the CRC treatment will be
controlled by the Alternate Byte Count/ID register (R52) rather
than by the BC field, CRCX, and CRCY bits in the instruction.

Use of odd BC values

The following restrictions apply to DMA operations using odd
BC values:

• DMA1R using BC = odd# transfers BC bytes

• DMA1W, DMA2R, DMA2W using BC = odd# transfers
BC-1 bytes.

The Port1 bus supports byte operations only on read operatio
The Port2 bus does not support byte operations at all, and w
always round down the BC field.

The Control instruction field option

Bits [9:5] of each DMA instruction are the Control field, which
has the following format:

FIGURE 85.Control field format)

Note:The CRCX, CRCY, and ST bits apply only to the DMA1R,
DMA1R+, DMA1W, and DMA1W+ instructions.

9 8 7 6 5

IBI CRCX CRCY POD ST
MXT3010 Reference Manual Version 4.1 287

Direct Memory Access Instructions

-
d

r
The bit definitions for the Control byte are given in the follow-
ing table:

TABLE 69. Use of the Control byte

Bit Name Function

9 IBI The Instruction Byte count Indicator is an internal
flag used by the MXT3010. If the programmer has
specified a BC/# value, the MXT3010 sets IBI and
uses the BC/# and CRCX/CRCY values to control
the transfer. If the programmer has not specified a
BC/# value, the MXT3010 clears IBI and uses the
values in R52 to control the transfer.

8 CRCX If clear, CRC32 Partial Result registers are not modi-
fied. If set, a CRC32 Partial Result is generated based
on CRC32PRX register’s value and the result is
deposited into CRC32PRX (R44/R45).

7 CRCY If clear, CRC32 Partial Result registers are not modi
fied. If set, a CRC32 Partial Result is generated base
on CRC32PRY register’s value and the result is
deposited into CRC32PRY (R46/R47)

6 POD If clear, no UTOPIA Port Post Operative Directive
(POD) is performed. If set, TXBUSY is incremented
upon the completion of DMA reads, and RXFULL is
decremented upon completion of DMA writes.

5 ST If clear, the DMA is performed in normal fashion. If
set, a “Silent Transfer” is performed. In a Silent
Transfer, a DMA is performed which includes CRC
calculation, but does not require data from the host o
other host intervention.
288 Version 4.1 MXT3010 Reference Manual

DMA1R Direct Memory Operation - Port1 Read

D
M

A

In
st

ru
ct

io
ns

ry
ll

 fol-

ster,
DMA1R Direct Memory Operation - Port1 Read
DMA1R+ Direct Memory+ Operation - Port1 Read

Formats DMA1R rsa/rsb, rla [BC/#][CRC {X,Y}][POD][ST]
DMA1R+ rsa/rsb, rla [BC/#][CRC {X,Y}][POD][ST]

Purpose To initiate direct memory read operations on Port1

Description Execution of this instruction causes a DMA read operation to be
written into the Port1 DMA command queue.

Fields The register selected by the rla field contains the Cell Buffer
RAM address. See “Register load address (rla field)” on
page 314. The rsa and rsb fields determine the Port1 memo
address as shown in Table 24 on page 111. A summary of a
fields for DMA instructions appears on page 417. Detailed
descriptions for each field appear in the sections cited in the
lowing table.

 Notes: For use of bit 26, see “Use of bit 26” on page 285.

To make the DMA1R+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla regi
see “Timing considerations for accessing rla” on page 285.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 BC rla rsa Control rsb

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285

BC “The Byte Count instruction field option (BC)” on page 286

Control “The Control instruction field option” on page 287
MXT3010 Reference Manual Version 4.1 289

Direct Memory Access Instructions

ry
ll

 fol-

ster,
DMA1W Direct Memory Operation - Port1 Write
DMA1W+ Direct Memory+ Operation - Port1 Write

Format DMA1W rsa/rsb, rla [BC/#][CRC {X,Y}][POD][ST]
DMA1W rsa/rsb, rla [BC/#][CRC {X,Y}][POD][ST]

Purpose To initiate direct memory write operations on Port1

Description Execution of this instruction causes a DMA write operation to
be written into the Port1 DMA command queue.

Fields The register selected by the rla field contains the Cell Buffer
RAM address. See “Register load address (rla field)” on
page 314. The rsa and rsb fields determine the Port1 memo
address as shown in Table 24 on page 111. A summary of a
fields for DMA instructions appears on page 417. Detailed
descriptions for each field appear in the sections cited in the
lowing table.

Notes: For use of bit 26, see “Use of bit 26” on page 285.

To make the DMA1W+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla regi
see “Timing considerations for accessing rla” on page 285.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 BC rla rsa Control rsb

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285

BC “The Byte Count instruction field option (BC)” on page 286

Control “The Control instruction field option” on page 287
290 Version 4.1 MXT3010 Reference Manual

DMA2R Direct Memory Operation - Port2 Read

D
M

A

In
st

ru
ct

io
ns

ry

rs
he

ster,
DMA2R Direct Memory Operation - Port2 Read
DMA2R+ Direct Memory+ Operation - Port2 Read

Format DMA2R rsa/rsb, rla [BC/#][POD]
DMA2R+ rsa/rsb, rla [BC/#][POD]

Purpose To initiate direct memory read operations on Port2

Description Execution of this instruction causes a DMA read operation to be
written into the Port2 DMA command queue.

Fields The register selected by the rla field contains the Cell Buffer
RAM address. See “Register load address (rla field)” on
page 314. The rsa and rsb fields determine the Port2 memo
address as shown in Table 29 on page 137 and Table 31 on
page 139. A summary of all fields for DMA instructions appea
on page 417. Detailed descriptions for each field appear in t
sections cited in the following table.

 Notes: For use of bit 26, see “Use of bit 26” on page 285.

To make the DMA2R+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla regi
see “Timing considerations for accessing rla” on page 285.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 BC rla rsa Control rsb

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285

BC “The Byte Count instruction field option (BC)” on page 286

Control “The Control instruction field option” on page 287
MXT3010 Reference Manual Version 4.1 291

Direct Memory Access Instructions

ry

rs
he

ster,
DMA2W Direct Memory Operation - Port2 Write
DMA2W+ Direct Memory+ Operation - Port2 Write

Format DMA2W rsa/rsb, rla [BC/#][POD]
DMA2W rsa/rsb, rla [BC/#][POD]

Purpose To initiate direct memory write operations on Port2

Description Execution of this instruction causes a DMA write operation to
be written into the Port2 DMA command queue.

Fields The register selected by the rla field contains the Cell Buffer
RAM address. See “Register load address (rla field)” on
page 314. The rsa and rsb fields determine the Port2 memo
address as shown in Table 29 on page 137 and Table 31 on
page 139. A summary of all fields for DMA instructions appea
on page 417. Detailed descriptions for each field appear in t
sections cited in the following table.

 Notes: For use of bit 26, see “Use of bit 26” on page 285.

To make the DMA2W+ instruction available, Target Bit 5
(“DMA Plus Control”) in the Mode Configuration Register
(R42) must be set to 1.

For timing considerations concerning accesses to the rla regi
see “Timing considerations for accessing rla” on page 285.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 BC rla rsa Control rsb

Field For Further Information, See

i “The RLA increment bit (i-bit)” on page 285

BC “The Byte Count instruction field option (BC)” on page 286

Control “The Control instruction field option” on page 287
292 Version 4.1 MXT3010 Reference Manual

CHAPTER 14 Load and Store Fast Memory
Instructions
This chapter describes the Load and instructions for Fast Memory.
Each command reference page includes the instruction name, its
mnemonic, purpose, and any information specific to that instruc-
tion. The common information includes descriptions, fields, and
notes.
MXT3010 Reference Manual Version 4.1 293

Load and Store Fast Memory Instructions

1,
en
o-
nto

y
 in
c-
 to
te
o-
General information for Load and Store Fast Memory
instructions

Introduction

Simplified versions of the MXT3010 Load and Store instruction
formats for Fast Memory operations are shown below.

TABLE 70. Load Fast Memory instruction format

TABLE 71. Store Fast Memory instruction format

Loading The software tables and data structures stored in Fast Memory
are accessed by the SWAN processor through the LMFM (Load
Multiple from Fast Memory) instruction. The SWAN processor
uses the #HW field to specify the number of halfwords to be
fetched and the rsa and rsb fields to specify the Fast Memory
byte address at which the transfer will begin. In response to the
LMFM instruction, the Fast Memory interface controller will
write the halfwords returned from memory into the SWAN’s
register file beginning with register rd and continuing with rd+
rd+2, etc. until the designated number of halfwords have be
transferred. Thus, the LMFM instruction allows the SWAN pr
cessor to transfer up to 16 halfwords from the Fast Memory i
the register file in a single instruction.

If the LNK instruction field option is specified, the fast memor
interface controller links the loaded registers to the locations
Fast Memory from which their contents were read. ALU instru
tions which modify these registers can force the modifications
be written back to Fast Memory by specifying the UM (upda
memory) option. Thus, the UM function allows the SWAN pr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code rd LNK 00 Z rsa #HW rsb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code 000000000 rsa #HW rsb
294 Version 4.1 MXT3010 Reference Manual

General information for Load and Store Fast Memory instructions

ry
ry

ry
lf-

ler
is-
on-

d”

d

im-
-

alf-
cessor to update the data structure in Fast Memory without exe-
cuting a dedicated Store instruction. In addition, use of the LNK
option also causes the first halfword read from memory to be
read into the Fast Memory Shadow Register (R58), where it can
be used by BF/BFL instructions. (See “BF Branch Fast Memo
Shadow Register” on page 270 and “BFL Branch Fast Memo
Shadow Register and Link” on page 271.)

Storing Fast Memory writes can be accomplished utilizing the memo
update function described above or by utilizing the Store ha
word to Fast Memory (SHFM) instruction. Execution of the
SHFM instruction causes the Fast Memory interface control
to write the halfword contained in the Fast Memory Data reg
ter (R56) into the halfword addressed by the byte address c
tained in registers rsa and rsb. A more powerful store
instruction, Store Register Halfword (SRH) is also available.
Further details are provided in “SRH Store Register Halfwor
on page 312.

Transfer size (the #HW field)

The #HW field specifies the number of 16-bit halfwords to loa
from, or store to, Fast Memory.

Restrictions If the LNK instruction field option is enabled, there are some
restrictions to the values that can be used in this field. See “L
itations on #HW when linking” on page 300. If the LNK instruc
tion field option is not enabled, any 0-16 halfword transfer is
permitted, but the programmer must ensure that a multiple h
word entity is aligned on a 4-byte boundary.
MXT3010 Reference Manual Version 4.1 295

Load and Store Fast Memory Instructions
Fast Memory address (the rsa and rsb fields)

Bits [3:0] of the register specified in the rsa field contain bits
[19:16] of the Fast Memory Byte Address at which transfers
begin. Bits [15:0] of the register specified in the rsb field contain
bits [15:0] of the Fast Memory Byte Address at which transfers
begin. This information is summarized in the following table:

Address masking (the Z-bit)

A masking option, the Z-bit, provides improved access for
aligned data structures. When set, this bit causes the least signif-
icant bits of the indicated rsb register to be masked out during
the Fast Memory accesses, effectively forcing the transfer to
start on an aligned structure boundary. When the Z-bit is clear,
no masking is done.

The number of bits masked to zero is determined by the choice
of destination register rd, as shown in the following table.

TABLE 72. Use of the rsa and rsb fields

Field Register Bits Used Function

rsa [3:0] Fast Memory Address (FADRS) [19:16]

rsb [15:0] Fast Memory Address (FADRS) [15:0]

TABLE 73. Use of the Z-bit

Z-bit Function

0 Data read from Fast Memory at rsa [3:0] | rsb [15:0]

1 Data read from Fast Memory at rsa [3:0] | rsb [15:n+1] | 0[n:0]

rd = 16 masks rsb [4:0]

rd = 24 masks rsb [3:0]

rd = 28 masks rsb [2:0]

rd = 30 masks rsb [1:0]

rd = 31 masks rsb [0]
296 Version 4.1 MXT3010 Reference Manual

General information for Load and Store Fast Memory instructions

ss

te

The Z-bit option permits an optimization to SWAN code for
accessing the Connection ID (CID)Table wherein CIDs may be
stored in such a manner that the retrieved CID value can be used
for both high and low Fast Memory address as rsa and rsb. This
enhancement can save several instructions in the critical PUSH/
POP code segments. Two examples are given to clarify the con-
cept.

Z-bit usage
example 1

Assume it is desired to access Fast Memory location 0x50000.

Normally, this would require that rsa contain 0x0005 and rsb
contain 0x0000. However, performing:

LMFM rd @ rsa/rsa 16HW Z

will produce the following address:

Use of the Z-bit option causes masking of [4:0], producing:

This is the desired address. Thus, this is a simplified example of
“CIDs may be stored in such a manner that the retrieved CID
value can be used for both high and low Fast Memory addre
as rsa and rsb.”

Z-bit usage
example 2

Channel descriptors are organized in Fast Memory in 32-by
aligned data structures starting at 0x20000 and ending at
0x7FFE0. Due to the 32-byte alignment, bits [4:0] of the first

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101 0000 0000 0000 0000

rsa rsb

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101 0000 0000 0000 0101

rsa rsa

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101 0000 0000 0000 0000

rsa rsa with [4:0] masked
MXT3010 Reference Manual Version 4.1 297

Load and Store Fast Memory Instructions
entry in a channel descriptor are always zero. Thus, sixteen bits
[20:5] uniquely define the first entry of each channel descriptor.
The MXT3010 constructs a Connection ID (CID) for each
descriptor by using bits [15:5] from the descriptor address as
CID bits [15:5] and using bits [20:16] from the descriptor
address as CID bits [4:0]. This creation of a unique 16-bit Con-
nection ID is important for use with the POPC instruction.

When a POPC instruction is used to determine whether a con-
nection has been scheduled at a particular scoreboard location,
and a connection has been scheduled, the Connection ID will be
returned in the rd register specified in the POPC instruction.

A typical channel descriptor address, the Connection ID created
from it, and the results of a POPC instruction are shown in Fig-
ure 86.

FIGURE 86.Z-bit usage example

Channel Descriptor Address in Fast Memory
Example: 0x3CAE0

0000 0000 0000 0011 1100 1010 1110 0000

1100 1010 1110 0011

1100 1010 111 0 0011

xxxx xxxx xxx0 0011 1100 1010 1110 0000

0 0000

mask

MXT3010 hardware creates the

address [15:5]|[20:16]

POPC rd@rsb
This instruction loads rd with the

LMFM r16@rd/rd 16HW Z
This instruction uses rd for both rsa and rsb

Connection ID by concatenating

but Z option zeroes the lower five bits

Connection ID from the table
298 Version 4.1 MXT3010 Reference Manual

General information for Load and Store Fast Memory instructions

00

ce

s
e

es

F/

7.
he

r
a

When an LMFM instruction is issued with the Z option enabled,
the contents of rd can be used for both the rsa and rsb registers.
As shown in the figure, specifying rd for both rsa and rsb, in con-
junction with the masking action caused by the Z option, re-cre-
ates the original channel descriptor address.

Destination register (the rd field)

The rd field specifies the destination register for the initial half-
word transfer. Subsequent halfwords will be transferred to rd+1,
rd+2, etc. The register specified in the rd field can be any regis-
ter, subject to the restrictions in “Choice of rd register” on
page 300 and “Limitations on #HW when linking” on page 3

Linking (the LNK bit)

If this bit is set, the linking option is enabled. As indicated
above, if the LNK option is enabled, the fast memory interfa
controller links the loaded registers to the locations in Fast
Memory from which their contents were read. ALU instruction
which modify these registers can force the modifications to b
written back to Fast Memory by specifying the UM (update
memory) option. In addition, use of the LNK option also caus
the first halfword read from memory to be read into the Fast
Memory Shadow Register (R58), where it can be used by B
BFL instructions.

Example of LNK
usage

Two very simplified channel descriptors are shown in Figure 8
In this example, P1_HI and P1_LO form a pointer to where t
next received cell on that VC should go, and CRC_HI and
CRC_LO are the accumulated CRC. Upon arrival of a cell fo
this particular VC (VC0 for example), the program performs
Load Multiple Fast Memory (LMFM) instruction, loading four
halfwords into four locations starting at rd= R28. If the LNK
MXT3010 Reference Manual Version 4.1 299

Load and Store Fast Memory Instructions
instruction field option is specified in the LMFM instruction,
and the contents of R29 are subsequently changed using an
instruction with an Update Memory (UM) option, the value of
P1_LO will be changed. This provides a convenient way to
update the pointer in response to arrival of a new cell.

Choice of rd
register

While the linking option can be used with any register desig-
nated as the destination register rd, registers R16, R24, R28,
R30, and R31 are most commonly used, as the MXT3010 logic
is optimized for memory updates using these registers. When a
hardware register (R32-R63) is used as the destination of an
LMFM instruction, loading takes an additional cycle compared
to loading a software register (R0-R31).

Limitations on
#HW when linking

The choice of rd has an effect on the number of subsequent loca-
tions that can be linked, and hence places a limit on the size of
the transfer (#HW). The following table applies:

Note 1: 0 HW is a legal transfer size. An LMFM operation specifying 0
HW can establish a link without actually loading information
from memory.

FIGURE 87.Simplified Channel Descriptors

Address Contents Loaded to VC

xxx00 P1_HI R28

0
xxx02 P1_LO R29

xxx04 CRC_HI R30

xxx06 CRC_LO R31

xxx08 P1_HI

1
xxx0A P1_LO

xxx0C CRC_HI

xxx0E CRC_LO

TABLE 74. Limits on #HW when linking to rd

rd Permissible Values of #HW

R16 16 or less

R24 8 or less

R28 4 or less

R30 2 or less

R31 1 or less (Note 1)
300 Version 4.1 MXT3010 Reference Manual

General information for Load and Store Fast Memory instructions

]”.
fol-
 on

is
e

0

Fast

r
As an aid to understanding the Update Memory feature when
used in conjunction with the LMFM instruction, and to under-
stand the data structure alignments required to make best use of
this feature, the following section provides a detailed explana-
tion of the logic used by the MXT3010 to accomplish the mem-
ory update function.

Generation of UM
addresses

In order to do a memory update to a linked location in the chan-
nel descriptor table1 in Fast Memory, the MXT3010 logic needs
to know the location of the desired channel descriptor within the
table, and the offset of the location to be updated within the
desired channel descriptor.

The least significant four bits of the destination register number
(in binary) are inverted and saved in hardware as a mask,
“lfm_adrs_mask [3:0]”. In addition to the mask, the linked
address is also saved in hardware as “lfm_linked_adrs [19:1
Masking is performed on the linked address to ensure that it
lows the memory alignment requirements shown in Table 75
page 304. The masking equation is as follows:

lfm_linked_adrs [19:1] = {rsa [3:0], rsb [15:5], (rsb [4:1] & rd [3:0])}

When a subsequent instruction with the UM option enabled
performed, the MXT3010 computes the address linked to th
register “exe_reg_dest[5:0]” as follows:

lfm_write_adrs[19:0] ={[lfm_linked_adrs [19:5],
(lfm_linked_adrs[4:1]|(exe_reg_dest[3:0]&lfm_adrs_mask)),
}

UM update
example

Let us assume that a channel descriptor has been stored in
Memory beginning at location 0x08010, and let us further
assume that an LMFM instruction has been issued to transfe

1. While this section specifically describes the channel descriptor table, the
principles involved apply to a linked location in any table in Fast Memory.
MXT3010 Reference Manual Version 4.1 301

Load and Store Fast Memory Instructions

e
,
rs

ify

nd-
four halfwords, with rd = R24. Example code to set up this situ-
ation is:

LIMD rsa, 0x000O

LIMD rsb, 0x8010

LMFM R24, rsa/rsb 6HW LNK

Presented as a figure, the result is:

Bits [19:0] for 0x8010 are 0000 1000 0000 0001 0000, so
“lfm_linked_adrs [19:1]” is 0000 1000 0000 0001 000-. The
destination register (rd) is R24, which in binary is 11000. Th
least significant four bits (1000) invert to be 0111 or 0x0007
which is stored as “lfm_adrs_mask [3:0]”. With these numbe
saved in hardware, the MXT3010 is ready for subsequent
instructions that manipulate any of these registers and spec
the Update memory (UM) option. An example of such an
instruction is the following:

ADDI R27, 1, R27 UM

In response to this instruction, the MXT3010 must not only
increment the value in R27, it must also update the correspo
ing Fast Memory location with the new incremented value.

FIGURE 88.Channel Descriptor for LMFM and UM example

Address Contents Loaded to

8010 STATUS_A R24

8012 STATUS_B R25

8014 P1_HI R26

8016 P1_LO R27

8018 CRC_HI R28

801A CRC_LO R29
302 Version 4.1 MXT3010 Reference Manual

General information for Load and Store Fast Memory instructions

1.

0

or-
t-
t-
.
st
 at

s

nts
ory.

ec-
The register that was updated is referred to in the hardware as
“exe_reg_dest[5:0]”. For R27, the binary value [5:0] is: 01101
Bits [3:0] are 1011. The equation to be solved is:

lfm_write_adrs[19:0} = [lfm_linked_adrs [19:05],
(lfm_linked_adrs[4:1]|(exe_reg_dest[3:0]&lfm_adrs_mask)),
}

The information known is:

And-ing exe_reg_dest[3:0] with lfm_adrs_mask gives 0011;
ing that with lfm_linked_address [4:1] gives 1011; concatena
ing that result with lfm_linked_address [19:5] and concatena
ing an LSB of 0 gives 0000 1000 0000 0001 0110 = 0x8016
Reference to Figure 88 on page 302 will confirm that the Fa
Memory location to updated when R27 is updated is indeed
address 0x8016.

Memory
alignment
requirements

The various and-ing, or-ing, inverting, and masking function
performed by the MXT3010 hardware to correctly generate
addresses for the Update Memory function place requireme
on the alignment of data structures constructed in Fast Mem
Specifically, to use the LMFM instruction with the LNK option
enabled, the following memory alignment requirements are r
ommended:

lfm_linked_address [19:0] 0000 1000 0000 0001 0000

lfm_linked_address [19:1] 0000 1000 0000 0001 000

lfm_linked_address [19:5] 0000 1000 0000 000

lfm_linked_address [4:1] 1000

exe_reg_dest[3:0] 1011

lfm_adrs_mask 0111
MXT3010 Reference Manual Version 4.1 303

Load and Store Fast Memory Instructions

g
he
ast

Memory
alignment
example

If the LMFM instruction is to be used with the LNK option
enabled, and the size of the transfer (#HW) is to be greater than
8 half-words, rd must be R16 (see “Limits on #HW when linkin
to rd” on page 300). If R16 is used, and subsequent use of t
UM feature is desired, the data structure being copied from F
Memory should be aligned to a 32-byte boundary.

TABLE 75. Memory alignment requirements

rd FADRS [4:0]

R16 00000

R24 X0000

R28 XX000

R30 XXX00

R31 XXXX0
304 Version 4.1 MXT3010 Reference Manual

Instructions for accelerating CRC operations

 for

n-
Instructions for accelerating CRC operations

The Store Register Halfword (SRH) instruction greatly acceler-
ates the handling of partial CRC results during AAL5 packet
segmentation or reassembly. Because DMA operations function
independently of SWAN code execution once they have been
started, firmware is able to start processing the next channel
descriptor in parallel with the DMA transfer (and CRC accumu-
lation) of the previous channel as soon as the DMA operation
has been committed for that previous channel. This parallelism
provides processing time to the SWAN that might otherwise be
wasted waiting for the transfer to complete. However, it is still
necessary to save the results of the partial CRC accumulation at
the conclusion of a DMA transfer. These partial results must be
saved in what is now the previously serviced channel descriptor.

If the SRH instruction is not used, the SWAN processor must
save the address of the channel descriptor in which the partial
results were to be stored, recover that address upon completion
of the DMA operation, and finally store the partial results at the
appropriate offset within the channel descriptor. This saving and
recovering process requires seven instructions per cell time in
each direction. Hence, use of the SRH instruction is highly rec-
ommended, as it eliminates the need for saving and recovering
the partial CRC address information.

At the time that a DMA read or write operation with CRCX or
CRCY indicated is initiated to Port 1, the MXT3010 automati-
cally stores the address contained in the internal FAST Memory
Link Address register into a temporary holding register. There
are two holding registers – one for CRCX operations and one
CRCY operations. Typically the FAST Memory Link Address
register (within the MXT3010 logic) will have the current Cha
nel Descriptor address. Thus, as a DMA1R with CRC or a
DMA1W with CRC is executed, the address of the current
Channel Descriptor is automatically set aside.
MXT3010 Reference Manual Version 4.1 305

Load and Store Fast Memory Instructions
Upon completion of the DMA transfer, the SRH instruction is
used to write the contents of the partial CRC registers (R44/ R45
or R46/ R47) to FAST Memory using the address contained in
either the CRCX holding register or the CRCY holding register
as the base address for the transfer. An offset can be specified
with the SRH instruction, allowing the partial results to be
placed at the appropriate field within the Channel Descriptor.

The SRH instruction is based on the Store Halfword to Fast
Memory (SHFM) instruction, and the SHFM instruction is now
a valid subset of the more flexible SRH instruction. In addition
to the rsa and rsb fields found in the SHFM instruction, the SRH
instruction has three special fields:

Alternate address (the adr field)

The adr field (bits [20:19] of the SRH instruction) specifies the
location from which the Fast Memory address is obtained. The
following table applies:

The valid entries for this field are CRCX and CRCY. If neither
is specified, the assembler codes bits [20:19] as 00 if no lsbs
field is specified, or as 01 if an lsbs field is specified. The lsbs
field is described on page 307.

TABLE 76. Use of the adr field

Bits [20:19] Function (Target Fast Memory Address is:)

00 rsa/rsb (same as SHFM instruction)

01 rsa/rsb with lsbs field substituted for address bits [4:0]

10 CRCX holding register with lsbs field appended

11 CRCY holding register with lsbs field appended
306 Version 4.1 MXT3010 Reference Manual

Instructions for accelerating CRC operations
Hardware register (reg field)

The reg field selects one of eight hardware registers that can be
written to Fast Memory. This is in contrast to the more limited
SHFM, where only the contents of the Fast Memory Data regis-
ter (R56) can be written to Fast Memory. The following table
applies:

Least significant bits (the lsbs field)

In adr mode 00 (SHFM compatibility mode), this field is
unused. In the other adr modes (01,10,11), lsbs contains the five
least significant bits of the target Fast Memory address. This is
not an index field; rather, it is a bit substitution field.

TABLE 77. Use of the reg field

Bits [20:19] Function (Register to be Written to Fast Memory)

000 Register R56 (same as SHFM instruction)

001 Register R37

010 Register R38

011 Register R39

100 Register R44

101 Register R45

110 Register R46

111 Register R47
MXT3010 Reference Manual Version 4.1 307

Load and Store Fast Memory Instructions

 to
e

l-

.
 and

 to
 a
-
 the
:

uc-
 R5.
LMFM Load Multiple from Fast Memory

Format: LMFM rd @rsa/rsb #HW [LNK]

Purpose • To initiate a burst transfer of data from Fast Memory
directly into the SWAN processor’s register file.

• To automatically link the data structure and the registers
reflect register modifications back to memory through th
Update Memory options with ALU instructions that modify
the loaded registers.

Description With the LMFM instruction, the Fast Memory interface contro
ler can initiate a block fetch operation to transfer #HW half-
words from Fast Memory directly into the CPU’s register file
The transfer begins at the address specified in registers rsa
rsb.

Restrictions When an LMFM instruction is executed, a sequential update
registers rd, rd+1, and subsequent registers, takes place. As
result, instructions following an LMFM must not access regis
ters that are in the process of being updated. Table 78 shows
register updating process for the following LMFM instruction

LMFM r2 r15/r16 4HW

In the example, move instructions are shown as typical instr
tions that might be used to access registers R2, R3, R4, and

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 rd LNK 00 Z rsa #HW 0 rsb
308 Version 4.1 MXT3010 Reference Manual

LMFM Load Multiple from Fast Memory

F
as

t M
em

or
y

In
st

ru
ct

io
ns
For registers R0:R15, the programmer must follow the sequen-
tial order shown or undefined results will occur. For example,
attempting to access register rd+1 immediately after the LMFM
will produce erroneous results.

For registers R16:R31, a register control scoreboarding system,
implemented in hardware, protects registers rd+1 and beyond.
This system introduces stalls if the access restrictions are not
followed. Since registers R16:R31 are intended for the manipu-
lation of channel descriptors, the register control scoreboarding
system simplifies the programming model.

Without LNK, any 0-16 halfword transfer is legal, but make sure
the burst transfer does not cross a 32-byte boundary.

Stalls Hardware interlocks stall the CPU if it tries to access a register
the Fast Memory Interface Controller is changing. The CPU
remains stalled until the Fast Memory Interface Controller
writes a new value into the register.

TABLE 78. Restrictions on access to rd registers after LMFM

Address

Status at time of instruction execution

Instruction rd (R2) rd+1 (R3) rd+2 (R4) rd+3 (R5)

0000 LMFM r2 r16/r17 4HW Changing Undefined Undefined Undefined

0004 MV r2 r17 Newa Changing Undefined Undefined

0008 MV r3 r18 New Newb Changing Undefined

000C MV r4 r19 New Newb Newb Changing

0010 MV r5 r20 New Newb Newb Newb

a. The MXT3010EP stalls for four internal clock cycles before executing the MV r2 r17 instruc-
tion to ensure that register rd has valid data. If desired, four instructions that do not access r2
through r5 can be inserted between the LMFM and the MV r2 r17 instruction.

b. Availability of new data at this time requires that access to rd has occurred since the LMFM.
MXT3010 Reference Manual Version 4.1 309

Load and Store Fast Memory Instructions
Fields Detailed descriptions for each field appear in the sections cited
in the following table.

Field For Further Information, See

#HW “Transfer size (the #HW field)” on page 295

rsa “Fast Memory address (the rsa and rsb fields)” on page 296

rsb “Fast Memory address (the rsa and rsb fields)” on page 296

Z-bit “Address masking (the Z-bit)” on page 296

rd “Destination register (the rd field)” on page 299

LNK-bit “Linking (the LNK bit)” on page 299
310 Version 4.1 MXT3010 Reference Manual

SHFM Store Halfword to Fast Memory

F
as

t M
em

or
y

In
st

ru
ct

io
ns

he
to

gis-

 a
t-

l

ted
SHFM Store Halfword to Fast Memory

Format SHFM @rsa/rsb

Purpose • To store a halfword to Fast Memory.

Description SHFM causes the Fast Memory interface controller to write t
halfword contained in the Fast Memory Data register(R56) in
the halfword addressed by the byte address contained in re
ters rsa and rsb.

The Fast Memory interface controller writes the halfword into
write buffer first so the SWAN processor can continue execu
ing.

Stalls A write buffer full stall occurs if the four deep write buffer is ful
when the SHFM instruction is executed.

Fields Detailed descriptions for each field appear in the sections ci
in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 000000000 rsa 00000 rsb

Field For Further Information, See

#HW “Transfer size (the #HW field)” on page 295

rsa “Fast Memory address (the rsa and rsb fields)” on page 296

rsb “Fast Memory address (the rsa and rsb fields)” on page 296
MXT3010 Reference Manual Version 4.1 311

Load and Store Fast Memory Instructions

l

s

H
g-

 An

ted

s
SRH Store Register Halfword

Format: SRH @reg [CRCXADR, CRCYADR, rsa/rsb] [lsbs/#]

Purpose: • To store a halfword to Fast Memory, using any of severa
registers as a direct source.

• To greatly accelerates the handling of partial CRC result
during AAL5 packet segmentation or reassembly.

Description: In typical use, upon completion of the DMA transfer, the SR
instruction is used to write the contents of the partial CRC re
isters (R44/ R45 or R46/ R47) to FAST Memory using the
address contained in either the CRCX holding register or the
CRCY holding register as the base address for the transfer.
offset can be specified with the SRH instruction, allowing the
partial results to be placed at the appropriate field within the
Channel Descriptor.

Fields Detailed descriptions for each field appear in the sections ci
in the following table.

Note By setting adr=00 and reg=000, the SRH instruction become
the original SHFM instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 00000 adr reg rsa lsbs rsb

Field For Further Information, See

adr “Alternate address (the adr field)” on page 306

reg “Hardware register (reg field)” on page 307

rsa “Fast Memory address (the rsa and rsb fields)” on page 296

lsbs “Least significant bits (the lsbs field)” on page 307

rsb “Fast Memory address (the rsa and rsb fields)” on page 296
312 Version 4.1 MXT3010 Reference Manual

CHAPTER 15 Load and Store Internal RAM
Instructions
This chapter describes the Load and Store instructions for internal
RAM, beginning with information common to all Load and Store
instructions. Following the general information is a list of specific
Load and Store instructions, organized by name. For each instruc-
tion, there is a description, its mnemonic, purpose, and any infor-
mation specific to that instruction.
MXT3010 Reference Manual Version 4.1 313

Load and Store Internal RAM Instructions
General information for Load and Store internal RAM
instructions

Introduction

Simplified versions of the MXT3010 Load and Store instruction
formats for internal RAM operations are shown below.

TABLE 79. Load internal RAM instruction format

TABLE 80. Store internal RAM instruction format

The Load and Store internal RAM instructions move data
between the SWAN register set and memory internal to the
MXT3010. The internal memories addressable by these instruc-
tions are the Cell Buffer RAM and the Cell Scheduling System
Scoreboard. The load and store (LD, ST) instructions move one
16-bit halfword between a specified register and a target half-
word address. The load and store double (LDD, STD) instruc-
tions move two 16-bit halfwords between two consecutive
registers and two consecutive target addresses. Load and Store
instructions that swap bytes and/or half-words are also avail-
able.

Register load address (rla field)

Choices for the
rla register

Four hardware registers and four fixed value registers can be
specified as the rla register. The hardware registers are R48,
R49, R50, and R51. The fixed value registers are GA, GB, GC,
and GD. The compiler codes the choice of rla into the 3-bit rla
field. The G registers point to different 64-byte blocks in gather
space (page 317). In many instances, this allows software to

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code rd 0 rla 0000 Swap IDX 00000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code 0000 Swap 0 rla rsa IDX 00000
314 Version 4.1 MXT3010 Reference Manual

General information for Load and Store internal RAM instructions

22.

ess.

 rla
x
d
access gather space without modifying one of the hardware reg-
isters.

TABLE 81. Use of the rla field

Avoiding stale rla
values

To prevent a stale value of the rla register from being used to
generate the internal RAM address, separate a load or store
instruction that uses R48, R49, R50, or R51 from a preceding
instruction that modifies the register by at least one instruction.
This intervening instruction cannot be an LD or LDD instruction
to a hardware register - see “Register access rules” on page

The index field (IDX)

This field can be used to index into a table from a base addr

Using IDX to calculate the target address

The target address is formed from the content of the specified
register and an immediate index value contained in the inde
field of the instruction. The index field, IDX, is exclusive-or-e
with the rla content; see Figure 89.

rla value Register selected Register content

000 R48 Variable

001 R49 Variable

010 R50 Variable

011 R51 Variable

100 GA 0x0400

101 GB 0x0420

110 GC 0x0440

111 GD 0x0460
MXT3010 Reference Manual Version 4.1 315

Load and Store Internal RAM Instructions
FIGURE 89.XOR operation between IDX and rla

The upper bits [15:06] of the rla content are unchanged, and bit
0 is forced to zero. As a result of this XOR function, the load or
store instruction can access any 16-bit halfword within the 64-
byte block addressed by the rla register by changing the value in
the IDX field and leaving the contents of the rla register
unchanged.

Note that although the index field is treated as a five-bit half-
word index, the value used in the SWAN assembler (IDX/#) is
always specified as a byte index and is transformed into a word
by the assembler. The IDX/# field can take even values from
IDX/0 to IDX/62. The assembler inserts the appropriate five-bit
value into the instruction field.

Selecting the Cell Buffer RAM or the Scoreboard

The target address selects the 16-bit halfword for a load or store
instruction, or the first of two consecutive 16-bit halfwords for
a load or store double instruction. The two internal RAMs that
can be accessed with these instructions are the Cell Buffer RAM
and the Cell Scheduling System Scoreboard. Bit 11 of the rla
register selects the RAM to be accessed.

 Bit 11 Internal RAM selected

0 Cell Buffer RAM

1 Cell Scheduling System Scoreboard

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0

rla

IDX/#

Target

0

316 Version 4.1 MXT3010 Reference Manual

General information for Load and Store internal RAM instructions
Cell Buffer RAM accesses

Selecting an
access method

The Cell Buffer RAM can be accessed with linear or gather
access methods. Bit 10 of the rla register selects the access
method of the Cell Buffer RAM; it does not affect the access
method for the Cell Scheduling System Scoreboard.

Linear method
accesses

In linear method accesses, the Cell Buffer RAM is treated as a
simple contiguous memory 1024 bytes in length. Bits [9:1] of
the target address select the 16-bit halfword within this space.

Gather method
accesses

Since the cells stored in the Cell Buffer RAM are 52 or 56 bytes
in length, the last eight bytes of each 64-byte section of the Cell
Buffer RAM are normally unused. In gather method accesses,
the last eight bytes of each 64-byte section appear as a contigu-
ous 128-byte block of memory. The first 16-bit halfword of this
block is at address 0x0400 of the gather address method. The
last 16-bit halfword is at address 0x047E. Figure 90 illustrates
this addressing method. Thus, gather access recovers discontin-
uous regions of Cell Buffer RAM memory into one continuous
address space. This is not additional space, but rather a method
of making use of small pieces of existing space.

 Bit 10 Cell Buffer RAM method selected

0 Linear

1 Gather
MXT3010 Reference Manual Version 4.1 317

Load and Store Internal RAM Instructions
FIGURE 90.Gather method accesses

 Cell Scheduling System Scoreboard accesses

The Cell Scheduling System Scoreboard is a 16Kbit memory
accessed as 512, 32-bit words. With two exceptions, do not
modify the Scoreboard content with these instructions. Rather,
use the Cell Scheduling System instructions (PUSHC, POPC,
PUSHF, POPF) to maintain coherency of the Scoreboard con-
tent with other Cell Scheduling System mechanisms. The two
exceptions when load (LD, LDD) and store (STD1) instructions
can be used are:

1. When initially clearing the scoreboard

1. There is no support for 16-bit writes to the Scoreboard. Use only STD
instructions when writing to the Scoreboard. Do not use ST.

Cell Store 0

Cell Store 1

Cell Store 15

0x0000

0x0038
0x0040

0x0078
0x0080

0x03C0
0x03B8

0x0400
0x03F8

0x0400
0x0408
0x0410

0x0480
0x047E
318 Version 4.1 MXT3010 Reference Manual

Byte swap support
2. When using portions the scoreboard space for applications
other than call scheduling

Byte swap support

The load and store instructions provide a programmable func-
tion for swapping bytes in half-word and word data structures
for systems with mixed big-endian and little-endian entities. The
instructions perform byte swapping on either half-words (16-
bit) or words (32-bit) as the data is read from Cell Buffer RAM
memory (load) or written to Cell Buffer RAM memory (store).

The Swap field

Bits [11:10] of Load instructions and bits [21:20] of Store
instructions provide a Swap field. Two swap byte and swap half-
word functions can be asserted for any LD, LDD, ST, or STD
instruction that accesses the Cell Buffer RAM. These functions
are not defined for the internal Scoreboard memory. Although
all combinations of swap byte and swap halfword functions are
valid in the SWAN core, not all combinations are useful. The
syntax and instruction fields are the same for the byte swapping
instructions as for the ordinary load and store instructions.
MXT3010 Reference Manual Version 4.1 319

Load and Store Internal RAM Instructions
The following tables list the most useful byte-swapping load and
store instructions.

TABLE 82. Byte-swapping Load instructions

TABLE 83. Byte-swapping Store instructions

Instruction
Bits
[11:10]

Source
addr

Dest
addr

Source
data

Dest
data Function

LD r0 GA 00 0x400 r0 aa55 aa55 Normal regis-
ter load

LDSB r0 GA 01 0x400 r0 aa55 55aa Byte swap 16-
bit operand and
load register

LDD r0 GA 00 0x400
0x402

r0
r1

aa55
bb66

aa55
bb66

Normal double
register load

LDDSBH r0 GA 11 0x400
0x402

r1
r0

aa55
bb66

66bb
55aa

Byte swap 32-
bit operand and
load register

LDDSB r0 GA 01 0x400
0x402

r0
r1

aa55
bb66

55aa
66bb

Byte swap two
16-bit operands
and load regis-
ters

Instruction
Bits
[21:20]

Source
addr

Dest
addr

Source
data

Dest
data Function

ST r0 GA 00 r0 0x400 aa55 aa55 Normal register
store

STSB r0 GA 01 r0 0x400 aa55 55aa Byte swap 16-bit
operand and reg-
ister store

STD r0 GA 00 r0
r1

0x400
0x402

aa55
bb66

aa55
bb66

Normal double
register store

STDSBH r0 GA 11 r1
r0

0x400
0x402

aa55
bb66

66bb
55aa

Byte swap 32-bit
operand and store
register

STDSB r0 GA 01 r0
r1

0x400
0x402

aa55
bb66

55aa
66bb

Byte swap two
16-bit operands
and store regis-
ters
320 Version 4.1 MXT3010 Reference Manual

LD Load Register

In
te

rn
al

 R
A

M

In
st

ru
ct

io
ns

.

e

,

ore
-
ned

.

ted
LD Load Register

Format LD rd @rla [IDX/#]

Purpose Use LD to read a 16-bit halfword from an internal memory.

Description The content of register rla and the Index field are used to form a
target source address in internal memory. The memory is read
and register rd is loaded with the result.

Notes IDX/# must be specified as a byte index value even though bit 0
is ignored.

LD instructions which perform byte-swaps and/or half-word-
swaps are also available. See “Byte swap support” on page 319

Restrictions apply to the use of LD instructions with hardwar
registers. See “Register access rules” on page 22.

Stalls If the Cell Buffer RAM is unavailable due to concurrent Port1
UTOPIA Port, and Port2 Cell Buffer RAM accesses, the CPU
stalls if it tries to access the destination register of the LD bef
its data is returned. The CPU can continue executing instruc
tions as long as it does not try to access rd before rd is retur
from the Cell Buffer RAM. To guarantee the best overall
throughput, separate Cell Buffer RAM loads and instructions
that access the loaded data by two or more instruction slots

Fields Detailed descriptions for each field appear in the sections ci
in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 rd 0 rla 0000 Swap IDX 00000

Field For Further Information, See

Swap “The Swap field” on page 319

IDX “The index field (IDX)” on page 315
MXT3010 Reference Manual Version 4.1 321

Load and Store Internal RAM Instructions

re

,

ore
-
ned

.

ted
LDD Load Double Register

Format LDD rd @rla [IDX/#]

Purpose Use LDD to read two 16-bit halfwords from internal memory.

Description The content of register rla and the Index field are used to form a
target source address in internal memory. The memory is read
and register rd is loaded with the result. Register rd+1 is also
loaded with a 16-bit halfword read from internal memory. The
internal memory address for this halfword is obtained by exclu-
sive-or-ing 0x0002 with the calculated target address.

Notes IDX/# must be specified as a byte index value even though bit 0
is ignored.

Instructions that perform byte-swaps and/or half-word-swaps
are also available. See “Byte swap support” on page 319.

Restrictions apply to the use of LDD instructions with hardwa
registers. See “Register access rules” on page 22.

Stalls If the Cell Buffer RAM is unavailable due to concurrent Port1
UTOPIA Port, and Port2 Cell Buffer RAM accesses, the CPU
stalls if it tries to access the destination register of the LD bef
its data is returned. The CPU can continue executing instruc
tions as long as it does not try to access rd before rd is retur
from the Cell Buffer RAM. To guarantee the best overall
throughput, separate Cell Buffer RAM loads and instructions
that access the loaded data by two or more instruction slots

Fields Detailed descriptions for each field appear in the sections ci
in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 rd 0 rla 0000 Swap IDX 00000

Field For Further Information, See

Swap “The Swap field” on page 319

IDX “The index field (IDX)” on page 315
322 Version 4.1 MXT3010 Reference Manual

ST Store Register

In
te

rn
al

 R
A

M

In
st

ru
ct

io
ns

.

-

lls

 not

n.

ted

ess
 the
ntity.
ST Store Register

Format ST rsa @rla [IDX/#]

Purpose Use ST to write a 16-bit halfword to internal memory.

Description The content of register rla and the Index field are used to form a
target address in internal memory. The content of register rsa is
written to this memory location.

Notes IDX/# must be specified as a byte index value even though bit 0
is ignored.

ST instructions which perform byte-swaps and/or half-word-
swaps are also available. See “Byte swap support” on page 319

Stalls All Cell Buffer RAM writes are written into a write buffer. If the
Cell Buffer RAM is unavailable due to concurrent Port1, UTO
PIA port, and Port2 Cell Buffer RAM accesses, the CPU sta
if it tries to write to the Cell Buffer RAM while the write buffer
is busy. The CPU can execute instructions as long as it does
try to write to the Cell Buffer RAM while the write buffer is
busy. The write buffer can hold a single ST or STD instructio

Fields Detailed descriptions for each field appear in the sections ci
in the following table.

Restrictions Since this is a 16-bit instruction, it should not be used to acc
space in the Scoreboard RAM unless the program performs
save and restore operations necessary to access a 32-bit qua
Use STD instead.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 000000 Swap 0 rla rsa IDX 00000

Field For Further Information, See

Swap “The Swap field” on page 319

IDX “The index field (IDX)” on page 315
MXT3010 Reference Manual Version 4.1 323

Load and Store Internal RAM Instructions

-

lls

 not

n.

ted
STD Store Double Register

Format STD rsa/rsb @rla [IDX/#]

Purpose Use STD to write two 16-bit halfwords into internal memory.

Description The content of register rla and the Index field are used to form a
target address in internal memory. The content of register rsa is
written to this memory location. The content of register rsb is
also written to internal memory. The memory address for this
halfword is obtained by exclusive-or ring 0x0002 with the cal-
culated target address.

Notes IDX/# must be specified as a byte index value even though bit 0
is ignored.

Versions of this instruction which perform byte-swaps and/or
half-word-swaps are also available. See “Byte swap support” on
page 319.

Stalls All Cell Buffer RAM writes are written into a write buffer. If the
Cell Buffer RAM is unavailable due to concurrent Port1, UTO
PIA port, and Port2 Cell Buffer RAM accesses, the CPU sta
if it tries to write to the Cell Buffer RAM while the write buffer
is busy. The CPU can execute instructions as long as it does
try to write to the Cell Buffer RAM while the write buffer is
busy. The write buffer can hold a single ST or STD instructio

Fields Detailed descriptions for each field appear in the sections ci
in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0000 Swap 0 rla rsa IDX rsb

Field For Further Information, See

Swap “The Swap field” on page 319

IDX “The index field (IDX)” on page 315
324 Version 4.1 MXT3010 Reference Manual

CHAPTER 16 Swan Instruction Reference
Examples
This chapter provides examples for the following instructions:

• Add and Subtract

• Branch

• Logical

• Load and Store

• Shift

Also provided is a section of miscellaneous examples.
MXT3010 Reference Manual Version 4.1 325

Swan Instruction Reference Examples
Add and Subtract examples

The Add and Subtract examples include:

Formats The examples in this section use the ADD, ADDI, OR and SUB
instructions, which have the following formats:

ADD (rsa, rsb) rd [MODx][abc][UM]

ADDI (rsa, usi) rd [MODx][abc][UM]

OR (rsa, rsb) rd [MODx][abc][UM]

SUB (rsa, rsb) rd [MODx][abc][UM]

16-bit arithmetic ADDI (R12, 23) R4

The unsigned immediate, 23 decimal, is zero extended and
added to the contents of R12. The result is placed into R4. The
Overflow flag register is set if an overflow results from the oper-
ation.

Modulo arithmetic ADD (R8, R9) R10 MOD64, UM

The contents of R8 are added to the contents of R9. The result is
placed into R10. Since MOD64 arithmetic is specified, the
results are a combination of the ALU result and R8 source bits.
R10(15:6) are taken from R8(15:6) while R10(5:0) are taken
from the ALU result bits(5:0). The final result of the operation
updates Fast Memory because the update memory (UM) option
is specified. The Overflow flag register remains unchanged
when modulo arithmetic is used.

• 16-bit arithmetic • ALU branching

• Modulo arithmetic
326 Version 4.1 MXT3010 Reference Manual

Add and Subtract examples
ALU branching .loc 0x0000

ADDI (R11, 0x001A) R18 MOD32, BZ

OR (R0, R1) R2

BI $RECOVER

NOP

OR (R5, R6) R7

OR (R5, R6) R7

The constant 0x001A is added to the contents of R11. Since
MOD32 arithmetic is specified, the result is a combination of
the ALU result and R11 source bits. R18(15:5) are taken from
R11(15:5) while R18(4:0) are taken from the ALU result (4:0).
If bits (4:0) of R18 are zero, the branch is taken, regardless of
the state of R18(15:5). The branch results in program flow of
0x0000, 0x0001, 0x0004, 0x0005. If bits (4:0) of R18 are not
zero, the branch is not taken and program flow proceeds as
0x0000, 0x0001, 0x0002, 0x0003. The instructions at 0x0004
and 0x0005 are fetched but not executed. The Overflow flag reg-
ister remains unchanged when modulo arithmetic is used. If the
always execute (AE) instruction field option (IFO) was included
with the ADDI instruction, 0x0004 and 0x0005 are executed
even if the branch condition is false.
MXT3010 Reference Manual Version 4.1 327

Swan Instruction Reference Examples

Branch examples

The Branch examples include:

Formats The examples in this section use the ADD, BFL, BI, BIL, BRL,
LIMD, and OR instructions, which have the following formats:

ADD (rsa, rsb) rd [MODx][abc][UM]

BFL [ESS#/(0|1)/[C]][(cso)][N]

BI wadr [ESS#/(0|1)/[C]][(cso)][N]

BIL wadr [ESS#/(0|1)/[C]][(cso)][N]

BRL [ESS#/(0|1)/[C]][(cso)][N]

LIMD rd, li [UM]

OR (rsa, rsb) rd [MODx][abc][UM]

Branching and
the committed
slot

BI 0x024A ESS10/1/C

ADD R0, R1, R2

Branch to address 0x024A if External State Signal ESS10 is set
to “1.” Execute the committed slot instruction (ADD) only if the
branch is taken (/C).

Branch with link BIL $SCHEDULE ESS10/1/C

ADD R0, R1, R2

OR R2, R3, R4

• Branching and the commit-
ted slot

• Branch with counter
control

• Branch with link • Branch with shadow
address
328 Version 4.1 MXT3010 Reference Manual

Branch examples

ly
f the
n.

uc-

w
d

irst
ss of

 (the

Branch to the subroutine $SCHEDULE if External State Signal
ESS10 is set to “1.” Execute the committed slot instruction on
if the branch is taken. Save the return address (the address o
OR instruction) in register R59, but only if the branch is take

Branch with
counter control

BI 0x0333 ITXBUSY

ADD R0, R1, R2

Branch to address 0x0333. Execute the committed slot instr
tion. The ITXBUSY operation increments the UTOPIA Port's
TXBUSY counter.

Branch with
shadow address

BFL

ADD R0, R1, R2

OR R2, R3, R4

Branch to the address contained in the Fast Memory Shado
Register, unconditionally following execution of the committe
slot instruction. Stall if a LMFM with the LNK IFO specified is
active or pending but has yet to return the first word to the F
Word Shadow Register. Save the return address (the addre
the OR instruction) in register R59.

BIL $SERVICE ESS1/0 DRXFULL

ADD R0, R1, R2

OR R2, R3, R4

Branch to the subroutine $SERVICE if External State Signal
ESS1 is set to “0.” Execute the committed slot instruction
whether or not the branch is taken. Save the return address
address of the OR instruction) in register R59, but only if the
branch is taken. Decrement the UTOPIA Port’s RXFULL
counter.

.loc 0x0000

LIMD R59, 0x0010

LIMD R59, 0x0020

BRL

NOP
MXT3010 Reference Manual Version 4.1 329

Swan Instruction Reference Examples
.loc 0x0004

MV R59, R1

.loc 0x0010

BRL

MV R59, R0

The first BRL branches to address 0x0010 because the second
LIMD has not updated R59 by the time the branch accesses R59.
Consecutive LIMD and BRL instructions must be separated by
one instruction for the modification to take effect in time. The
BRL at location 0x0010 causes R59 to be loaded with the return
address, which is location 0x0004. therefore, the BRL at loca-
tion 0x0010 branches to locations 0x0004. R0 contains 0x0004
because the second BRL has not updated R59 by the time the
MV is executed. R1 contains 0x0012 because R59 has been
updated by the BRL by the time the MV instruction at 0x0004 is
executed.
330 Version 4.1 MXT3010 Reference Manual

Load and Store Fast Memory examples
Load and Store Fast Memory examples

Formats The examples in this section use the LMFM, SHFM, and SRH
instructions, which have the following formats:

LMFM rd @ras/rsb #HW [LNK]

SHFM @ rsa/rsb

SRH @rsa/rsb [adr] [reg] [lsbs]

Loading from
Fast Memory

LMFM R16 @R10/R11 16HW LNK

Sixteen 16-bit halfwords are copied from Fast Memory to regis-
ters R16 through R31. Bits [19:16] of the Fast Memory address
come from R10 bits [3:0], and bits [15:0] come from R11 [15:0].
Links are created such that any change to one of these registers
is subsequently replicated in the corresponding Fast Memory
location if the change was made by an instruction utilizing the
Update Memory (UM) option.

Storing into Fast
Memory

SHFM @ R16/R17

The Fast Memory controller writes the halfword contained in
the Fast Memory byte register (R56) into the halfword
addressed by the byte address contained in registers R16 and
R17.

SRH R44 CRCXADR LSBS/10

The Fast Memory controller writes the CRC partial result half-
word contained in R44 into the halfword 10 bytes beyond the
address contained in the CRCX address holding register.
MXT3010 Reference Manual Version 4.1 331

Swan Instruction Reference Examples
Load and Store Internal RAM examples

Formats The examples in this section use the LD, LDD, ST, and STD
instructions, which have the following formats:

LD rd @rla [IDX/#]

LDD rd @rla [IDX/#]

ST rsa @rla [IDX/#]

STD rsa/rsb @rla [IDX/#]

Loading from
Internal RAM

LD R13 @R48 IDX/10

The contents of register R48 and the Index field (in this case 10
bytes) are used to form the source address in internal memory.
R13 is loaded with the contents of the memory location pointed
to by R48, offset by 10.

IDX/# must be specified as a byte index value even though bit 0
is ignored. Register rd must be a software register (R0-R31).

LDD R13 @R48 IDX/10

The contents of register R48 and the Index field (in this case 10
bytes) are used to form the source address in internal memory.
The memory is read and register R13 is loaded with the result.
Register R14 is also loaded with a 16-bit halfword read from
internal memory because this is a Load double instruction. The
internal memory address for this halfword is obtained by exclu-
sive-or-ing 0x0002 with the calculated target address.

ST R10 @R49 IDX/20

The content of register R49 and the Index field (in this case 20
bytes) are used to form a target address in internal memory. The
content of register R10 is written to this memory location.
332 Version 4.1 MXT3010 Reference Manual

Load and Store Internal RAM examples
STD R10/R11 @R49 IDX/20

Description The content of register rla and the Index field are used to form a
target address in internal memory. The content of register R10 is
written to this memory location. The content of register R11 is
also written to internal memory because this is a Store Double
instruction. The memory address for this halfword is obtained
by exclusive-or ring 0x0002 with the calculated target address.
MXT3010 Reference Manual Version 4.1 333

Swan Instruction Reference Examples

he

e

 to

 of
.

 is
.
on
Logical examples

Formats The examples in this section use the AND, OR, and XORI
instructions, which have the following formats:

AND (rsa, rsb) rd [MODx][abc][AE][UM]

OR (rsa, rsb) rd [MODx][abc][AE][UM]

XORI (rsa, si) rd [abc][UM]

Using the AND
Instruction

AND R8, R9, R16 UM

The contents if R8 are AND’ed with the contents of R9. The
result is placed into R16. The result is also written back into t
Fast Memory location linked to R16.

Using the OR
instruction

OR R12, R13, R4

The contents if R12 are OR’ed with the contents of R13. Th
result is placed into R4.

Using the XORI
instruction

XORI R12, 0x007F, R4 BZ

The contents if R12 are XOR’ed with 0x007F. The result is
placed into R4. If the result is zero, program control is passed
the instruction four instruction slots away. If the result is not
zero, sequential program flow occurs although a stall penalty
two cycles is incurred due to the incorrect branch prediction

Using the AND
instruction with
MOD and abc
fields

AND R8, R9, R16 MOD64 BZ

The contents if R8 are AND’ed with the contents of R9. The
result, MOD64, is placed into R16. This implies that R8[15:5]
combined with the ALU result bits [5:0] and written into R16
More importantly, the conditional branch is then only based
bits[5:0] of the result rather than on the entire result.
334 Version 4.1 MXT3010 Reference Manual

Shift examples

s.
Shift examples

The Shift examples include:

Formats The examples in this section use the SFT, SFTA, SFTC, SFTCI,
SFTLI, and SFTRI instructions, which have the following for-
mats:

SFT (rsa, rsb) rd [MODx][abc][UM]

SFTA (rsa, rsb) rd [MODx][abc][UM]

SFTC (rsa, rsb) rd [MODx][abc][UM]

SFTCI (rsa, usa) rd [MODx][abc][UM]

SFTLI (rsa, usa) rd [MODx][abc][UM]

SFTRI (rsa, usa) rd [MODx][abc][UM]

General case SFT R8, R9, R10

The contents of R8 shifts to the either the right or the left, based
on the value of R9[4:0]. The result is placed in R10. All vacated
bit positions are filled with 0’s. The Overflow flag registers is
not modified.

Shift right if R9[4:0] = 10011xb, R8 is shifted to the right by 13 positions.

Right shift amount calculation:

Absolute Value of 10011 is: 01100xb + 1 = 1101xb = 13

Shift left if R9[4:0] = 00011xb, R8 is shifted to the left by three position

Circular shifts SFTC R8, R9, R10

• Shift right

• Shift left
MXT3010 Reference Manual Version 4.1 335

Swan Instruction Reference Examples

 all
ht

e
nd

.

The contents of R8 shifts in a circular/rotational fashion to the
left by the amount specified in R9[3:0]. The shift direction/sign
bit R9[4] is ignored because the SFTC and SFTCI instructions
shift only to the left. Bits shifted out of R8[15] are shifted into
bit position 0, and so on. The result is placed into R10.

Arithmetic shifts SFTA R8, R9, R10

The contents of R8 shifts to the right, based on the contents of
bits [3:0] of R9. The shift direction/sign bit R9[4] is ignored
because the SFTA and SFTAI instructions shift only to the right.
The beginning value of R8[15], the sign bit, is copied into all
vacated positions.

Immediate shifts SFTLI R16, 7, R17

The contents of R16 shift to the left by seven positions, with all
vacated bits are filled with 0’s. To accomplish a left shift by
seven positions, the assembler places 00111xb into the SSA
field.

Shift Amount = 7 = 00111xb

The assembler places 00111xb into the SSA field

SFTRI R16, 7, R17

The contents of R16 shift to the right by seven positions, with
vacated bits are filled with 0’s. However, to accomplish a rig
shift by seven positions, the assembler must place the two’s
complement representation into the SSA field. Therefore, th
assembler converts seven into its two’s complement value a
places that value in the SSA field as follows:

Shift Amount = 7 = 00111xb

Two’s complement representation is 11000xb + 1 = 11001xb

11001xb is placed by the assembler into the SSA field
336 Version 4.1 MXT3010 Reference Manual

Shift examples
SFTCI R9, 7, R10

The contents of R8 shifts in a circular/rotational fashion to the
left by the seven positions. Bits shifted out of bit position 15 are
shifted into bit position 0, and so on. The result is placed into
R10.
MXT3010 Reference Manual Version 4.1 337

Swan Instruction Reference Examples
Miscellaneous examples

Formats The examples in this section use the CMP, CMPP, FLS, LIMD,
MAX, and MIN instructions, which have the following formats:

CMP (rsa, rsb) [abc][AE]

CMPP (rsa, rsb) [abc][AE]

FLS rd [abc][UM]

LIMD rd, li [UM]

MAX (rsa, rsb) rd [MODx][abc][AE][UM]

MIN (rsa, rsb) rd [MODx][abc][AE][UM]

Using CMP and
CMPP

CMPP R6, R7, BAGB

The contents of R6 are compared to the contents of R7. The
results from the previous compare (CMPP) are also factored into
the A>B? decision. If the previous compare operation indicated
A>B, the branch is taken regardless of the results of the present
compare operation. If the previous compare operation indicated
A < B, the branch is not taken regardless of the results of the
present compare operation. If the previous compare operation
indicated A=B, the decision to branch is made based on the
results of the current compare operation.

CMP R4, R5

The contents of R4 are compared to the contents of R5. Since no
Branch Condition was specified, the results are logged for future
use.

32-bit compare
operation example

CMP #RARRIVAL_TIME_HI, #REARLIEST_ALLOWD_HI

CMPP #RARRIVAL_TIME_LO, #REARLIEST_ALLOWD_LO BAGEB

BI $DISCARD_CELL

NOP
338 Version 4.1 MXT3010 Reference Manual

Miscellaneous examples
64-bit compare
operation example

CMP #RARRIVAL_TIME_64, #REARLIEST_ALLOWD_64

CMPP #RARRIVAL_TIME_48, #REARLIEST_ALLOWD_48

CMPP #RARRIVAL_TIME_32, #REARLIEST_ALLOWD_32

CMPP #RARRIVAL_TIME_16, #REARLIEST_ALLOWD_16 BAGEB

Using FLS FLS R9, R10, BGEZ

The 2^e (exponential) position of the last bit set in R9 is written
into R10. For example, if bit 15 of R9 is set (the MSB), FLS
writes 0x000F into R10. In the example above, the state of bits
14:0 does not affect the result. If bit0 of R9 is the only bit set,
0x0000 is written into R10. If no bit is set, 0x8000 is written into
R10 allowing for a test of a negative result to determine whether
or not a bit was set. The test is performed by the BGEZ, which
branches only if the result is greater or equal to zero.

Using LIMD LIMD R8, 0x67FC

Load Register R8 with the 16-bit value 0x67FC.

Using MAX and
MIN

MAX R8, R9, R17

For the purpose of the MAX and MIN instructions, R8 and R9
are treated as unsigned numbers. The maximum of R8 and R9 is
placed into R17.

MIN R8, R9, R17, UM

For the purpose of the MAX and MIN instructions, R8 and R9
are treated as unsigned numbers. The minimum of R8 and R9 is
placed into R17 and is written back into the memory location
linked to R17 by a previous LMFM instruction.
MXT3010 Reference Manual Version 4.1 339

Swan Instruction Reference Examples
340 Version 4.1 MXT3010 Reference Manual

Section 3 Signal Descriptions and
Electrical
Characteristics
This section of the manual describes the signal descriptions and
electrical characteristics of the MXT3010. The chapters included
in this chapter are:

• Timing

• Pin information

• Electrical parameters

• Mechanical and thermal characteristics
MXT3010 Reference Manual Version 4.1 341

342 Version 4.1 MXT3010 Reference Manual

CHAPTER 17 Timing
be

 be
MXT3010EP timing - general information

Definition of switching levels

FIGURE 91.Switching level voltages

The following switching level information has been used in the
generation of the MXT3010EP device timing.

• For a low-to-high transition, a signal is considered to no
longer be low when it reaches 0.8 V and is considered to
high upon reaching 2.0 V.

• For a high-to-low transition, a signal is considered to no
longer be high when it reaches 2.0 V and is considered to
low upon reaching 0.8 V.

VH
2.0V

0.8V
VL
MXT3010 Reference Manual Version 4.1 343

Timing

 a
k
Input clock details

FIGURE 92.Input clock waveform (pin FN)

TABLE 84. Input clock timing parameters

1. With the exception of the PLL circuit, the MXT3010 is a
fully static design and can operate with 1/TC(FN) = 0. The
device is characterized for operation approaching 0 Hz, but
is not tested under this condition.

2. In order to maintain low jitter, pay close attention to the
input clock edge rate. One primary component of jitter
occurs only during the input clock state transition. To
reduce this jitter component, Maker recommends that the
FN pin be driven directly from the output of a part designed
for clock tree distribution. Maker’s reference design uses
an FCT3807 device from IDT. Other designs that require
clock driver with an integrated PLL use the CDC586 cloc
driver from Texas Instruments.

100MHz

Parameter Min Max Description

TC(FN) 19.98 (1) Input clock period

TH(FN) .4 TC .6 TC Input clock high duration

TL(FN) .4 TC .6 TC Input clock low duration

TR(FN) - 1.5 Input clock rise time (2)

TF(FN) - 1.5 Input clock fall time (2)

TC(FN) TH(FN)

TL(FN)

TR(FN) TF(FN)
2.0V

0.8V
344 Version 4.1 MXT3010 Reference Manual

MXT3010EP Fast Memory interface timing

s
s-

em-

0,

.

s

MXT3010EP Fast Memory interface timing

This section includes a Fast Memory timing table and abbrevi-
ated timing diagrams that show only enough signals to identify
all of the timing parameters. For a more complete explanation of
the signalling used in various transfers, see “Fast Memory
sequence diagrams” on page 56.

These notes relate to Fast Memory timing issues:

• During cycles in which Fast Memory is IDLE, the
MXT3010EP sources the CPU’s Instruction fetch addres
onto FADRS(17:2) so that one can view the SWAN proce
sor’s instruction execution flow on a logic analyzer. The
MXT3010EP performs Fast Memory reads during these
cycles but discards the data read from the SRAMs.

• In a dual bank system, the bank accessed by the Fast M
ory controller during IDLE cycles is determined by the
ICACHE address. If the ICACHE address maps to bank
bank 0 is read during IDLE cycles. If it maps to bank 1,
bank 1 is read during IDLE cycles.

• All address and control lines should be series terminated

• At the boundary of the chip, the MXT3010EP guarantee
that FOE0_ is de-asserted before asserting FOE1_, and
similarly that FOE1_ is de-asserted before asserting
FOE0_.
MXT3010 Reference Manual Version 4.1 345

Timing
TABLE 85. Fast Memory timing for the Maker MXT3010EP

100 MHz Fast Memory timing (in nanoseconds)

Par Min Max Pins Description

T1 17.0 FADRS[17:2] Clk to address output valid

T2 11.3 FADRS[17:2] Hold time provided by MXT3010

T3 3.8 FDAT[31:0] Input setup time to rising clk

T4 1.0 FDAT[31:0] Input hold time from rising clock

T5 17.0 FCS0_, FCS1_,
FWE[0:3]_

Clk to output valid

T6 11.3 FCS0_, FCS1_,
FWE[0:3]_

Hold time provided by MXT3010

T7 1.3 2.5 FOE0_, FOE1_ CLK to FOE

T8 7.0 10.0 FOE0_, FOE1_ CLK to FOEx_

T9 5.8 15.0 FDAT[31:0] CLK to output in low Z state

T10 1.8 8.0 FDAT[31:0] CLK to output in high Z state

T11 8.5a

a. For the first word of data, T9 is the critical timing parameter.

FDAT[31:0] CLK to FDAT[31:0] output valid

T12 1.8 FDAT[31:0] Hold time provided by MXT3010
346 Version 4.1 MXT3010 Reference Manual

MXT3010EP Fast Memory interface timing
FIGURE 93.Timing for Fast Memory reads

FIGURE 94.Timing for Fast Memory writes

CLK

FCS0_

T1

T2

FDAT in [31:0]

T3

T4

T6

FADRS [17:2] A0 A1 A2

D0 D1

T5

CLK

FCS0_

T1

T2

FDAT Out [31:0]

T9

T6

FADRS [17:2] A0 A1

D0 D1

T5

T11
T12

T10

FOE0_

T8
T7
MXT3010 Reference Manual Version 4.1 347

Timing

ce

e
a
e

/
3).
MXT3010EP UTOPIA interface timing

This section includes a UTOPIA timing table and abbreviated
timing diagrams that show only enough signals to identify all of
the timing parameters. For a more complete explanation of the
signalling used in various transfers, see “UTOPIA port sequen
diagrams” on page 94.

All timing shown in Table 86 is relative to either RX_CLK or
TX_CLK as shown in Figure 97 or Figure 98 respectively. Th
relationship between the MXT3010EP input clock (FN) and
half-speed RX_CLK/TX_CLK is shown in Figure 95 (also se
Figure 26 on page 73). The relationship between the
MXT3010EP input clock (FN) and a quarter-speed RX_CLK
TX_CLK is shown in Figure 96 (also see Figure 27 on page 7
The values of T9 and T10 are shown in Table 87.

FIGURE 95.FN and half-speed RX_CLK/TX_CLK

FIGURE 96.FN and quarter-speed RX_CLK/TX_CLK

½TC(FN) +T9

FN (Input Clock)

RX_CLK

T10

TX_CLK

T10

FN (Input Clock)

RX_CLK

 T9

 T9

T10

TX_CLK
348 Version 4.1 MXT3010 Reference Manual

MXT3010EP UTOPIA interface timing
Notes:1. Adrs/Chip Selects/Write Enables are driving at 100 MHz edge cor-
responding with falling edge of 50 MHz chip clock.

2. All maximum timing is specified with 30 pF loads (Adrs/Ctrl), 25
pF (Data). All minimum timing is specified with 5 pF loads.

3. A circuit stretches the minimum time-on time of the data on read
followed by write cycles.

4. Currently the FOE of one bank is guaranteed to be de-asserted
before the second bank is asserted. This is not actually required
since the RAMs are designed to allow back-to-back bank operation.

TABLE 86. UTOPIA timing for Maker MXT3010EP

100 MHz UTOPIA timing (in nanoseconds)

Par Min Max Pins Description

T1 6.0 TXSOC, TXENB_,
RXENB_,
TXCTRL,
RXCTRL

TX_CLK to output valid

T2 1.3 TXSOC, TXENB_,
RXENB_,
TXCTRL,
RXCTRL

Hold time provided by
MXT3010

T3 7.0 TXDATA[7:0] TX_CLK to output valid

T4 1.3 TXDATA[7:0] Hold time provided by
MXT3010

T5 4.0 RXSOC, RXCLAV Input setup time to TX_CLK/
RX_CLK

4.0 TXCLAV Input setup time to TX_CLK/
RX_CLK

T6 1.3 RXSOC, RXCLAV Input hold time from TX_CLK/
RX_CLK

1.3 TXCLAV Input hold time from TX_CLK/
RX_CLK

T7 4.0 RXDATA[7:0] Input setup time to RX_CLK

T8 1.3 RXDATA[7:0] Input hold time from RX_CLK
MXT3010 Reference Manual Version 4.1 349

Timing
Notes:1. The hold time for data dn control is reduced on the MXT3010EP at
the expense of the setup time. This was done to allow an easier
interface to PHY devices when guaranteeing hold time.

2. Multi-PHY designs must ensure that no bus fight exists on the
CLAV lines.

3. All maximum timing is specified with 15 pF loads. All minimum
timing is specified with 5 pF loads.

FIGURE 97.UTOPIA port receive timing

TABLE 87. Delay of UTOPIA clocks relative to MXT3010EP internal
clock (CLK)

100 MHz UTOPIA TIMING

Par Min Max Pins Description

T9
T10

1.3
1.3

5.5
6.0

RX_CLK/TX_CLK
RX_CLK/TX_CLK

Rise time (r-min/r-max)
Fall time (f-min/f-max)

RXCLK

RXDATA [7:0]
P48

RXSOC

T6

T1

T2

T1

T2

RXENB_

H1 H2

RXCLAV

T5 T6

T5

T8

T7
350 Version 4.1 MXT3010 Reference Manual

MXT3010EP UTOPIA interface timing
FIGURE 98.UTOPIA port transmit timing

TXCLK

TXDATA [7:0]
P48

TXSOC

T6

T1

T2

T1

T2

TXENB_

H1 H2

TXCLAV

T5 T6

T5

T4

T3
MXT3010 Reference Manual Version 4.1 351

Timing

on

e
ter
ss

ous

le

-

MXT3010EP Port1 timing

This section includes a Port1 timing table and abbreviated tim-
ing diagrams that show only enough signals to identify all of the
timing parameters. For a more complete explanation of the sig-
nalling used in various transfers, see “Port1 basic protocol”
page 110.

These notes relate to Port1 timing issues:

• If the external controller requires the MXT3010EP to driv
the P1AD(31:0) and P1 control buses when no other mas
owns the bus, the external controller should select addre
cycles.

• For exact timing numbers for CIN_BSY and COUT_RDY
assertion and deassertion, see “MXT3010EP miscellane
control signal timing” on page 359.

• Add Wait States during COMMIN register writes and
COMMOUT register reads by extending COMMSEL and
P1RD for one or more additional cycles (beyond those
shown). For COMMIN register writes, COMMIN data
MXT3010EP samples the final write clock cycle (the cyc
in which COMMSEL is sampled low at the end of the
cycle). For COMMOUT register reads, MXT3010EP
sources the contents of the COMMOUT register through
out the extended cycle.

352 Version 4.1 MXT3010 Reference Manual

MXT3010EP Port1 timing
Note: All maximum timing is specified with 15 pF loads. All minimum
timing is specified with 5 pF loads.

TABLE 88. Port1 timing table

100 MHz Port1 read and write timing (in nanoseconds)

Par Min Max Pins Description

T1 7.0 P1QRQ_, P1RQ_,
P1RD, P1END_,
P1IRDY_,
P1HWE[0:1]
P1AD[31:0]

CLK to output valid

T2 1.3 P1QRQ_, P1RQ_,
P1RD, P1END_,
P1IRDY_,
P1HWE[0:1],
P1AD[31:0]

Hold time provided by
MXT3010

T3 7.0 P1TRDY_,
P1ASEL_

Input setup time to rising clock

T4 1.0 P1TRDY_,
P1ASEL_

Input hold time from rising
clock

T5 1.3 7.5 P1RD, P1END_,
P1HWE[0:1],
P1IRDY_

Clock to output in low Z state

T6 1.3 10.5 P1RD, P1END_,
P1HWE[0:1],
P1IRDY_

Clock to output in high Z state

T7 1.3 7.3 P1AD[31:0] Clock to output in low Z state

T8 1.3 10.5 P1AD[31:0] Clock to output in high Z state

T9 1.3 8.8 P1AD[31:0] Clock to P1AD(31:0) valid

T10 4.0 P1AD[31:0] Input setup time to rising clock

T11 1.0 P1AD[31:0] Input hold time from rising
clock

T12 6.0 COMMSEL, P1RD Input setup time to rising clock

T13 1.0 COMMSEL, P1RD Input hold time from rising
clock
MXT3010 Reference Manual Version 4.1 353

Timing
FIGURE 99.Port1 read timing

FIGURE 100.Port1 write timing

CLK

P1AD Out [31:0] A

P1RQ_

T2

T1

T1

T2

P1END_

DI 0P1AD in [31:0]

P1TRDY_

T4T4

T3 T3

T1

T5 T2

T1

T2

T1

T2

T6

T7

T9

T2

T8
T10

T11

CLK

P1AD Out [31:0] A

P1RQ_

T2

T1

T2

T1

P1END_

DO 0

P1TRDY_

T4T4

T3 T3

T1

T5 T2

T1

T2

T1

T1

T6

T7

T9

T2

T8

DO 1
354 Version 4.1 MXT3010 Reference Manual

MXT3010EP Port1 timing
FIGURE 101.COMMIN register write, COMMOUT register read timing

CLK

P1AD Out [31:0]

P1RD in
T12

T10

T11

COMM IN
DATAP1AD in [31:0]

T13

T12

T13

T2

COMM OUT
DATA

T8T5

T9
MXT3010 Reference Manual Version 4.1 355

Timing

on

n
ng
MXT3010EP Port2 timing

This section includes a Port2 timing table and abbreviated tim-
ing diagrams that show only enough signals to identify all of the
timing parameters. For a more complete explanation of the sig-
nalling used in various transfers, see “Port2 basic protocol”
page 137.

This note relates to Port2 timing issues:

• If the external controller requires the MXT3010EP to
actively drive the P2AD(15:0) and P2 control buses whe
no other master owns the bus, it should do so by selecti
address cycles.
356 Version 4.1 MXT3010 Reference Manual

MXT3010EP Port2 timing
TABLE 89. Port2 timing table

Note: All maximum timing is specified with 15 pF loads. All minimum
timing is specified with 5 pF loads.

100 MHz Port2 read and write timing (in nanoseconds)

Par Min Max Pins Description

T1 8.0 P2QRQ_ P2QBRST,
P2RQ_, P2RD,
P2END_, P2IRDY_
P2AD[15:0]

CLK to output valid

T2 1.3 P2QRQ_, P2QBRST,
P2RQ_, P2RD,
P2END_, P2IRDY_,
P2AD[15:0]

Hold time provided by
MXT3010

T3 8.0 P2TRDY_, P2ASEL_ Input setup time to rising
clock

T4 1.0 P2TRDY_, P2ASEL_ Input hold time from rising
clock

T5 2.0 8.0 P2RD, P2END_,
P2AI[3:0], P2IRDY_

Clock to output in low Z
state

T6 2.0 11.0 P2RD P2END_,
P2AI[3:0], P2IRDY_

Clock to output in high Z
state

T7 1.3 8.0 P2AD[15:0] Clock to output in low Z
state

T8 2.0 10.0 P2AD[15:0] Clock to output in high Z
state

T9 1.3 8.0 P2AD[15:0] Clock to P2AD(15:0) valid

T10 4.0 P2AD[15:0] Input setup time to rising
clock

T11 1.0 P2AD[15:0] Input hold time from rising
clock
MXT3010 Reference Manual Version 4.1 357

Timing
FIGURE 102.Port2 read timing

FIGURE 103.Port2 write timing

CLK

P2AD Out [15:0] A

P2RQ_

T2

T1

T1

T2

P2END_

DI 0P2AD in [15:0]

P2TRDY_

T4T4

T3 T3

T1

T5 T2

T1

T2

T1

T2

T6

T7

T9

T2

T8
T10

T11

CLK

P2AD Out [15:0] A

P2RQ_

T2

T1

T2

T1

P2END_

DO 0

P2TRDY_

T4T4

T3 T3

T1

T5 T2

T1

T2

T1

T1

T6

T7

T9

T2

T8

DO 1
358 Version 4.1 MXT3010 Reference Manual

MXT3010EP miscellaneous control signal timing
MXT3010EP miscellaneous control signal timing
This section includes a miscellaneous control signal timing table
and a miscellaneous control signal timing diagram.

Note that the MXT3010EP drives CIN_BUSY within two clock
cycles of a COMMIN Register write operation. Therefore, the
host should wait at least two system clock cycles from the com-
pletion of a COMMIN register write before testing CIN_BUSY.

TABLE 90. Miscellaneous control signal timing

FIGURE 104.Timing of CIN_BUSY and COUT_RDY

100 MHz Misc. control signal timing (in nanoseconds)

Par Min Max Pins Description

T1 8.0 ICSO_(D:A) CLK to output valid

T2 1.3 ICSO_(D:A) Hold time provided by
MXT3010

T3 3.5 ICSI_(D:A) Input setup time to rising
clock

T4 1.0 ICSI_(D:A) Input hold time from rising
clock

T5 8.5 CINBUSY, COUTRDY CLK to output valid

T6 1.3 CINBUSY, COUTRDY Hold time provided by
MXT3010

CLK

COUT_RDY

CIN_BUSY

ISCI_[D:A]

ISCO_[D:A]

T5

T6

T5

T6

T1

T2
T3

T4

T5

T6

T5

T6
MXT3010 Reference Manual Version 4.1 359

Timing
MXT3010EP Reset timing

This section includes a MXT3010EP reset timing table and dia-
gram.

These notes relate to MXT3010EP reset timing issues:

1. When RESET_ is de-asserted, two events occur: a) the
MXT3010EP fetches boot code from the designated port,
and b) the MXT3010EP begins a cache initialization rou-
tine which takes 1028 input clock cycles.

2. The MXT3010EP does not actively drive ICSO_(D:A) dur-
ing reset. Therefore, these pins float unless actively driven
or pulled up or down externally. The values sensed on these
pins at RESET_ removal provide configuration information
to the MXT3010EP. For more information, see “Device Ini-
tialization” on page 401.
360 Version 4.1 MXT3010 Reference Manual

MXT3010EP miscellaneous control signal timing
TABLE 91. MXT3010EP reset timing

FIGURE 105.MXT3010EP reset timing

100 MHz Reset timing (in nanoseconds)

Par Min Max Pins Description

T1 10,000 clock
cycles

CLK, also
called FN

Minimum number of clock cycles that
reset must be held low for to allow
internal PLL to lock.

T2 13.0 RESET Input setup time to rising CLK for
removal of reset signal. Reset may be
asserted asynchronously but must be
deasserted synchronous to CLK.

T2a 1.5 RESET RESET hold time

T3 5 ICSO_[D:A] Input setup time to rising CLK. This
setup requirement need only be met for
the rising edge of CLK for which
RESET is sampled high for the first
time.

T4 3 ICSO_[D:A] Input hold time from rising CLK. This
hold requirement need only be met for
the rising edge of CLK following the
rising edge of CLK for which RESET
is sampled high for the first time.

INPUT CLK

Configuration

RESET_

T2T1

T3

T4

Asynchronous
Assertion

ISCO_[D:A] out
High impedance (see Note 1 above)

information
ISCO_[D:A] in
MXT3010 Reference Manual Version 4.1 361

Timing
As indicated in Figure 105, the de-assertion of RESET_ must be
done within certain timing constraints. These timing constrains
occur because the MXT3010EP samples the RESET_ pin with
an internal clock that operates at twice the rate of the input clock.
This is done to establish a phase relationship with the input
clock. For example, if the input clock operates at 50 MHz, the
MXT3010EP samples RESET_ with a 100 MHz internal clock.
The system designer must meet the timing requirements shown
in Figure 106 and Table 92.

FIGURE 106.Reset trailing edge timing

TABLE 92. MXT3010EP RESET_ timing parameters

Notes: 1.Parameter T5 in Table 92 is the same as parameter T2 in Table 91.

2. Unless otherwise specified, all times in this table are relative to
the input clock.

100 MHz Reset timing (in nanoseconds)

Par Min Max Description

T1 20 Input clock period

T2 10 Internal clock period

T3 3 Setup to internal clock edge

T4 1.5 Hold from internal clock edge

T5 13 Setup to input clock edge (Note 1)

T1

T4

T2 T2

T3

T5

INPUT CLK

INTERNAL

RESET_

CLK
362 Version 4.1 MXT3010 Reference Manual

MXT3010EP miscellaneous control signal timing
Given the 20ns period of the 50Mhz input clock, this leaves a
5.5ns (20-13-1.5=5.5) window in which RESET_ can be
removed. Although care must be taken to meet these require-
ments, it can be routinely accomplished.

Several methods of achieving this timing are possible. Current
ASIC technology meets this timing. FPGA implementations are
more difficult, but possible. On the MXT3015 Evaluation Card,
Maker uses a fast external flip-flop to constrain timing to within
this window. Figure 107 shows this circuit.

FIGURE 107.Reset timing circuit

50 MHz

FPGA FCT823C MXT3010
RST_ RESET_
MXT3010 Reference Manual Version 4.1 363

Timing
MXT3010EP Fast Memory interface operation

This example shows a Fast Memory connection using Samsung
KM718B90 Synchronous SRAMs. Connections are shown for a
single bank system using two SRAM.

MXT3010EP

SRAM with bits
(31:16) of Fast
Data.

SRAM with bits
(15:0) of Fast Data. Comments

FADRS(17:2) A(15:0) A(15:0) The MXT3010EP provides a word address
and individual byte write enable lines. For a
64Kx32 Control Memory, FADRS(17:2)
are connected to A(15:0) of each of the
SRAMS. For a 32Kx32 Control Memory,
FADRS(17) is unconnected and
FADRS(16:2) are connected to A(14:0) of
each of the SRAMs.

FDAT(15:0) N/C I/O(15:0)

FDAT(31:16) I/O(15:0) N/C

Tied to GND
through 10K
Ohm resistors

I/O(17:16) I/O(17:16) If x18 devices are used, tie I/O(17:16) to
ground through dedicated 10K Ohm resis-
tors.

FCS0_ CS_, ADSC_ CS_, ADSC_ In a single bank system, FCS0_ is tied to
the CS_ and ADSC_ of each of the SRAM
devices.

FOE0_ OE_ OE_ In a single bank system, FOE0_ is tied to
the output enable of each of the SRAM
devices.

Tied to PWR ADV_, ADSP_ ADV_, ADSP_ The MXT3010EP does not use these con-
trol signals.

FWE0_ UW_ FWE0_ controls byte FDAT(31:24)

FWE1_ LW_ FWE1_ controls byte FDAT(23:16)

FWE2_ UW_ FWE2_ controls byte FDAT(15:8)

FWE3_ LW_ FWE3_ controls byte FDAT(7:0)

 FN (CLK) K K Tied to system clock. This is the same clock
that is connected to the MXT3010EP’s
clock input (FN).
364 Version 4.1 MXT3010 Reference Manual

MXT3010EP JTAG operation
MXT3010EP JTAG operation

For JTAG SCAN chain connection information contact Maker
Communications.

The MXT3010EP provides a pin, TRI_, that places all output
drivers in the high impedance state except RXCLK, TXCLK,
and the outputs associated with the PLL.
MXT3010 Reference Manual Version 4.1 365

Timing
366 Version 4.1 MXT3010 Reference Manual

CHAPTER 18 Pin Information
This chapter provides information on the MXT3010EP pinouts.
The information includes pin diagrams, signal descriptions, and
pin listings.
MXT3010 Reference Manual Version 4.1 367

Pin Information
MXT3010EP pinout

Figure 108 provides a diagram of the MXT3010EP pinout.

FIGURE 108.MXT3010EP package/pin diagram

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

P
1A

D
1

G
N

D
P

1A
D

9
P

1A
D

0
P

1A
D

2
P

1A
B

R
T

_
P

1R
D

V
D

D
P

1A
D

8
P

1Q
R

Q
_

P
1E

N
D

_
G

N
D

P
1H

W
E

1
P

1I
R

D
Y

_
P

1R
Q

_
P

1H
W

E
0

F
D

A
T

0
R

E
S

E
T

_
F

D
A

T
1

G
N

D

P
1A

D
26

G
N

D
P

1A
D

16
P

1A
D

23
P

1A
D

14
P

1A
D

20
G

N
D

P
1A

D
22

P
1A

D
12

P
1A

D
10

P
1A

D
6

V
D

D
P

1A
D

13
P

1A
D

17
P

1A
D

7
G

N
D

P
1A

D
11

P
1A

D
5

P
1A

D
3

P
1A

D
4

 V
D

D
P

1A
D

31
P

1A
D

30
C

O
U

T
R

D
Y

P
2A

S
E

L_
G

N
D

P
1A

D
29

P
1A

D
28

P
2T

R
D

Y
_

P
1A

D
27

P
1A

D
25

V
D

D
P

1A
D

24
C

IN
B

U
S

Y
P

1A
D

21
G

N
D

P
1A

D
19

P
1A

D
15

C
O

M
M

S
E

L
P

1A
D

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

GND
P2QBRST
P2QRQ_
P2IRDY
P2AD15
P2RQ_
P2AD14
P2END_
GND
P2AD8
P2RD
P2AD12
VDD
P2AD11
P2AD4
P2AD13
P2AD10
P2AI13
GND
P2AD1
P2AD9
P2AI0
P2AD5
P2AD7
GND
P2AD6
TMS
P2AD0
VDD
P2AD3
P2AI2
P2AD2
TRI_
GND
TRS
P2AI1
OSC_EN_
TXDATA0
GND
TXCTRL0
TXDATA1
TXSOC
TXENB_
TXCLAV
GND
TX_CLK
TDO
RESRVD
VDD
TXDATA2
TXDATA3
TXCTRL2
TXDATA4
TXDATA6
GND
ICSO_C
TXDATA7
TXCTRL1
TXCTRL3
VDD

100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61

V
D

D
IC

S
I_

D
G

N
D

F
D

A
T

31
G

N
D

F
D

A
T

30
IC

S
I_

C
F

D
A

T
28

V
D

D
F

D
A

T
29

F
D

A
T

27
F

D
A

T
26

F
D

A
T

25
F

D
A

T
24

G
N

D
F

D
A

T
20

F
D

A
T

23
F

D
A

T
22

F
D

A
T

21
V

D
D

R
X

D
A

TA
5

IC
S

O
_A

R
X

D
A

TA
4

R
X

C
T

R
L1

G
N

D
R

X
C

T
R

L3
T

C
K

IC
S

O
_B

V
D

D
R

X
D

A
TA

1
IC

S
O

_D
R

E
S

R
V

D
T

D
I

R
A

N
G

E
IC

S
I_

B
G

N
D

V
A

A
B

P
_

G
N

D
F

N

G
N

D
T

X
D

A
TA

5
R

X
C

T
R

L2
R

X
D

A
TA

0
R

E
S

R
V

D
IC

S
I_

A
G

N
D

R
X

_C
LK

G
N

D
R

E
S

R
V

D
R

X
S

O
C

R
X

D
A

TA
3

V
D

D
R

X
D

A
TA

2
R

X
E

N
B

_
R

X
D

A
TA

6
R

X
D

A
TA

7
R

X
C

T
R

L0
G

N
D

R
X

C
LA

V

18
0

17
9

17
8

17
7

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

15
6

15
5

15
4

15
3

15
2

15
1

15
0

14
9

14
8

14
7

14
6

14
5

14
4

14
3

14
2

14
1

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

13
2

13
1

13
0

12
9

12
8

12
7

12
6

12
5

12
4

12
3

12
2

12
1

VDD
FDAT2
FDAT3
FDAT5
P1TRDY_
GND
FDAT4
FDAT7
P1ASEL_
FDAT6
FDAT8
VDD
FDAT10
FDAT9
FDAT11
GND
FDAT15
FDAT12
FDAT14
RESRVD
FDAT13
GND
FADRS15
FADRS10
VDD
FADRS9
FADRS12
FADRS11
GND
FADRS13
FADRS16
VDD
FWE3_
FADRS14
FOE1_
GND
FCS0_
FWE2_
FCS1_
FWE0_
FADRS17
GND
FOE0_
FWE1_
FADRS3
FADRS2
FADRS5
VDD
FADRS6
FADRS4
FADRS8
GND
FDAT16
FDAT18
FADRS7
VDD
FDAT17
LSSD_TEST
FDAT19
GND

MXT3010EP
top view

120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
368 Version 4.1 MXT3010 Reference Manual

MXT3010EP signal descriptions
MXT3010EP signal descriptions
• Port1

• Port2

• UTOPIA port

• Fast Memory controller

• Inter-chip and communication registers

• Miscellaneous signals, such as clock, control and test

• Power and ground pins
MXT3010 Reference Manual Version 4.1 369

Pin Information

-

)

n
TABLE 93. MXT3010EP Port1 signal descriptions

Pin #a Symbol I/O Name Description

179, 178, 174,
173, 171, 160,
170, 168, 157,
153, 166, 155,
164, 161, 147,
158, 163, 156,
148, 152, 144,
151, 138, 132,
146, 150, 143,
141, 142, 136,
140, 137

P1AD[31:0] I/O Port1
Address/Data
[31:0]

This is a multiplexed, bi-directional 32-bit bus.
Data is read into and out of the MXT3010EP dur-
ing DMA and COMM operations; see “The Port1
and Port2 Interfaces” on page 97. and see “Com
munications” on page 177.

126 P1RQ_ O Port1
Request

This signal indicates that commands are in the
active stage of the Port1 DMA command queue.

131 P1QRQ_ O Port1 DMA
Queue Request

This signal indicates that commands are in the
queue stage of the Port1 DMA command queue.

134 P1RD I/O Port1 Read /
Write select

The MXT3010EP drives this signal during a
DMA transfer, and the host drives the signal dur-
ing a communication register transfer. In either
case, this signal indicates a read (1) or a write (0
transfer.

130 P1END_ O Port1
End

This signal indicates the last cycle of a DMA
operation.

128
125

P1HWE1
P1HWE0

O
O

Port1
Halfword Enable
[1:0]

During data cycles, P1HWE[1:0] act as Half
Word Enables. If P1HWE[0] is asserted,
P1AD[31:16] should contain valid data. If
P1HWE[1] is asserted, P1AD[15:0] should con-
tain valid data.

127 P1IRDY_ O Port1
Interface
Initiator
Ready

During DMA write data cycles, the MXT3010EP
asserts P1IRDY_ while it is sourcing valid data
on P1AD[31:0]. During DMA read data cycles,
the MXT3010EP asserts P1IRDY_ if it can sam-
ple P1AD[31:0] on the next rising edge of clock.

135 P1ABRT_ I Port1 Transfer
Abort

The host drives this signal to abort burst DMA
operation.

116 P1TRDY_ I Port1
Target
Ready

The host drives this signal and the host inserts
wait states. With P1ASEL_, the host deselects
(i.e., tri-state) MXT3010EPs.

112 P1ASEL_ I Port1
Address
Select

The host drives this signal and the host selects a
address or data cycle. With P1TRDY_ the host
deselects (tri-state) MXT3010EPs.

a. Pin numbers in this table, and in all subsequent tables, are listed in descending order (for
example, P1AD31 to P1AD0).
370 Version 4.1 MXT3010 Reference Manual

MXT3010EP signal descriptions

e

TABLE 94. MXT3010EP Port2 signal descriptions

Pin # Symbol I/O Name Description

185, 187,
196, 192,
194, 197,
201, 190,
204, 206,
203, 195,
210, 212,
200, 208

P2AD
[15:0]

I/O Port2
Address/Data
[15:0]

This is a multiplexed, bi-directional 16-bit bus.
Data is read into and out of the MXT3010EP during
DMA operations. For operational details see “The
Port1 and Port2 Interfaces” on page 97.

198, 211,
216, 202

P2AI[3:0] O Port2 Address
Index Bus

These signals are multi-purpose. In burst mode
P2AI[3:0] represent an address index consisting of
the lower four bits of an address. In non-burst mod
P2AI[3:2] represent the two most significant
address bits. P2AI[1] represents P2RD_. P2AI[0]
represents Address Latch Enable.

186 P2RQ_ O Port2
Request

This signal indicates that commands are in the
active stage of the Port2 DMA command queue.

183 P2QRQ_ O Port2
DMA Queue
Request

This signal indicates that commands are in the
queue stage of the Port2 DMA command queue.

191 P2RD O Port2
Read / Write
Select

The MXT3010EP drives this signal during a DMA
transfer. This signal indicates a write (0) transfer or
a read (1) transfer.

188 P2END_ O Port2
End

On DMA operations, the MXT3010EP asserts
P2END_ to indicate the last cycle of the transfer.

182 P2QBRST O Port2
Burst

This signal indicates burst (1) or non-burst (0)
transfer mode. For operational details see “The
Port1 and Port2 Interfaces” on page 97.

184 P2IRDY_ O Port2
Interface
Initiator
Ready

During DMA write data cycles, the MXT3010EP
asserts P2IRDY_ while it is sourcing valid data on
P2AD[15:0]. During DMA read data cycles, the
MXT3010EP asserts P2IRDY_ if it can sample
P2AD[15:0] on the next rising edge of clock.

172 P2TRDY_ I Port2
Target
Ready

The host drives this signal and inserts wait states.
With P2ASEL_ the host can deselect [i.e., tri-state]
MXT3010EPs.

176 P2ASEL_ I Port2 Address
Select

The host drives this signal and selects address or
data cycle. With P2TRDY_ the host can deselect
(tri-state) MXT3010EPs.
MXT3010 Reference Manual Version 4.1 371

Pin Information

ta

.

TABLE 95. UTOPIA port signal description

Pin # Symbol I/O Name Description

237, 234,
2, 233,
231, 230,
221, 218

TXDATA
[7:0]

I/O UTOPIA Trans-
mit Data
[7:0]

In 8-bit bi-directional mode, these pins send
data to the PHY device. In 16-bit uni-direc-
tional mode, these pins are byte 0 or byte 1 of
the bus. For operational details see “The UTO-
PIA port” on page 69.

239, 232,
238, 220

TXCTRL
[3:0]

I/O UTOPIA Trans-
mit Control

These signals provide multi-PHY control infor-
mation. For operational details see “The UTO-
PIA port” on page 69.

224 TXCLAV I Transmit Cell
Available

This signal indicates to the MXT3010EP that
the PHY is ready to accept a cell.

223 TXENB_ O Transmit Enable This signal indicates to the PHY that valid da
is on the bus.

222 TXSOC O Transmit Start of
Cell

This signal indicates to the PHY the start of a
cell.

226 TX_CLK O Transmit Clock The MXT3010EP provides the transmit clock

17, 16,
21, 23,
12, 14,
30, 4

RXDATA
[7:0]

I/O UTOPIA
Receive Data
[7:0]

In 8-bit bi-directional mode, these pins are used
to receive data from the PHY device. In 16-bit
uni-directional mode, these pins are byte 0 or
byte 1 of the bus. For operational details see
“The UTOPIA port” on page 69.

26, 3, 24,
18

RXCTRL
[3:0]

I/O UTOPIA
Receive Control

These signals provide multi -PHY control
information. For operational details see “The
UTOPIA port” on page 69.

20 RXCLAV I Receive Cell
Available

This signal indicates to the MXT3010EP that
the PHY has a cell ready to send to the
MXT3010EP.

15 RXENB_ O Receive Enable This signal indicates to the PHY that the
MXT3010EP is ready to receive data.

11 RXSOC I Receive Start of
Cell

This signal indicates to the MXT3010EP the
start of a cell.

8 RX_CLK O Receive Clock The MXT3010EP provides the receive clock.
372 Version 4.1 MXT3010 Reference Manual

MXT3010EP signal descriptions
TABLE 96. MXT3010EP Fast Memory controller signal description

Pin # Symbol I/O Name Description

80, 90, 98,
87, 91, 94,
93, 97, 95,
70, 66, 72,
74, 71, 76,
75

FADRS
[17:2]

O Fast Memory
Address Bus
[17:2]

Byte address.

44, 46, 50,
48, 51-54,
57-59, 56,
62, 67, 64,
68, 104,
102, 100,
103, 106,
108, 107,
110, 113,
111, 117,
114, 118,
119, 122,
124,

FDAT
[31:0]

I/O Fast Memory
Data Bus
[31:0]

Fast Memory data bus.

82
84

FCS1_
FCS0_

O Fast Memory
Control Signals
[1:0]

These signals select the bank of SRAM
addressed during Fast Memory operations.
FCS0_ low = bank 1
FCS1_ low = bank 2
When operating in Mode 1, these Chip
Select pins are used as Fast Memory
Address lines 18 and 19.
FCS1_ = FADRS[19]
FCS0_ = FADRS[18]
See Figure 16 on page 55.

86
78

FOE1_
FOE0_

O Fast Memory
Output Enable
[1:0]

These signals enable bank 1 and bank 2 of
SRAM.
FOE0_ low = bank 1
FOE1_ low = bank 2

88
83
77
81

FWE3_
FWE2_
FWE1_
FWE0_

O Fast Memory
Write Enable
[3:0]

These signals select the byte target during a
Fast Memory write operation:
FWE0_ low = byte 0 FDAT[31:24]
FWE1_ low = byte 1 FDAT[23:16]
FWE2_ low = byte 2 FDAT[15:8]
FWE3_ low = byte 3 FDAT[7:0]
MXT3010 Reference Manual Version 4.1 373

Pin Information
TABLE 97. MXT3010EP inter-chip and communication registers signal description

Pin # Symbol I/O Name Description

167 CINBUSY O COMMIN Busy COMMIN Busy signals the status of the COM-
MIN Register. The MXT3010EP drives this pin
high when the Host writes to the COMMIN
Register. The MXT3010EP clears the signal
when it reads the COMMIN Register. As long as
CINBUSY is high, the COMMIN Register is
full.

177 COUTRDY O COMMOUT
Ready

This signal signals the status of the COMMOUT
Register. The MXT3010EP asserts this signal
(1) when it writes to the COMMOUT Register.
When the host reads the COMMOUT register,
the MXT3010EP clears the signal (0). As long
as COUTRDY is 1, the COMMOUT Register is
full.

162 COMMSEL I Comm Select When the Comm Select signal is asserted (1)
and the P1RD signal is low (0), the COMMIN
register is a target of a write operation (Host to
MXT3010EP). When the Comm Select signal is
asserted (1) and the P1RD signal is high (1), the
COMMOUT register is the source of a read
operation (MXT3010EP to Host).

42
47
35
6

ICSI_D
ICSI_C
ICSI_B
ICSI_A

I ICS Input
[D:A]

The MXT3010EP uses these signals to poll the
state of external devices. They also control the
Sparse Event Register.

31
236
28
22

ICSO_D
ICSO_C
ICSO_B
ICSO_A

O ICS Output
[A:D]

These signals are used by the MXT3010EP to
signal the state of the MXT3010EP to external
devices. The SWAN processor sets the state of
these signals by setting or clearing bits in the
Sparse Event Register. These signals are also
used during device initialization.
374 Version 4.1 MXT3010 Reference Manual

MXT3010EP signal descriptions
TABLE 98. MXT3010EP miscellaneous clock, control, and test signal descriptions

Pin # Symbol I/O Name Description

40 FN I Input Clock This signal provides the MXT3010EP device
clock.

123 RESET_ I Reset Device reset.

217 OSC_EN I Oscillator Enable Oscillator enable is used for testing of ring oscil-
lator.

63 LSSD_TEST I This pin is used for scan test.

34 RANGE I Operation Range
select

The RANGE pin affects the operating range of
the PLL VCO:
High = Output frequency 50-100 mHz
Low = Output frequency 100-400 mHz
This pin is customarily left floating, thus allow-
ing the internal pull up to keep the pin in the high
state.

38 BP_ Bypass Pin This pin is used during production testing of the
PLL.

213 TRI_ I Tri-State Test This signal places all of the tri-state and bi-direc-
tional I/Os into tri-state.

27 TCK I Test Clock JTAG Test Clock input

33 TDI I Test Data In JTAG Test Data input

227 TDO O Test Data Out JTAG Test Data output

207 TMS I Test Mode Select JTAG Test Mode Select input

215 TRS I Test Reset JTAG Reset input

5, 10,
32, 101,
228

RESRVD I/O Reserved These pins are reserved for future functionality
and should be left floating.
MXT3010 Reference Manual Version 4.1 375

Pin Information

e

TABLE 99. Power and ground pin descriptions

Pin # Symbol I/O Name Description

13, 29, 41,
49, 60, 65,
73, 89, 96,
109, 120,
133, 149,
169, 180,
193, 209,
229, 240

VDD I 3.3 volt
power supply

These pins each require a +3.3 VDC (± 5%)
power supply input. They supply current to the
3.3-volt output buffers and the core logic of the
device.

37 VAA PLL power
supply

This pin requires a +3.3 VDC (± 5%) power sup-
ply input. It is used to supply current to the PLL.
Please refer to the section on the PLL for proper
decoupling strategy.

1, 7, 9, 19,
25, 36, 39,
43, 45, 55,
61, 69, 79,
85, 92, 99,
105, 115,
121, 129,
139, 145,
154, 159,
165, 175,
181, 189,
199, 205,
214, 219,
225, 235

GND - Ground These pins provide ground return paths for th
various power supply inputs.
376 Version 4.1 MXT3010 Reference Manual

MXT3010EP JTAG/PLL pin termination
MXT3010EP JTAG/PLL pin termination

Table 100 indicates how test and reserved pins on the
MXT3010EP should be terminated for normal operation.

TABLE 100. MXT3010EP pin terminations

Pin Name Pin # Termination

BP_ 38 External pull up (1 K ohms) to +3.3V

RANGE 34

External pull up (4.7K ohms) to +3.3V

OSC_EN_ 217

TRI_ 213

TCK 27

TDI 33

TMS 207

LSSD_TEST 63
External pull down (120 ohms) to GND

TRS 215

RESERVED 5, 10, 32,
101, 228

Leave floating
MXT3010 Reference Manual Version 4.1 377

Pin Information
MXT3010EP pin listing

This section provides the pin listings for the MXT3010EP. Table
102 provides descriptions of the pin types listed in Table 101.

TABLE 101. MXT3010EP pin listing

Pin Pin Label Pad Pin Pin Pin Label Pad Pin Pin Pin Label Pad Pin

1 GND 30 RXDATA1 IO2 I/O 59 FDAT21 IO4 I/O

2 TXDATA5 IO2 I/O 31 ICSO_D IO4 I/O 60 VDD

3 RXCTRL2a IO3 OUT 32 RESRVD 61 GND

4 RXDATA0 IO2 I/O 33 TDI IN1 IN 62 FDAT19 IO4 I/O

5 RESRVD 34 RANGE IO4 PLL 63 LSSD_TEST IN2 IN

6 ICSI_A IN1 IN 35 ICSI_B IN1 IN 64 FDAT17 IO4 I/O

7 GND 36 GND 65 VDD

8 RX_CLK IO2 I/O 37 VAA 66 FADRS7 IO6 OUT

9 GND 38 BP_ 67 FDAT18 IO4 I/O

10 RESRVD 39 GND 68 FDAT16 IO4 I/O

11 RXSOC IO3 IN 40 FN 69 GND

12 RXDATA3 IO2 I/O 41 VDD 70 FADRS8 IO6 OUT

13 VDD 42 ICSI_D IN1 IN 71 FADRS4 IO6 OUT

14 RXDATA2 IO2 I/O 43 GND 72 FADRS6 IO6 OUT

15 RXENB IO3 OUT 44 FDAT31 IO4 I/O 73 VDD

16 RXDATA6 IO2 I/O 45 GND 74 FADRS5 IO6 OUT

17 RXDATA7 IO2 I/O 46 FDAT30 IO4 I/O 75 FADRS2 IO6 OUT

18 RXCTRL0 IO3 OUT 47 ICSI_C IN1 IN 76 FADRS3 IO6 OUT

19 GND 48 FDAT28 IO4 I/O 77 FWE1_ IO6 OUT

20 RXCLAV IO3 IN 49 VDD 78 FOE0_ IO6 OUT

21 RXDATA5 IO2 I/O 50 FDAT29 IO4 I/O 79 GND

22 ICSO_A IO4 I/O 51 FDAT27 IO4 I/O 80 FADRS17 IO6 OUT

23 RXDATA4 IO2 I/O 52 FDAT26 IO4 I/O 81 FWE0_ IO6 OUT

24 RXCTRL1 IO1 OUT 53 FDAT25 IO4 I/O 82 FCS1_ IO6 OUT

25 GND 54 FDAT24 IO4 I/O 83 FWE2_ IO6 OUT

26 RXCTRL3 IO2 OUT 55 GND 84 FCS0_ IO6 OUT

27 TCK IN1 IN 56 FDAT20 IO4 I/O 85 GND

28 ICSO_B IO4 I/O 57 FDAT23 IO4 I/O 86 FOE1_ IO6 OUT

29 VDD 58 FDAT22 IO4 I/O 87 FADRS14 IO6 OUT
378 Version 4.1 MXT3010 Reference Manual

MXT3010EP pin listing
88 FWE3_ IO6 OUT 126 P1RQ_ IO4 OUT 164 P1AD19 IO4 I/O

89 VDD 127 P1IRDY_ IO4 OUT 165 GND

90 FADRS16 IO6 OUT 128 P1HWE1 IO4 OUT 166 P1AD21 IO4 I/O

91 FADRS13 IO6 OUT 129 GND 167 CINBUSY IO5 OUT

92 GND 130 P1END_ IO4 OUT 168 P1AD24 IO4 I/O

93 FADRS11 IO6 OUT 131 P1QRQ_ IO4 OUT 169 VDD

94 FADRS12 IO6 OUT 132 P1AD8 IO4 I/O 170 P1AD25 IO4 I/O

95 FADRS9 IO6 OUT 133 VDD 171 P1AD27 IO4 I/O

96 VDD 134 P1RD IO4 I/O 172 P2TRDY_ IO2 IN

97 FADRS10 IO6 OUT 135 P1ABRT_ IO4 IN 173 P1AD28 IO4 I/O

98 FADRS15 IO6 OUT 136 P1AD2 IO4 I/O 174 P1AD29 IO4 I/O

99 GND 137 P1AD0 IO4 I/O 175 GND

100 FDAT13 IO4 I/O 138 P1AD9 IO4 I/O 176 P2ASEL_ IO2 IN

101 RESRVD 139 GND 177 COUTRDY IO5 OUT

102 FDAT14 IO4 I/O 140 P1AD1 IO4 I/O 178 P1AD30 IO4 I/O

103 FDAT12 IO4 I/O 141 P1AD4 IO4 I/O 179 P1AD31 IO4 I/O

104 FDAT15 IO4 I/O 142 P1AD3 IO4 I/O 180 VDD

105 GND 143 P1AD5 IO4 I/O 181 GND

106 FDAT11 IO4 I/O 144 P1AD11 IO4 I/O 182 P2QBRST IO4 OUT

107 FDAT9 IO4 I/O 145 GND 183 P2QRQ_ IO4 OUT

108 FDAT10 IO4 I/O 146 P1AD7 IO4 I/O 184 P2IRDY_ IO4 OUT

109 VDD 147 P1AD17 IO4 I/O 185 P2AD15 IO4 I/O

110 FDAT8 IO4 I/O 148 P1AD13 IO4 I/O 186 P2RQ_ IO4 OUT

111 FDAT6 IO4 I/O 149 VDD 187 P2AD14 IO4 I/O

112 P1ASEL_ IO4 IN 150 P1AD6 IO4 I/O 188 P2END_ IO4 OUT

113 FDAT7 IO4 I/O 151 P1AD10 IO4 I/O 189 GND

114 FDAT4 IO4 I/O 152 P1AD12 IO4 I/O 190 P2AD8 IO4 I/O

115 GND 153 P1AD22 IO4 I/O 191 P2RD IO4 OUT

116 P1TRDY_ IO4 IN 154 GND 192 P2AD12 IO4 I/O

117 FDAT5 IO4 I/O 155 P1AD20 IO4 I/O 193 VDD

118 FDAT3 IO4 I/O 156 P1AD14 IO4 I/O 194 P2AD11 IO4 I/O

119 FDAT2 IO4 I/O 157 P1AD23 IO4 I/O 195 P2AD4 IO4 I/O

120 VDD IO4 158 P1AD16 IO4 I/O 196 P2AD13 IO4 I/O

121 GND 159 GND 197 P2AD10 IO4 I/O

122 FDAT1 IO4 I/O 160 P1AD26 IO4 I/O 198 P2AI3 IO4 OUT

123 RESET_ IN1 IN 161 P1AD18 IO4 I/O 199 GND

124 FDAT0 IO4 I/O 162 COMMSEL IO5 IN 200 P2AD1 IO4 I/O

125 P1HWE0 IO4 OUT 163 P1AD15 IO4 I/O 201 P2AD9 IO4 I/O

TABLE 101. MXT3010EP pin listing
MXT3010 Reference Manual Version 4.1 379

Pin Information
202 P2AI0 IO4 OUT 215 TRS IN2 IN 228 RESRVD

203 P2AD5 IO4 I/O 216 P2AI1 IO4 OUT 229 VDD

204 P2AD7 IO4 I/O 217 OSC_EN_ IN1 IN 230 TXDATA2 IO2 I/O

205 GND 218 TXDATA0 IO2 I/O 231 TXDATA3 IO2 I/O

206 P2AD6 IO4 I/O 219 GND 232 TXCTRL2 IO3 OUT

207 TMS IN1 IN 220 TXCTRL0b IO2 OUT 233 TXDATA4 IO2 I/O

208 P2AD0 IO4 I/O 221 TXDATA1 IO2 I/O 234 TXDATA6 IO2 I/O

209 VDD 222 TXSOC IO2 OUT 235 GND

210 P2AD3 IO4 I/O 223 TXENB_ IO2 OUT 236 ICSO_C IO4 I/O

211 P2AI2 IO4 OUT 224 TXCLAV IO3 IN 237 TXDATA7 IO2 I/O

212 P2AD2 IO4 I/O 225 GND 238 TXCTRL1 IO3 OUT

213 TRI_ IN1 IN 226 TX_CLK IO2 OUT 239 TXCTRL3 IO3 OUT

214 GND 227 TDO IO2 OUT 240 VDD

a. The RXCTRL signals use differing pad types due to their varying use in multi-PHY configura-
tions. RXCTRL [3:0] are IO2, IO3, IO1, and IO3 respectively.

b. The TXCTRL signals use differing pad types due to their varying use in multi-PHY configura-
tions. TXCTRL [3:0] are IO3, IO3, IO3, and IO2 respectively.

TABLE 101. MXT3010EP pin listing
380 Version 4.1 MXT3010 Reference Manual

MXT3010EP pin listing
I/O pad reference

The table below cross-maps an I/O pin to the actual CMOS5S
I/O pad. SPICE models for these devices can be obtained by
contacting support@maker.com.

TABLE 102. I/O pad types

TYPE PAD DESCRIPTION

IO1 BT520PU_A_G 5V Tolerant Bi-direct buffer, A-slew, 20 ohm, 3-
state IO with pullup resistor.

IO2 BT520PU_B_G 5V Tolerant Bi-direct buffer, B-slew, 20 ohm, 3-
state IO with pullup resistor.

IO3 BT520PD_B_G 5V Tolerant Bi-direct buffer, B-slew, 20 ohm, 3-
state IO with pulldown resistor.

IO4 BT520PU_C_G 5V Tolerant Bi-direct buffer, C-slew, 20 ohm, 3-
state IO with pullup resistor.

IO5 BT520PD_C_G 5V Tolerant Bi-direct buffer, C-slew, 20 ohm, 3-
state IO with pulldown resistor.

IO6 BT520_C_G 5V Tolerant Bi-direct buffer, C-slew, 20 Ohm, 3
state IO.

IN1 IT5PUT_G 5V Tolerant LVTTL Input, with internal pull up.

IN2 IT5PDT_G 5V Tolerant LVTTL Input, with internal pull
down.
MXT3010 Reference Manual Version 4.1 381

Pin Information
382 Version 4.1 MXT3010 Reference Manual

CHAPTER 19 Electrical Parameters
This chapter provides information about the electrical parameters
of the MXT3010EP. The following topics are included:

• MXT3010EP Operating conditions and maximum ratings

• MXT3010EP Power sequencing

• MXT3010EP Phase Lock Loop (PLL) implementation
MXT3010 Reference Manual Version 4.1 383

Electrical Parameters

per-

MXT3010EP maximum ratings and operating conditions

TABLE 103. Absolute maximum ratings (VSS = 0V)

Notes 1: Stresses beyond the “Absolute maximum ratings” may cause
manent damage to the device. These are stress ratings only.
Operation at conditions beyond the indicated “Recommended
operating conditions” is not recommended and may adversely
affect device reliability.

2: Refer to Application Note 27, MXT3010EP Thermal Test Report

TABLE 104.Recommended operating conditions

Notes 1: See “Adjustments to Idc” on page 388.

2. Refer to Application Note 27, MXT3010EP Thermal Test Report

Symbol Parameter Min Max Units

VDD 3.3 volt supply -0.3 7.0 V

VIN Input voltage -0.3 7.0 V

TA Operating free-air temperature
range

0 See Note 2 °C

TSTG Storage temperature range -65 150 °C

Symbol Parameter Min Max Units

VDD 3.3 volt supply 3.14 3.47 V

VIH High-level input voltage 2 V

VIL Low-level input voltage 0.8 V

IOH High-level output current 0 11.41 mA

IOL Low-level output current 11.41 mA

TJ Operating junction temperature 0 1102 °C
384 Version 4.1 MXT3010 Reference Manual

MXT3010EP maximum ratings and operating conditions
DC electrical characteristics

TABLE 105. DC Electrical characteristics

AC electrical characteristics

I/O performance levels

With the exception of the TDO scan output, all MXT3010EP
outputs utilize either a medium or fast speed I/O pad. The table
below summarizes the slew rate of each pad at nominal process,
25°C and 3.3V supply. For more accurate analysis, SPICE mod-
els of the I/O pads are available.

Symbol Parameter Min Max Units

ICC 3.3 volt supply current (100
MHz)

970 mA

VOH VDD = min, IOH = max 2.4 V

VOL VDD = min, IOH = max 0.4 V

CIO Typ 7 pF

RIO I/O Output Impedance (nominal) 20 Ohms

Pd Power Dissipation @3.3/3.47V
@ 66 MHz
@ 80 Mhz

@ 100 Mhz

1.9/2.1
2.3/2.6
2.9/3.2

W
W
W

Performance Level Slew Rate (di/dt) Driver Speed

A 30 mA/ns Slow

B 60 mA/ns Medium

C 100 mA/ns Fast
MXT3010 Reference Manual Version 4.1 385

Electrical Parameters

re-
nc-

 I/
is

p,

an
this
can
i-
nt

nt

the
 a
-
si-

r-
ce
MXT3010EP power sequencing

Overview

The MXT3010EP uses a single voltage, +3.3 VDC ±5%. The
fore, there is no need to follow multiple voltage power seque
ing rules. There are, however, two concerns regarding the
application of power to CMOS devices such as the
MXT3010EP. Both concerns relate to current flowing from an
O pin into the chip’s VDD rail when the I/O pin of the device
powered, and VDD to the device is not present.

• Damage to I/O pad metal

When current flows into the I/O pad of the unpowered chi
the current flows from the I/O pad to the ESD diodes and
from there to the VDD pad. This metal is rather thin and c
be damaged from a high instantaneous inrush current. In
case, the metal connection fuses. Another way the metal
be damaged is through electromigration. When electrom
gration occurs, the metal erodes due to a moderate curre
flowing for an extended period of time.

• Latch-up

The second major concern during power sequencing is a
condition known as latch-up. Latch-up is a destructive eve
that can be induced in CMOS devices. The term refers to
'turning on' of the parasitic PNPN structure that exists as
normal part of the CMOS gate structure. The PNPN struc
ture is 'connected' between VDD and ground and has po
tive feedback. As this structure begins to conduct current
from VDD to ground, it is turned on harder, presenting a
lower impedance. The lower impedance causes more cu
rent to flow, and the process reinforces itself until the devi
overheats and is destroyed.
386 Version 4.1 MXT3010 Reference Manual

MXT3010EP power sequencing

e
d

d
 of

tail,

r

e
,

 to

he
d

ects.

th

e
Current can flow from the I/O pin to the VDD rail through
the I/O pad’s ESD structure. The existence and magnitud
of the current (Ipad) generally depends on the I/O type an
the electro-static discharge (ESD) protection device it
contains. The ESD structure is a set of series diodes from
the I/O pin to VDD. In the case of the BT520 I/O pad use
in the MXT3010EP, the ESD structure consists of a chain
5 series diodes.

The two problems outlined above are analyzed in greater de
with specific application to the MXT3010EP, in the sections
which follow.

Damage to I/O pad metal

To determine whether damage to the I/O pad metal will occu
from fusing or metal migration, one must first analyze how
much current will flow into the pad. When powered down, th
large capacitance associated with VDD (chip, package, card
other card components) could be modeled as a short circuit
ground (GND). Thus, the maximum current from a pad
through the ESD diode(s) to VDD would be determined by t
voltage and output resistance of the source supplying the pa
voltage, the number and forward voltage drops of the ESD
diodes, and the series resistance of the diodes and interconn
The following equation applies:

Ipad = (Vsource-(N*0.7)) / (Rsource+2)

N = the number of diodes (1,3,5) between the pad and VDD
Vsource = source voltage applied to the pad (volts)
Rsource = output resistance of the Vsource supply (ohms)
Ipad = current into the pad (amps)

There are two limits to the acceptable pad current (Ipad). Bo
are associated with current required to cause failures in the
Metal-1 (M1) wiring connecting from the pad to the ESD devic
MXT3010 Reference Manual Version 4.1 387

Electrical Parameters

t
 its
at
, in

nd
.5
s 5
d

and from the ESD device to VDD. The first limit is called Ifuse.
Currents above Ifuse may immediately destroy the metal layer 1
connections. All MXT3010EP I/O pads are 5V tolerant and can
withstand an Ifuse current of 129ma. The second current limit is
Idc. Currents below Idc can be safely applied for extended peri-
ods of time without causing M1 electromigration (wear-out)
failures.

Adjustments to
Idc

Idc is a strong function of both temperature and the number of
power-on hours (POH) over which the current is applied All
MXT3010EP I/O pads are rated for 11.4ma under the conditions
of 110K POH and 100°C. Idc may be adjusted for other condi-
tions using the following multipliers:

Idc(POH) = Idc(table value) * (110000/POH)**0.588

Idc(temp) = Idc(table value) * exp((5459/(temp+273)-14.64))

Sample
calculation

Assume all 5V tolerant inputs are being driven prior to the
MXT3010EP’s VDD rail being powered. Assume further tha
VDD on the hot-plugged ASIC part comes up 1 second after
I/O's pad receives the signal net voltage. Finally, assume th
this scenario occurs 10,000 times over the life of the product
a system running at 100°C. A further assumption is made the
signal driving the I/O pad has a 5V nominal supply voltage a
has a 20ohm nominal output impedance. Thus, Vsource = 2
volts and Rsource = 20 ohms. Since the BT520* I/O pad use
series ESD diodes from a pad to VDD, N=5. Calculating Ipa
yields:

Ipad = (Vsource-(N*0.7)) / (Rsource+2)

 = (5-(5*0.7)/(20+2)

 = 0.0681

 = 68.1 mA
388 Version 4.1 MXT3010 Reference Manual

MXT3010EP power sequencing
The calculated value Ipad is well below the 129 mA limit for
Ifuse, so pad damage from fusing does not occur. However, the
calculated value of Ipad is well above the 11.4 mA limit for Idc,
so this amount of current cannot be applied indefinitely without
affecting reliability.

Since we assumed that the Ipad current was being applied for 2.7
hours (10000 times for 1 seconds/time = 10000 seconds = 166
minutes = 2.7 hours) over the life of a product, Idc should be
adjusted for time:

Idc(POH) = Idc(Pad) * (110000/POH)**0.588

Idc(2.7 hours) = 11.4 mA * (110000/2.7)**0.588

 = 11.4 * 513.7

 = 5856 mA

This number is nearly two orders of magnitude above Ipad, so
we could stop here and conclude that the described application
will not effect reliability. Clearly, most cases of this type will be
limited by Ifuse well before Idc, but both Ifuse and Idc limits
should be checked.

I/O pad latch-up

I/O pad latch-up occurs when free charge in the semiconductor
substrate gets to the wrong place. Troublesome amounts of free
charge can be introduced by very large currents flowing through
the ESD diodes or other paths. Latchup is generally prevented
by isolating and protecting the parasitic PNPN structure from
collecting free charge.

It is difficult or impossible to induce latch-up in the device dur-
ing power up. As the device is conducting current from the I/O
pin to the VDD rail, there may be some free charge introduced
into the substrate. There is no power applied to the device at this
point, so latch up cannot occur.
MXT3010 Reference Manual Version 4.1 389

Electrical Parameters

uf-

d

-
ith-

e

ch
-

ted

.
er-
the
ly,
e

As the device VDD is applied, the current flowing through the
ESD diodes is sharply reduced. This is because the forward volt-
age drop of the ESD diodes is about 3.5 volts, so for an I/O pad
voltage of 5V, the ESD current drops to zero when the chip’s
VDD reaches 1.5V. Before the VDD level of the chip attains s
ficient voltage to sustain latch-up, the ESD current has been
neutralized due to the forward drop of the 5 series connecte
ESD diodes.

Additionally, the CMOS device is generally designed to with
stand several hundred milliamperes of ESD diode current w
out having latchup problems. This level of current is never
attained during this power up situation, further reinforcing th
latch up protection.

MXT3010EP PLL considerations

Overview

The MXT3010EP has an internal Phase Lock Loop (PLL) whi
it uses to generate the on-chip clock. This PLL allows the on
chip clock tree delay to be neutralized, and optimum perfor-
mance of the IC to be obtained. The on-chip PLL can be affec
by external circuit noise, so careful circuit design must be
employed to optimize the performance of the PLL.

Degradation of the PLL performance manifests itself as jitter
This jitter is measured as the timing variation of the chip’s int
nal clock to a stable reference clock supplied to the chip on
FN pin (pin 40). The internal clock cannot be observed direct
but any jitter on the internal clock will show up as jitter on th
UTOPIA transmit clock, TX_CLK (pin 226). Jitter will cause a
390 Version 4.1 MXT3010 Reference Manual

MXT3010EP PLL considerations
variation in the timing of the chip relative to the board clock.
The timing variation will affect setup and hold timing and erode
timing margins at the chip interface.

The following sections cover circuit design issues which affect
the operation of the PLL. Key areas of interest are de-coupling,
creating a quiet PLL VDD, and ensuring a good PCB layout of
the PLL area. The following sections also discuss the use of ref-
erence clocks, which may have jitter, and a method to bypass the
internal PLL of the MXT3010 in special applications.

VAA decoupling

The PLL has a separate power pin labeled VAA (pin 37). This
pin must be supplied with a very stable voltage level and should
be well decoupled. The current draw of this pin is very low, 2.5
mA nominal. The low current draw allows the voltage to be iso-
lated from the 3.3V power plane with a resistor. The use of a
resistor instead of an inductor provides very good isolation from
lower frequency noise such as power supply switching noise. A
ferrite bead or inductor will not introduce a DC voltage drop, but
it will also not filter low frequency noise. Due to the low current
draw, use of a resistor is the recommended solution. The VAA
pin should also be bypassed with a combination of a 10µF tanta-
lum cap and a 0.01µF ceramic cap as shown in Figure 109 on
page 392.

If the VAA pin is supplied voltage from a linear regulator, the
designer must ensure that enough current is being drawn to keep
the regulator in regulation. The output of a linear regulator is
essentially noise free.
MXT3010 Reference Manual Version 4.1 391

Electrical Parameters

hip.
nt
FIGURE 109.Generating a quiet VAA

General decoupling

The MXT3010EP must be properly decoupled to ensure clean
PLL operation. The PLL is most sensitive to noise on the VDD
supply. VDD noise contains both low frequency and high fre-
quency components. Power supply switching noise or insuffi-
cient bulk decoupling causes low frequency VDD noise. The
switching of the digital logic drivers causes high frequency
noise. Both of these noise sources must be taken into account to
ensure optimum performance.

The MXT3010EP has nineteen 3.3V supply pins. There should
be nineteen high frequency decoupling caps on the 3.3V supply
surrounding the chip. Additionally, there should be a minimum
20µF of bulk decoupling on the supply voltage (VDD) nearby to
the chip. This can be a single 22µF tantalum capacitor, or pref-
erably a pair of 10µF tantalum capacitors.

In a switching power supply environment, it is beneficial to fil-
ter the switching noise. This can be accomplished by filtering
the MXT3010EP’s VDD with a ferrite bead. The ferrite bead
works in conjunction with the bulk decoupling capacitors to
effectively filter the power supply switching noise. The ferrite
bead must be sized to handle the current draw of the entire c
An appropriate part is the FairRite 2743021446 surface mou
ferrite bead.

VDD Plane

27 ohm

VAA (Pin 37)
10 µF .01 µF

Locate close to
pin 37 of the
MXT3010EP
392 Version 4.1 MXT3010 Reference Manual

MXT3010EP PLL considerations
FIGURE 110.MXT3010EP decoupling capacitor location

Figure 110 shows the optimal location of the decoupling capac-
itors around the MXT3010EP. This diagram depicts the location
of 0805 size 0.01µF capacitors under the chip pin pads on the
bottom side of the board. The capacitors are located close to the
associated power pins. The capacitor should share a common via
with the power pin of the chip with a minimum length etch. The
same should be done with the ground connections.

Reference clock jitter

The PLL of the MXT3010EP locks the internal chip clock to the
reference clock supplied to the device. The PLL will not neces-
sarily be able to track jitter which is on the reference clock. If
there is significant jitter on the reference, and the chip clock
does not track it, the jitter will cause a reduction in timing mar-
gin at the chip interface.

Jitter on the reference clock can be caused by power supply
noise affecting components of the clock generation and distribu-
tion circuit. One potential source of jitter is power supply noise
or poor decoupling of crystal oscillators. Noise on the oscillator
power pin, whether from the board or self-induced, can convert
to timing jitter at the oscillator output. Some devices are better

3.3 V Bypass
22 µF Cap

22µF Cap

MXT3010EP

.01 µF Cap
MXT3010 Reference Manual Version 4.1 393

Electrical Parameters

ck
ust
n
e a

r.

L

ll
se.
ith a

he

han

this

 jit-
than others in this aspect of operation. To reduce this noise
source, ensure that the oscillator is well decoupled according to
the manufacturer’s specifications.

The distribution of the reference clock can also introduce clo
jitter. Designs that use dividers in the reference clock path m
avoid the possibility of simultaneous switching jitter, which ca
occur in synchronous counters. PLL clock buffers can also b
source of jitter, as these devices are generally susceptible to
power supply noise, and can convert this noise to timing jitte

Circuit design goals

It is desirable to keep VDD noise as low as possible. The PL
performance may start to degrade for high frequency noise
greater than 40mV p-p and low frequency noise greater than
20mV p-p. The low frequency noise is defined as the noise
below 20 MHz. The high frequency noise is defined as the fu
bandwidth noise measurement minus the low frequency noi
To ensure accuracy, measurements should be performed w
coaxial probe terminated in 50 ohms.

The PLL is sensitive to the frequency of the noise on VDD. T
above guidelines may be conservative depending upon the
application. Low frequency noise in the 100kHz to 500kHz
range is the most critical.

The recommended VAA decoupling should guarantee less t
2mV p-p noise on the VAA voltage.

The jitter on the reference clock should be kept to less than
500pS peak to peak. The PLL is sensitive to the frequency of
jitter and may track or filter this jitter based on the jitter fre-
quency and the PLL bandwidth. If the PLL does not track the
ter closely, the board level timing will be affected.
394 Version 4.1 MXT3010 Reference Manual

CHAPTER 20 Mechanical and Thermal
Information
This chapter provides information on the MXT3010EP mechan-
ical and thermal properties.
MXT3010 Reference Manual Version 4.1 395

Mechanical and Thermal Information
MXT3010EP mechanical/thermal information
The MXT3010EP is packaged in a 240-pin thermally enhanced
quad flat-pack.

FIGURE 111.MXT3010EP package/pin diagram - top view

MXT3010EP
top view

32.0±0.2
34.6±0.2

32.0
±0.2

34.6
±0.2

1.25
TYP

1.25
TYP

0.5 0.22±0.05
1 60

61

120

121180

181

240
396 Version 4.1 MXT3010 Reference Manual

MXT3010EP mechanical/thermal information
FIGURE 112.MXT3010EP package/pin diagram - side view

TABLE 106. MXT3010EP package summary

* These numbers will vary depending on the board stack-up and orientation. All airflow numbers
are quoted with 1m/sec of air flow over the device.

The MXT3010EP is a level 3 IAW IPC-SM-786A or JESD 22-
A112 device. The MXT3010’s safe floor life (out of bag) prior
to solder reflow is 1 week at ≤ 30°C/60% RH.

Package θjc (×C/W) θja (×C/W)

Package Type Body size (mm) Lead pitch (mm) *Still Air *Air Flow

MHS PQFP 240 32.0 x 32.0 x 3.0 0.5 2.0 20 14

33.6±0.2

4.1
MAX

3.4
REF

0.25
MIN

0°~7°

0.5 ~ 0.75

0.09 ~ 0.20
MXT3010 Reference Manual Version 4.1 397

Mechanical and Thermal Information
398 Version 4.1 MXT3010 Reference Manual

APPENDIX A Acronyms
Acronym Definition

AAL ATM Adaptation Layer

ABR Available Bit Rate

ACR Available Cell Rate

ATM Asynchronous Transfer Mode

CAM Content Addressable Memory

CBR Constant Bit Rate

CDV Cell Delay Variation

CDVT Cell Delay Variation Tolerance

CI Congestion Indicator

CLP Cell Loss Priority

CPCS Common Part Convergence Sublayer

CPI Common Part Identifier

CRC Cyclic Redundancy Check

CSS Cell Scheduling System

DMA Direct Memory Access

E1 European 2.048 Mbps rate TDM system

EFCI Explicit Forward Congestion Indicator

ESS External State Signals

FIFO First In First Out

GCRA Generic Cell Rate Algorithm

GFC General Flow Control
MXT3010 Reference Manual Version 4.1 399

400 Version 4.1 MXT3010 Reference Manual

HEC Header Error Control

ICS Interchip Communication System

IFO Instruction Field Option

JT2 96-channel TDM system used by Japan Telephone

MIB Management Information Base

MVIP Multi-Vendor Integration ProtocolTM

OAM Operations and Management

PCR Peak Cell Rate

PDU Physical Data Unit

PHY Physical Layer

PIT Programmable Interval Timer

PTI Payload Type Identifier

RAM Random Access Memory

RM Resource Management

RX Receive

SAR Segmentation and Reassembly

SCSA Signal Computing System Architecture, ANSI standard

SDU Service Data Unit

SHFM Store Halfword to Fast Memory

SRAM Static Random Access Memory

SRTS Synchronous Residual Time Stamp

SWAN Soft-Wired ATM Network

TDM Time Division Multiplexing

T1 24-channel TDM system used in North America

TX Transmit

UBR Undefined Bit Rate

UDT Unstructured Data Transfer

UU User-to-User

VBR Variable Bit Rate

VC Virtual Channel

VCI Virtual Channel Identifier

VP Virtual Path

VPI Virtual Path Identifier

Acronym Definition

APPENDIX B Device Initialization
This appendix describes the procedures for initializing and down-
loading firmware to the MXT3010. The following information
appears in this appendix:

• Initializing the MXT3010

• Downloading firmware

• Initializing the Mode Configuration register
MXT3010 Reference Manual Version 4.1 401

n,

t
w-

10
Initializing the MXT3010EP

To initialize the MXT3010EP:

1. Assert RESET_ asynchronously to the input clock, FN.

2. Hold the RESET_ pin low for a period of time to allow the
PLL to lock. For power-up, hold RESET_ as indicated in
“Timing” on page 343. For reset during powered operatio
hold RESET_ for 16 clock ticks.

3. Remove RESET_ synchronously with respect to the inpu
clock. The reset state continues for 2056 clock ticks follo
ing the removal of RESET_. The MXT3010EP will not
read or write the COMMIN/COMMOUT registers during
this time, nor will the CIN_BUSY or COUT_RDY flags
function during this time. Maker recommends that a host
software timer be used between the removal of RESET_
and the beginning of boot download.

Downloading firmware

This section describes:

• How the system determines the boot path

• How the application program uses the output pins

• How the code set is structured

• How to boot the firmware

• Limitations on the size of boot code

How the system determines the boot path

Firmware structured as a single-user code set for the MXT30
can be loaded through one of three paths:
402 Version 4.1 MXT3010 Reference Manual

Downloading firmware

 as
ces

ved
ther
0.
ns

l
tion
ing
• Through Port1, from a byte-wide device.

• Through Port2, from a byte-wide device.

• Through the COMMIN register.

The system signals the choice of boot path to the MXT3010
the device exits reset mode. During reset, the MXT3010 pla
the ICSO_A and ICSO_B pins into tri-state mode. The
MXT3010 senses the state of these pins as RESET_ is remo
to determine the boot method. Each of these pins is pulled ei
high or low to signal the appropriate boot path to the MXT301
During normal device operation, the ICSO_A and ICSO_B pi
function as outputs.

How the application uses the output pins

After the MXT3010 initialization routine is completed, contro
of the device passes to the application program. The applica
program can then use the ICSO_A and ICSO_B pins by sett
the appropriate bits in the system register.

TABLE 107. Selecting boot mode with ISCO_A and ICSO_B

ICSO_A ICSO_B Boot MODE

0 0 Reserved

0 1 Port1 Memory

1 0 Port2 Memory

1 1 COMMIN Register
MXT3010 Reference Manual Version 4.1 403

ore
able
tial-
om

alf-

ns-

 to

 set

-

res
g
m-
How the code set is structured

The output of the SWAN Processor’s assembler is one or m
user-code sets. The user-code set includes four fields; see T
108. The MXT3010 loads a single user-code set at device ini
ization. Support for loading multiple user-code sets comes fr
an intermediate boot loader routine.

As the code set is loaded, the MXT3010 computes a 16-bit
checksum. This checksum is a running 16-bit sum of each h
word of the user code set. All carries are discarded and not used
as part of the checksum routine. Upon completion of the tra
fer, the checksum is written to the COMMOUT register. The
host must read the COMMOUT register to clear the COM-
MOUT Busy flag. The host can then compare the checksum
the checksum contained in the tail of the image block. The
MXT3010 does not read the checksum field of the user-code
when loading a .ld file from Port1 or Port2 memory. The
MXT3010 firmware does read the checksum field when down
loading a .ubf file.

As the code set is loaded into Fast Memory, the MXT3010 sto
the starting address location. At the completion of the loadin
operation, the MXT3010 branches to this location in Fast Me
ory to execute the program.

TABLE 108. User code set’s four fields

Field Description Size

1. The starting word address (code address) in Fast
Memory to which the user code set is to be stored.

2 bytes

2. The number of half words in the user code set. 2 bytes

3. The user code. variable

4. The checksum calculated by the host for code set
containing all four fields.

2 bytes
404 Version 4.1 MXT3010 Reference Manual

Downloading firmware

-bit
h

-
,

e

ra-

r
How to boot

This section describes how to boot from Port1, Port2, and the
COMMIN register.

Booting from Port1

When the Port1 memory boot mode is selected, the MXT3010
reads the user-code set from a Port1-based memory device
(RAM or ROM) beginning at location 0xFFF00000. To support
byte-wide boot ROMs, the MXT3010 reads a single byte from
each 32-bit word location. Therefore, for the host processor to
copy the MXT3010’s boot image into RAM located at
0xFFF00000, it must place a single byte of code into each 32
word location. Align bits (7:0) of the byte-wide boot device wit
PIAD (31:24) of the MXT3010.

The MXT3010 issues single-word Port1 memory read opera
tions until all of the fields shown in Table 108, except field #4
the checksum field, are read from Port1 memory. Once thes
fields are read and placed into the specified location in Fast
Memory, the MXT3010 writes the result of its checksum ope
tion into COMMOUT register[31:16], or the Port1 memory
address location specified, and jumps to the first word of use
code.

Address Byte 0 Byte 1 Byte 2 Byte 3

31 0

0x0000 Not used Not used Not used

0x0004 Not used Not used Not used

0x0008 Not used Not used Not used

0x000C Not used Not used Not used

0x00010 Not used Not used Not used

. Not used Not used Not used

. Not used Not used Not used

. Not used Not used Not used
MXT3010 Reference Manual Version 4.1 405

Booting from Port2

When the Port2 memory boot mode is selected, the MXT3010
reads the user-code set from a Port2-based memory device, such
as a flash RAM or EEPROM device. The Port2 boot address of
0x0000 maps in non-burst space. Using this mapping, the
MXT3010 can use a slow flash device as the initialization
device. The MXT3010 inserts seven wait states for each Port2
read operation. To support byte-wide boot ROMs, the
MXT3010 reads a single byte from each 16 bit word of Port2
memory.

The MXT3010 issues Port2 memory read operations until all of
the fields shown in Table 108, except field #4, the checksum
field, are read from Port2 memory. Once these fields are read
and placed into the specified location in Fast Memory, the
MXT3010 writes the result of its checksum operation into the
COMMOUT register[31:16], or the Port2 memory address loca-
tion specified, and jumps to the first word of user code.

Booting from the COMMIN Register

A boot from the COMMIN register is performed 16 bits at a
time. The host writes the block into the COMMIN register using
COMM I/O. The first 16 bits are written from bits (31:16) of the
first image block word, the second 16 bits are written from bits

Address Byte 0 Byte 1

15 0

0x0000 Not used

0x0002 Not used

0x0004 Not used

0x0006 Not used

0x0008 Not used

. Not used

. Not used

. Not used
406 Version 4.1 MXT3010 Reference Manual

Downloading firmware
(15:0) of the first image block word, and so on. The following
diagram shows this process, arbitrarily assigning the letters A,
B, C, and D to represent successive 16-bit quantities.

.

The host must write all of the fields shown in Table 108 on
page 404, except field #4, the checksum field. Once these fields
are read and placed into the specified location in Fast Memory,
the MXT3010 writes the result of its checksum operation into
the COMMOUT register[31:16], and jumps to the first word of
user code.

Limitations on the size of boot code

Due to address calculation carry limitations, the MXT3010EP
has restrictions on the maximum size of the code it can boot
from the boot image. The restrictions depend upon the boot path
used:

Boot Path Restriction

Port1 4K instructions

Port2 512 instructions

COMMIN register No restrictions

31 16 15 0
A B

C D

E F

Host Memory

31 16
A

B

C

D

COMMIN_HIGH (R40)

First write

Second write

Third write

Fourth write

31 16

31 16

31 16
MXT3010 Reference Manual Version 4.1 407

’s
he
2-
ht

na-
-

d

cts

al
For those boot paths that have restrictions, specialized bootstrap
code can be written. For example, using Port2, the code could
load 512 instructions starting at a 512 word boundary. That code
could include a secondary bootstrap program to perform address
calculations and load the remainder of the application indepen-
dent of code size restrictions.

Initializing the Mode Configuration register

The Mode Configuration Register(R42) is affected by three pro-
cesses in the MXT3010. These processes proceed serially, start-
ing at hardware reset.

1. Hardware reset

Hardware reset initializes R42 to all zeros.

2. Operation at boot time

The Mode Configuration register (R42) must be initialized
at boot time since some system aspects of the MXT3010
operation are controlled by this register. At boot time as t
executable image is loaded into the MXT3010, the first 3
bit word of the loaded image sets the least-significant eig
mode bits in R42 with the indicated values. For an expla
tion of these bits, see “R42-write Mode Configuration reg
ister” on page 201.

The format of this boot word is a bit-mapped 8-bit field.
The state of each of the relevant bits indicates the desire
state of the associated mode bit. Although writes to R42
can only set or clear one bit at a time, the boot word affe
the state of bits [7:0] simultaneously. The micro-boot
sequence parses the boot word and creates the individu
R42 writes needed to affect each bit.

The syntax for the assembler is:
408 Version 4.1 MXT3010 Reference Manual

Initializing the Mode Configuration register
#define #boot_value 0x000000zz;‘zz is the
;desired value

....

LIMD R36, #boot_value ;‘zz programmed
;to R42
;automatically by
;microboot

....

The LIMD instruction must be the first instruction in the
executable image. The register used for this operation must
be the bit bucket (R36).

3. Firmware changes to register value

Although this register is automatically initialized, firmware can
still change the value of this register through the set/clear oper-
ations.

Restrictions on starting addresses

All systems operating in Fast Memory mode 1 have restrictions
on the values that can be used for bootstrap starting addresses.
Systems operating in Fast Memory mode 1 should use starting
addresses from the following table:

For applications that must run at a different starting address,
these restrictions can be avoided by using a secondary bootstrap
program.

TABLE 109. Bootstrap starting addresses for Fast Memory mode 1

MXT3010EP - modulo 32K

0x00000

0x08000

0x10000
MXT3010 Reference Manual Version 4.1 409

410 Version 4.1 MXT3010 Reference Manual

APPENDIX C Quick Reference
This appendix contains duplicate copies of useful charts which
appear elsewhere in this book, plus a summary of the MXT3010
SWAN processor instruction set.
MXT3010 Reference Manual Version 4.1 411

Hardware register summary

TABLE 110. Hardware registers

Location Name Read/Write

R32 General Purpose - 0000 R/W

R33 General Purpose - FFFF R/W

R34 General Purpose - FF00 R/W

R35 General Purpose - 0040 R/W

R36-Write The Bit Bucket W

R37 General Purpose R/W

R38 General Purpose R/W

R39 General Purpose R/W

R40 COMMOUT/COMMIN(31:16) R/W

R41 COMMOUT/COMMIN(15:0) R/W

R42-Read ESS register R

R42-Write Mode Configuration register Set/Clear

R43-Read Fast Memory Bit Swap register R

R43-Write UTOPIA TX Control FIFO register W

R44 CRC32PRX (15:0) R/W

R45 CRC32PRX (31:16) R/W

R46 CRC32PRY (15:0) R/W

R47 CRC32PRY (31:16) R/W

R48 rla Address register R/W

R49 rla Address register R/W

R50 rla Address register R/W

R51 rla Address register R/W

R52 Alternate Byte Count /ID register R/W

R53 Instruction Base Address register R/W

R54 Programmable Interval Timer (PIT0) R/W

R55 Programmable Interval Timer (PIT1) R/W

R56 The Fast Memory Data register R/W

R57-Read Sparse Event/ICS register R

R57-Write Sparse Event/ICS register Set/Clear

R58 Fast Memory Shadow register R/W

R59 Branch register R/W

R60 CSS Configuration register R/W

R61-Read Scheduled Address register R

R62 UTOPIA Configuration register R/W

R63 System register R/W
412 Version 4.1 MXT3010 Reference Manual

ALU instruction field summary
ALU instruction field summary
TABLE 111. MODx fields

TABLE 112. abc fields

TABLE 113. AE field

TABLE 114. UM field

Value Modulo Operation Value Modulo Operation

0000 MOD2 1000 MOD512

0001 MOD4 1001 MOD1K

0010 MOD8 1010 MOD2K

0011 MOD16 1011 MOD4K

0100 MOD32 1100 MOD8K

0101 MOD64 1101 MOD16K

0110 MOD128 1110 MOD32K

0111 MOD256 1111 Default

Value Branch Code Description

000 default No branch

001 BGEZ Branch if greater than or equal to zero

010 ----- ------

011 BZ Branch if zero

100 BLEZ Branch if less than or equal to zero

101 BLZ Branch if less than zero

110 BNZ Branch if not zero

111 BNO Branch if no overflow

Value Action

0 Conditional execution

1 Always execute target instructions

Value Action

0 Don’t update memory

1 Update memory
MXT3010 Reference Manual Version 4.1 413

Shift amount summary

TABLE 115. Shift amount chart for SFT, SFTLI, and SFTRI

TABLE 116. Shift amount chart for SFTC and SFTCI

SFT/SFTLI SFT/SFTRI

(4:0) Shift Left by (4:0) Shift Right by

00000 0 10000 16

00001 1 10001 15

00010 2 10010 14

00011 3 10011 13

00100 4 10100 12

00101 5 10101 11

00110 6 10110 10

00111 7 10111 9

01000 8 11000 8

01001 9 11001 7

01010 10 11010 6

01011 11 11011 5

01100 12 11100 4

01101 13 11101 3

01110 14 11110 2

01111 15 11111 1

(3:0) Shift left circular by (3:0) Shift left circular by

0000 0 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15
414 Version 4.1 MXT3010 Reference Manual

Shift amount summary
TABLE 117. Shift amount chart for SFTA

TABLE 118. Shift amount chart for SFTAI

(4:0) Shift right arithmetic by (4:0) Shift right arithmetic by

00000 0 10000 16

00001 1 10001 15

00010 2 10010 14

00011 3 10011 13

00100 4 10100 12

00101 5 10101 11

00110 6 10110 10

00111 7 10111 9

01000 8 11000 8

01001 9 11001 7

01010 10 11010 6

01011 11 11011 5

01100 12 11100 4

01101 13 11101 3

01110 14 11110 2

01111 15 11111 1

(3:0)
Shift right
arithmetic by (3:0)

Shift right
arithmetic by

0000 0 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15
MXT3010 Reference Manual Version 4.1 415

Branch instruction field summary

TABLE 122. The CSO field

TABLE 119. The ESS field (condition codes)

ESS Condition ESS Condition

ESS0 ICSI_A ESS8 Sparse event register, bit OR

ESS1 ICSI_B ESS9 RXBUSY counter > 0

ESS2 TXFULL counter ≤ 2 ESS10 TXFULL counter = full

ESS3 RXBUSY counter ≥ 4 ESS11 DMA1 Output or Queue
stage busy

ESS4 Assigned Cell Flag ESS12 DMA2 Output or Queue
stage busy

ESS5 CSS operation in progress ESS13 DMA1 Queue stage busy

ESS6 COMMIN_BSY ESS14 DMA2 Queue stage busy

ESS7 COMMOUT_BSY blank Unconditional Branch

TABLE 120. The S-bit field

S Branch Result

0 Branch is taken if condition = 0

1 Branch is taken if condition = 1

TABLE 121. The C-bit field

Type of
Branch

Condition
Code
Satisfied?

Conditional
Operator
(C-bit)

Never
Execute
Operator

Committed
Slot
Instruction
Executed?

Conditional Yes Note 1 Note 2 Yes

Conditional No Absent Note 2 Yes

Conditional No Present Note 2 No

Unconditional Note 1 Absent Yes

Unconditional Note 1 Present No

CSO Hex / Binary Value Operation

DRXBUSY E0 / 1110 0000 Decrement RXBUSY counter

DRXFULL E1 / 1110 0001 Decrement RXFULL counter

ITXBUSY C2 / 1100 0010 Increment TXBUSY counter

ITXFULL C3 / 1100 0011 Increment TXFULL counter
416 Version 4.1 MXT3010 Reference Manual

DMA instruction field summary

X
DMA instruction field summary

TABLE 123. Use of the I-bit

Bits [26] Description

0 Do not increment the rla register

1 Increment rla register upon completion of DMA operation

TABLE 124. Use of the BC field

DMA Instructions
Bits [26:19]

DMA+
Instructions
Bits [25:19] Descriptiona

a. See “Use of odd BC values” on page 287.

0 0 Transfer 0 Bytes.

2 2 Transfer 2 bytes

4 4 Transfer 4 bytes

6 6 Transfer 6 bytes

- - -

126 126 Transfer 126 bytes

128 Not Available Transfer 128 bytes

- Not Available -

254 Not Available Transfer 254 bytes

TABLE 125. Use of the Control byte

Bit Name Function

9 IBI Internal flag. Not used by programmers.

8 CRCX CRC32 Partial Result is generated based on CRC32PR
register’s value and the result is deposited into
CRC32PRX (R44/R45).

7 CRCY If set, a CRC32 Partial Result is generated based on
CRC32PRY register’s value and the result is deposited
into CRC32PRY (R46/R47)

6 POD If set, TXBUSY is incremented upon the completion of
DMA reads, and RXFULL is decremented upon comple-
tion of DMA writes.

5 ST If set, a “Silent Transfer” is performed.
MXT3010 Reference Manual Version 4.1 417

Instruction summary

TABLE 126. Instruction summary

Instruction Function & Format Pg.

ADD Add registers
ADD (rsa,rsb) rd [MODx][abc][AE][UM]

page
234

ADDI Add register and intermediate
ADDCI (rsa,usi) rd [MODx][abc][UM]

page
235

AND AND registers
AND (rsa,rsb) rd [MODx][abc][AE][UM]

page
236

ANDI AND register and immediate
ANDI (rsa,si) rd [abc][UM]

page
237

BF Branch Fast Memory Shadow Register
BF [ESS#/(0|1)/[C]][(cso)][N]

page
270

BFL Branch Fast Memory Shadow Register and link
BFL [ESS#/(0|1)/[C]][(cso)][N]

page
271

BI Branch immediate
BI wadr [ESS#/(0|1)/[C]][(cso)][N]

page
272

BIL Branch immediate and link
BIL wadr [ESS#/(0|1)/[C]][(cso)][N]

page
273

BR Branch register
BR wadr [ESS#/(0|1)/[C]][(cso)][N]

page
274

BRL Branch register and link
BRL wadr [ESS#/(0|1)/[C]][(cso)][N]

page
275

CMP Compare two registers
CMP (rsa,rsb) [abc][AE]

page
238

CMPI Compare register and immediate
CMPI (rsa,si) [abc]

page
239

CMPP Compare two registers with previous
CMPP (rsa,rsb) [abc][AE]

page
240

CMPPI Compare register and immediate with previous
CMPPI (rsa,si) [abc]

page
241

DMA1R Direct memory operation - Port 1 read
DMA1R rsa/rsb, rla [BC/#][CRC {X,Y}][POD]
[ST]

page
289
418 Version 4.1 MXT3010 Reference Manual

Instruction summary
DMA1R+ Direct memory operation - Port 1 read
DMA1R+ rsa/rsb, rla [BC/#][CRC {X,Y}][POD]
[ST]

page
289

DMA1W Direct memory operation - Port 1 write
DMA1W rsa/rsb, rla [BC/#][CRC {X,Y}][POD]
[ST]

page
290

DMA1W+ Direct memory operation - Port 1write
DMA1W+ rsa/rsb, rla [BC/#][CRC {X,Y}][POD]
[ST]

page
290

DMA2R Direct memory operation - Port 2 read
DMA2R rsa/rsb, rla [BC/#][POD]

page
291

DMA2R+ Direct memory operation - Port 2 read
DMA2R+ rsa/rsb, rla [BC/#][POD]

page
291

DMA2W Direct memory operation - Port 2 write
DMA2W rsa/rsb, rla [BC/#][POD]

page
292

DMA2W+ Direct memory operation - Port 2write
DMA2W+ rsa/rsb, rla [BC/#][POD]

page
292

FLS Find last set
FLS (rsa,rsb) rd [abc][AE][UM]

page
242

LD Load register
LD rd @rla [IDX/#]

page
321

LDD Load double register
LDD rd @rla [IDX/#]

page
322

LIMD Load immediate
LIMD rd,li [UM]

page
243

LMFM Load multiple from Fast Memory
LMFM rd @rsa/rsb #HW [LNK]

page
308

MAX Maximum of two registers
MAX (rsa,rsb) rd [MODx][abc][AE][UM]

page
244

MAXI Maximum of register and intermediate
MAXI (rsa,si) rd [abc][UM]

page
245

MIN Minimum of two registers
MIN (rsa,rsb) rd [MODx][abc][AE][UM]

page
246

MINI Minimum of register and intermediate
MINI (rsa,si) rd [abc][UM]

page
247

Instruction Function & Format Pg.
MXT3010 Reference Manual Version 4.1 419

OR OR registers
OR (rsa,rsb) rd [MODx][abc][AE][UM]

page
248

ORI OR register and immediate
ORI (rsa,si) rd [abc][UM]

page
249

POPC Service schedule
POPC rd@rsb

page
278

POPF POP fast
POPC rd@rsb

page
279

PUSHC Schedule
PUSHC rsa@rsb

page
280

PUSHF PUSH Fast
PUSHF rsa@rsb

page
281

SFT Shift signed amount
SFT (rsa,rsb) rd [MODx][abc][UM]

page
250

SFTA Shift right arithmetic
SFTA (rsa,rsb) rd [MODx][abc][UM]

page
251

SFTAI Shift right arithmetic immediate
SFTAI (rsa,usa) rd [MODx][abc][UM]

page
252

SFTC Shift left circular
SFTC (rsa,rsb) rd [MODx][abc][UM]

page
253

SFTCI Shift circular immediate
SFTCI (rsa,usa) rd [MODx][abc][UM]

page
254

SFTLI Shift left immediate
SFTLI (rsa,usa) rd [MODx][abc][UM]

page
255

SFTRI Shift right immediate
SFTRI (rsa,usa) rd [MODx][abc][UM]

page
255

SHFM Store halfword to Fast Memory
SHFM @rsa/rsb

page
311

SRH Store register halfword
SRH @rsa/rsb [adr][reg][lsbs]

page
312

ST Store register
ST rsa @rla [IDX/#]

page
323

STD Store double register
STD rsa/rsb @rla [IDX/#]

page
324

Instruction Function & Format Pg.
420 Version 4.1 MXT3010 Reference Manual

Instruction summary
SUB Subtract registers
SUB (rsa,rsb) rd [MODx][abc][AE][UM]

page
256

SUBI Subtract register and intermediate
SUBI (rsa,usi) rd [MODx][abc][UM]

page
257

XOR XOR registers
XOR (rsa,rsb) rd [MODx][abc][AE][UM]

page
258

XORI XOR register and intermediate
XORI (rsa,usi) rd [abc][UM]

page
259

Instruction Function & Format Pg.
MXT3010 Reference Manual Version 4.1 421

422 Version 4.1 MXT3010 Reference Manual

Index
A
AC Electrical Characteristics 385
Acronyms 399
Address 123
Address index 141
Address masking (Z-bit) 296
Address spaces 11
AI pins 141
Alternate address field (adr) in SRH 306
Alternate Byte Count/ID register (R52) 207, 209,

287
ALU branch operations 228, 327
ALU instructions 19, 223
Assigned Cell flag 31, 200, 278
ATM Header 62
Automatic memory update 228
Automatic-turnaround 114
Available Bit Rate (ABR) 35

B
Big-endian design 11
Bit 26 usage in DMA instructions 285

Bit Bucket register (R36) 197
Boot bit 210
Boot path 402
Booting

From Port1 405
From Port2 406
From the COMMIN Register 406

Branch Fast Memory instructions, use of R58 215
Branch instructions 19, 261

Basic Branch instructions 19
Target address 20

Branch register (R59) 216, 268
Branch with counter control 329
Branch with shadow address 329
Bus driving, turnaround, and holding 158
Bus parking 101
Byte Count (in R52) 209
Byte Count field (BC) 286
Byte manipulations on Port1 108
Byte swap support, load and store instructions 319
MXT3010 Reference Manual Version 4.1 423

C
C bit 265
Cell Buffer RAM 59

Access methods 64
Gather 65, 317
Linear 65, 317

Accessing 316
Internal cell storage 60
Receive cell buffer size 220
Segmentation 60
Transmit cell buffer size 220
UTOPIA Configuration register 60

Cell Buffer RAM Address Method
selection 208

Cell delay variation (CDV) 34
Cell fields 62
Cell formats 62

52-byte 63
56-byte 63

Cell length control 201
Cell Scheduling System 27

Accessing Fast Memory 51
Assigned Cell flag 31
Calculating time slots 34
Cell-scheduling process 30
Channel Descriptor 32, 40
Connection ID table 28
CSS Configuration register (R60) 41, 217
Error flag 217
GCRA 35
Initializing R60 217
POPC instruction 31
Programming 38
PUSHC instruction 32, 40
Scheduling a connection 32
Scheduling Error 41
Scoreboard 28

Accessing 316, 318
Initializing 318

Servicing a connection 31
CellMaker-155

description xxi
CellMaker-622

description xxi
Channel Descriptor 32, 40

CIN_BUSY 178, 199–200, 359
CircuitMaker

description xxi
Clean Up 117, 119, 127
Code set structure 404
Comm In Data Strobe 135
COMM SEL transfer 119, 127
COMMIN/COMMOUT register 178
Committed slot 229, 231, 264

Restrictions 233, 266
Communication Register I/O transfers 133
Comparing 32-bit numbers 240
Condition code (ESS field) 263
Conditional operator (C-bit) 265
Configuration information, reading during

reset 181
Connection ID 298
Connection ID table 28

Address bits 44
Address generation 44
Address in R61 218
Base address 217

Control field (DMA instructions) 287
Control signal timing 359
Counter system operations (CSO) 269
COUT_RDY 178, 199–200, 359
CRC acceleration

Using SRM 305
CRC32PRX and CRC32PRY registers (R44-

R47) 207
CRC32X Error Indicator 213
CRC32Y Error Indicator 213
CRCX bit 209, 288
CRCY bit 209, 288
CSO option 269
CSS Configuration register (R60) 217, 280
CSS error flag 217
CSS operation in progress 200

D
Data alignment

DMA operations 107
Data Read 115, 120
Data Wait 116, 121, 124, 128
Data Write 124, 128
424 Version 4.1 MXT3010 Reference Manual

Decoupling
General 392
VAA 391

Device ID field 209
Device initialization 401
Direct Memory Operation - Port1 Read (DMA1R

and DMA1R+) 289
Direct Memory Operation - Port1 Write (DMA1W

and DMA1W+) 290
Direct Memory Operation - Port2 Read (DMA2R

and DMA2R+) 291
Direct Memory Operation - Port2 Write (DMA2W

and DMA2W+) 292
Dispatched instructions 13
DMA instructions 284

Instruction field options 99
DMA Plus control 202, 285
DMA Plus instruction 107
DMA1 out or queue stage busy 200
DMA1 queue stage busy 200
DMA2 out or queue stage busy 200
DMA2 queue stage busy 200
Downloading firmware 402

E
Early end 202
Electrical parameters 383
ESS field 263
Examples

Add and Subtract 326
And, Or, Exclusive-or 334
Branching 328
Compare, Load Immediate, Max, Min 338
Load and Store Fast Memory 331
Load and Store Internal RAM 332
Shifts 335

External State Signals register (R42) 200

F
Fast Memory

Bus contention avoidance 55
Byte Swap register (R43) 203
Cell Scheduling System access 51
Chip Enable inputs 52
Configurations supported 52

Interface operation 364
Loading 48
Memory sizes 52
Mode control 202
Operating modes 52–53
Priority of various accesses 51
Processor access 48
RAM selection 52
Sequence diagrams 56
SHFM instruction 50
SRH instruction 50
Storing 50
SWAN processor access 51

Fast Memory Byte Address generation 296
Fast Memory Byte Swap register (R43) 203
Fast Memory Data register (R56) 50, 212
Fast Memory port 47
Fast Memory Shadow register (R58) 215, 270
Fast Memory timing 345
Find First Set instruction using R43 203
Flags

Overflow Flag 225

G
GA, GB, GC, and GD registers 208, 314
Gather access 65, 317
General Purpose registers

(R32) 193
(R33) 194
(R34) 195
(R35) 196
(R37-R39) 198

Generic Cell Rate Algorithm (GCRA) 35
Glossary 399

H
Hardware registers (reg field) in SRH 307
HEC 62

Control 201
Generation

Use of R32 193, 202
Use of R33 194

Generation and checking 25
Host Communication registers (R40-R41) 199
HW field 295
MXT3010 Reference Manual Version 4.1 425

HW field limitations when linking 295

I
I bit 285
I/O Performance Levels 385
IBI bit 288
ICSI 180, 200, 213, 359

Input enables 221
ICSO 180, 213, 359

Output enables 221
Index field (IDX) 315
Input clock details 344
Input pins 180
Instruction Base Address register (R53) 210,

262
Instruction cache 15

Cache organization and mapping 15
Instruction prefetch 17
Observing cached program flow 18
Using the Cache 17

Instruction classes 18
Instruction features 10
Instruction reference examples 325
Instruction set summary 411
Instruction space 14, 263
Instructions

Abbreviations used in 188, 190
Add Register and Immediate (ADDI) 235
Add Registers (ADD) 234
And Register and Immediate (ANDI) 237
And Registers (AND) 236
Branch Fast Memory Shadow Register

(BF) 270
Branch Fast Memory Shadow Register and

Link (BFL) 271
Branch Immediate (BI) 272
Branch Immediate and Link (BIL) 273
Branch Register (BR) 274
Branch Register and Link (BRL) 275
Compare Register and Immediate with

Previous (CMPPI) 241
Compare Two Registers (CMP) 238
Compare Two Registers and Immediate

(CMPI) 239
Compare Two Registers with Previous

(CMPP) 239–240
Find First Set (How to implement) 242
Find Last Set (FLS) 242
Load Double Register (LDD) 322
Load Immediate (LIMD) 243
Load Multiple from Fast Memory

(LMFM) 308
Load Register (LD) 321
Maximum of Register and Immediate

(MAXI) 245
Maximum of Two Registers (MAX) 244
Minimum of Register and Immediate

(MINI) 247
Minimum of Two Registers (MIN) 246
OR Register and Immediate (ORI) 249
OR Registers (OR) 248
Schedule - Fast (PUSHF) 281
Schedule (PUSHC) 280
Service Schedule - Fast (POPF) 279
Service Schedule (POPC) 278
Shift Circular Immediate (SFTCI) 254
Shift Left Circular (SFTC) 253
Shift Left Immediate (SFTLI) 255
Shift Right Arithmetic (SFTA) 251
Shift Right Arithmetic Immediate

(SFTAI) 252
Shift Right Immediate (SFTRI) 255
Shift Signed Amount (SFT) 250
Store Double Register (STD) 324
Store Halfword to Fast Memory (SHFM) 311
Store Register (ST) 323
Store Register Halfword (SRH) 312
Subtract Register and Immediate (SUBI) 257
Subtract Registers (SUB) 256
XOR Register and Immediate (XORI) 259
XOR Registers (XOR) 258

Instructions, list of 185
Interchip communication 180

J
JTAG and PLL pin terminations 377
JTAG scan 365

L
Last Transfer 117, 119, 121, 127, 129
426 Version 4.1 MXT3010 Reference Manual

Least significant bits (lsbs) field in SRH 307
Linear access 65, 317
Linking option and the Branch Register (R59) 268
LMFM instruction 48–49

#HW field 49
LNK option 49, 294, 299
LNK option, usage example 299
Load and Store Fast Memory instructions 293
Load and Store Internal RAM Instructions 313
Local Address registers (rla) (R48-R51) 208
Logical state identifier (S-bit) 264

M
Maximum Burst Size 35
Maximum ratings 384
Mechanical and thermal information 395
Memory alignment requirements for LMFM and

LNK 303
Memory update, automatic 228
Mode Configuration register (R42) 201, 285, 408
Modulo arithmetic 226, 326
MXT3010

description xxi
MXT3020

description xxi

N
N bit 265
NC bit 16, 210
Nullify operator (N-bit) 265

O
Operating conditions 384
Output pins 180, 403
Overflow flag 225, 234–235

P
P1ABORT_ signal 163
Pacing the transmission rate of cells 37

Back pressure 37
External clock 37

Package 396
Peak Cell Rate 35
Pin diagram 397
Pin information 367

Pin listings 378
Pin types 381
Pinout 368
PIT0

Control 202
Time out indication 213
Timer operation 211
Use of R54 211

PIT1
Control 202
Time out indication 213
Timer operation 211
Use of R55 211

PLL considerations 390
POD bit 288
PODs 109
POPC instruction

Timing 42
POPF instruction

Timing 42
Port interface

Command queues 100
Active stage 101
Queue stage 101
Testing status 101

DMA command format 98
Instruction field options 99
Overview 98

Port1 DMA Controller
Basic protocol 110
Byte manipulations 108
Control signals 111
CRC32 generator 103

Acceleration 104
Address holding registers 105
Byte boundaries 108
Pipelined operations 104
Silent transfers 105

Mapping rsa and rsb to address bits 110
PODs 109
Sequence diagrams

Comm I/O transfers 133
State tables

Comm I/O transfers 133
Port1 Operation Control 202
MXT3010 Reference Manual Version 4.1 427

Port1 timing 352
Port2 DMA Controller

Address index 141
Basic protocol 137
Burst and non-burst operation 109
Control signals 141
Mapping rsa and rsb to address bits

(burst) 137
Mapping rsa and rsb to address bits (non-

burst) 139
Sequence diagrams

Non-burst read transfer 144, 151, 155
Write transfers 147

State tables
Read transfers 142, 146, 150, 154

Port2 Operation 202
Port2 timing 356
Post-DMA Operation Directives (PODs) 109
Post-increment option on rla operations 107
Power sequencing 386
Program Counter 11
Programmable Interval Timer registers (R54-

R55) 211
PUSHC instruction 40

Scheduled Address register 218
Timing 42

PUSHC/POPC instruction buffer 42
PUSHF instruction

Timing 42

Q
Quick reference 411

R
R54 control 202
R55 control 202
RD register choices for LMFM 299–300
Receive Cell Buffer Size 220
Receive Cell Status word 63, 78
Receive header reduction 91
Reference clock jitter 393
Registers

Access rules 22
Alternate Byte Count/ID register (R52) 209
Assigned Cell flag register 24

Bit Bucket register (R36) 197
Branch register (R59) 216
CRC32PRX and CRC32PRY registers (R44-

R47) 207
CSS Configuration register (R60) 217
External State Signals register (R42) 200
Fast Memory Byte Swap Register (R43) 203
Fast Memory Data register (R56) 212
Fast Memory Shadow register (R58) 215
Flag registers 24
GA, GB, GC, GD 314
General purpose (R32) 193
General purpose (R33) 194
General purpose (R34) 195
General purpose (R35) 196
General purpose (R37-R39) 198
Host Communication registers (R40-

R41) 199
Initializing 191
Instruction Base Address register (R53) 210
List of 184, 191
Local Address registers (rla) (R48-R51) 208
Mode Configuration register (R42) 201
Overflow flag register 24
Pipeline feedback 21
Programmable Interval Timer registers (R54-

R55) 211
Register types 21
Scheduled Address register (R61) 218
Sparse Event/ICS register (R57) 213
Specifying in SWAN instructions 190
System register (R63) 221
Types 189
UTOPIA Configuration register (R62) 219
UTOPIA Control FIFO register (R43) 205

Reset 402
Reset timing 360
Restrictions

Access to rla register 285, 315
Accessing destination of POPC 278
Choice of destination for POPC 278
CIN_BSY and COUT_RDY 179
Committed slot 233
LMFM instruction timing 309
Port1 Addressing 111
428 Version 4.1 MXT3010 Reference Manual

RLA Increment bit (i-bit) 285
RLA increment option 107
RLA register

Choices for rla register 208, 314
RXBUSY counter 79, 200
RXFULL

Counter 81
Decrementing 109
State indicator 213

S
S bit 264
SAR PDU 62
Scheduled Address register (R61) 33, 218
Scoreboard 28

Address bits 44
Address generation 44
Initialization 45
Section size selection 217
Sections 46
Size 45

Scoreboard/Cell Buffer selection 208
Segment ID 262
Segment ID bits 210
Sequence diagrams

CIN_BUSY and COUT_RDY 179
Comm I/O transfer 133
Fast Memory 56
Port2 144, 147, 151, 155
UTOPIA Port 94

SHFM instruction 50
SHFM instruction, use of R56 212
Signal descriptions 369

Clock, control, and test signals 375
Fast Memory controller 373
Inter-chip and communication register 374
Port1 370
Port2 371
Power and ground pins 376
UTOPIA Port 372

Signed arithmetic 225
Silent transfers 105, 288
Sparse Event register bit OR 200
Sparse Event register enables 221
Sparse Event/ICS register (R57) 180, 213

SPICE models 381
SRH instruction 50
ST bit 288
ST option 105
Stalls

Load Double Register 322
Load Register 321
Store Double Register 324
Store Register 323
With LMFM instruction 309
With SHFM instruction 311

Subroutine linking 268
Sustained Cell Rate 35
SWAN instruction set 185
Swap field 319
System register (R63) 91, 221

T
Target address

Branch instructions 262
Cell scheduling 277
Load and Store Internal RAM 315

Target field 263
Timing 343

Control signals 359
Definition of switching levels 343
Fast Memory interface 345
Port1 352
Port2 356
Reset 360
UTOPIA interface 348

Timing restrictions
LMFM instruction 309

Transfer complete
Byte count zero

Early end 162
Standard end 161

External abort (P1ABORT_) 163
Transmit Cell Buffer Size 220
TXBUSY

Incrementing 109, 206
State indicator 213

TXFULL Counter 200
MXT3010 Reference Manual Version 4.1 429

U
UM address generation 301
UM option 49, 228, 294
UM option, usage example 301
Unconditional branch 200
Unspecified Bit Rate (UBR) 35
User Header 62
UTOPIA Configuration register (R62) 60, 71,

88, 92–93, 219
UTOPIA Control FIFO register (R43) 205
UTOPIA port 69

Cell formats 74
Clock frequency selection 220
Clock phases 73
Configuration information summary 93
Control FIFO register 83
CRC10 generation and checking 87
Data bus width selection 219
Generating and inserting CRC10 205
Inserting an unassigned cell 205
Level 1 and 2 configurations 90
Level 2 configurations 89
Most significant PHY address selection 219
Multi-PHY support 88
Number of PHYs selection 219
Operating modes

16-bit 71
8-bit 71

Overview 70
Post-DMA operative directive (POD) 82
Receive cell flow 77
Receive Cell Status word 78
Receiver counters (RXBUSY, RXFULL) 78
Receiver Enable (RXENB_) 82
Receiver reduction mask 222
Resetting 71
Selecting address of target PHY 205
Selecting cell length 72
Selecting HEC operation 72
Selecting operating speed 72
Selecting transmit/receive modes 72
Sequence diagrams 94
Transmit cell flow 82
Transmit Enable (TXENB_) 84
Transmitter counters (TXBUSY,

TXFULL) 84
TXBUSY counter 84
TXFULL counter 86

UTOPIA Port Post Operative Directive
(POD) 288

UTOPIA Receiver Reduction Mode Enable
Bit 220

V
Variable Bit Rate (VBR 35
VPI/VCI 222

Z
Z-bit 296
430 Version 4.1 MXT3010 Reference Manual

	Preface
	Maker Products
	Using this manual
	Contacting Maker Support Services
	Changes Installed in This Version of the Manual

	CHAPTER 1 Introduction
	MXT3010 features
	FIGURE 1. MXT3010 and surrounding system devices

	MXT3010 subsystems
	What information is in this manual

	CHAPTER 2 The SWAN Processor
	The SWAN advantage
	SWAN’s instructions and address spaces
	Instruction features
	Address spaces
	FIGURE 2. SWAN processor address spaces and access instructions

	Instruction execution
	Instruction space organization
	FIGURE 3. SWAN instruction space

	Instruction cache
	Cache organization and mapping
	FIGURE 4. Formation of the page offset and the instruction tag

	Using the Cache
	Instruction prefetch
	Observing cached program flow

	SWAN processor instruction classes
	TABLE 1. SWAN processor instruction classes
	Arithmetic Logic Unit (ALU) instructions
	Branch instructions
	FIGURE 5. Target address format in Fast Memory
	TABLE 2. Methods of specifying the branch target field

	Registers
	FIGURE 6. Pipeline feedback
	TABLE 3. Hardware registers requiring one instruction delay
	TABLE 4. Hardware registers requiring two instruction delays
	Flag registers

	HEC generation and check circuit

	CHAPTER 3 The Cell Scheduling System
	How the Cell Scheduling System works
	TABLE 5. Scoreboard sectioning control
	FIGURE 7. Connection ID entries

	Data transmission - servicing and scheduling
	Servicing
	Scheduling
	FIGURE 8. Servicing and scheduling
	Calculating target time slots

	Pacing the transmission rate of cells
	Programming the Cell Scheduling System
	FIGURE 9. Scoreboard operation

	Guaranteeing the availability of a location in the Connection ID table
	The PUSHC/POPC instruction buffer
	POPC, PUSHC, POPF, and PUSHF instruction operation
	POPC and PUSHC timing
	POPF and PUSHF timing
	Connection ID table and Scoreboard addressing
	FIGURE 10. Connection ID table address generation
	TABLE 6. Connection ID table address bits
	FIGURE 11. Scoreboard address generation
	TABLE 7. Scoreboard address bits

	Initializing the Scoreboard
	Selecting a Scoreboard size
	Supporting multiple Scoreboard sections

	CHAPTER 4 The Fast Memory Interface
	SWAN processor accesses to Fast Memory
	Loading
	FIGURE 12. Load Fast Memory instruction

	Storing
	FIGURE 13. Store Fast Memory instruction

	Cell Scheduling System accesses to Fast Memory
	SWAN executable fetches from Fast Memory
	Fast Memory configurations
	Memory sizes supported
	FIGURE 14. Fast Memory SRAM options

	RAM selection and configuration
	Mode 0 operation
	TABLE 8. Comparison of Mode 0 and Mode 1 operation
	FIGURE 15. Mode 0 design example

	Mode 1 operation
	FIGURE 16. Mode 1 design example

	Bus contention avoidance

	Fast Memory sequence diagrams
	FIGURE 17. Fast Memory read operations - single bank
	FIGURE 18. Fast Memory write operations - single bank
	FIGURE 19. Fast Memory reads and writes - back-to-back and dual bank

	CHAPTER 5 The Cell Buffer RAM
	Internal cell storage in the Cell Buffer RAM
	TABLE 9. UTOPIA Configuration control of the Cell Buffer RAM
	FIGURE 20. Cell Buffer RAM organization
	FIGURE 21. Cell fields defined
	TABLE 10. Cell field functions
	FIGURE 22. Receive cell organization: 52-byte and 56-byte cells

	Cell Buffer RAM memory construction
	FIGURE 23. Gather method accesses

	Cell Buffer RAM access
	FIGURE 24. Cell Buffer RAM access

	CHAPTER 6 The UTOPIA port
	UTOPIA port interface overview
	Features
	Operating modes
	TABLE 11. UTOPIA port data bus width selection
	TABLE 12. UTOPIA port Tx and Rx pin utilization in 16-bit mode
	FIGURE 25. The UTOPIA port: 8/8 and 16-bit modes
	TABLE 13. Cell length and HEC control
	TABLE 14. UTOPIA port clock selection
	FIGURE 26. Clock phases for RX/TX CLK = 1/2 Internal Clock
	FIGURE 27. Clock phases for RX/TX CLK = 1/4 Internal Clock

	UTOPIA cell formats
	FIGURE 28. UTOPIA 8-bit and 16-bit cell formats
	FIGURE 29. HEC-enabled 52-byte mode
	FIGURE 30. HEC-disabled 52-byte mode
	FIGURE 31. HEC-enabled 56-byte mode
	FIGURE 32. HEC-disabled 56-byte mode

	Receive cell flow
	UTOPIA receiver counters
	FIGURE 33. The RXBUSY counter
	The RXBUSY counter
	FIGURE 34. The RXFULL counter

	The RXFULL counter

	Transmit cell flow
	UTOPIA transmitter counters
	FIGURE 35. The TXBUSY counter

	The TXBUSY counter
	FIGURE 36. The TXFULL counter

	The TXFULL counter
	CRC10 generation and checking support

	Multi-PHY support
	TABLE 15. Bit assignments for multi-PHY operation
	FIGURE 37. Level 2 PHY configurations
	FIGURE 38. Mixed Level 1 and Level 2 PHY configuration

	Receive Header Reduction hardware
	TABLE 16. Receive Header Reduction control
	TABLE 17. Receive Header Reduction enable bit

	UTOPIA port configuration summary
	TABLE 18. UTOPIA configuration information

	UTOPIA port sequence diagrams
	FIGURE 39. UTOPIA Port receive timing - single PHY, 8-bit mode
	FIGURE 40. UTOPIA Port transmit timing - single PHY, 8-bit mode
	FIGURE 41. UTOPIA Port receive full timing - single PHY, 8-bit mode
	FIGURE 42. UTOPIA Port transmit full timing - single PHY, 8-bit mode

	CHAPTER 7 The Port1 and Port2 Interfaces
	Port interface overview
	TABLE 19. Characteristics of Port1 and Port2

	The Port DMA command queues
	Port1 and Port2 DMA command queues
	FIGURE 43. DMA command queues for the MXT3010EP

	Testing DMA Controller queues with the ESS bits
	TABLE 20. ESS Bits for DMA Controller status
	TABLE 21. Example of DMA Controller status bit utilization

	Port Controller features
	The Cyclical Redundancy Check 32 generator for Port1
	TABLE 22. Specification of the CRCX/CRCY instruction field option

	Cyclical Redundancy Check operation acceleration
	Silent transfers
	Post-increment option on rla operations
	Data alignment
	Byte manipulations on Port1
	TABLE 23. Valid and invalid first, mid-cell, and last transfers.

	Post-DMA Operation Directives (PODs)

	Burst and non-burst operation (Port2)
	Port Operations
	Port1 basic protocol
	FIGURE 44. Diagram of Port1 DMA instruction bits
	TABLE 24. Port 1 DMA instruction bit mapping
	Port1 control signals
	Restrictions on Port1 Addressing
	TABLE 25. Signals to control Port1 transfers

	The Port1 control state machine
	General information concerning DMA transfers
	TABLE 26. State table for the Port1 DMA burst read state machine
	FIGURE 45. Port1 DMA Read transfer with a Wait state
	FIGURE 46. Port1 DMA Read transfer without a Wait state

	Port1 DMA write transfers
	TABLE 27. State table for the Port1 DMA burst write state machine
	FIGURE 47. Port1 DMA Write transfer with a Wait state
	FIGURE 48. Port1 DMA Write transfer without a Wait state

	Multiple Port1 Read and Write Transfers
	FIGURE 49. Cut-and-Paste Version of Port1 Read
	FIGURE 50. Cut-and-Paste Version of Port1 Write

	Communication register I/O transfers
	TABLE 28. State table for Port1 communication I/O state machine
	FIGURE 51. COMMIN write followed by COMMOUT read

	Port2 basic protocol
	FIGURE 52. Diagram of Port2 burst DMA instruction bits
	TABLE 29. Port2 burst DMA instruction bit mapping
	TABLE 30. Another view of Port2 burst DMA instruction bit mapping
	FIGURE 53. Diagram of Port2 non-burst DMA instruction bits
	TABLE 31. Port2 non-burst DMA instruction bit mapping
	TABLE 32. Another view of Port2 non-burst DMA instruction bit mapping
	Multi-function AI pins (P2AI[3:0])
	Port2 control signals
	TABLE 33. Signals to control Port2 transfers

	The Port2 control state machine
	Port2 DMA burst-mode read transfers
	TABLE 34. State table for the Port2 DMA burst-mode read state machine
	FIGURE 54. Port2 DMA burst-mode Read transfer with a Wait state
	FIGURE 55. Port2 DMA burst-mode Read transfer without a Wait state

	Port2 DMA burst-mode write transfers
	TABLE 35. State table for the Port2 DMA burst write state machine
	FIGURE 56. Port2 DMA burst-mode write transfer with a Wait state
	FIGURE 57. Port2 DMA burst-mode write transfer without a Wait state

	Port2 DMA non-burst-mode read transfers
	TABLE 36. State table for the Port2 DMA non-burst-mode read state machine
	FIGURE 58. Port2 DMA non-burst-mode Read transfer.

	Port2 DMA non-burst-mode write transfers
	TABLE 37. State table for the Port2 DMA non-burst-mode write state machine
	FIGURE 59. Port2 DMA non-burst-mode Write transfer.

	Additional Port1 and Port2 Design Information
	Arbitrating access to Port1
	FIGURE 60. System example for Port1 bus.

	Simplified Port2 interfaces
	Bus driving, turnaround, and bus parking
	Data Alignment

	Transfer complete
	Byte Count zero
	FIGURE 61. DMA Read transfer with standard END_ signal
	FIGURE 62. DMA Read transfer with Early END

	External DMA cycle abort (P1ABORT_)
	FIGURE 63. DMA Read transfer terminated by P1ABORT_

	Endian-ness
	FIGURE 64. Most Significant Byte is the Lowest Address (“Big-endian”)
	FIGURE 65. Least Significant Byte is the Lowest Address (“Little- endian”)
	TABLE 38. Comparison of Big-endian and Little-endian Read Operations
	FIGURE 66. Hardware Byte-swapping Circuit
	FIGURE 67. Word Access
	TABLE 39. Accesses With Hardware and Software Swaps, 32-bit
	FIGURE 68. 16-bit xxx0 Access
	FIGURE 69. 16-bit xxx2 Access
	TABLE 40. Accesses With Hardware and Software Swaps, 32-bit and 16-bit
	FIGURE 70. Byte Access
	TABLE 41. Accesses With Hardware and Software Swaps, 32-bit, 16-bit, and 8-bit

	Port1 and Port2 Reference Designs
	P1MemMaker
	FIGURE 71. The Port1 MemMaker FPGA
	FIGURE 72. Data Path Connections - Shared Memory to PCI
	FIGURE 73. Data Path Connections - Shared Memory to MXT3010

	P2MemMaker
	FIGURE 74. The Port2 MemMaker FPGA
	FIGURE 75. Data Path Connections - Shared Memory to PCI
	FIGURE 76. Data Path Connections - Shared Memory to MXT3010

	CHAPTER 8 Communications
	The COMMIN/COMMOUT register
	TABLE 42. Definitions of CIN_BUSY and COUT_RDY
	FIGURE 77. Timing of CIN_BUSY and COUT_RDY

	Interchip communications
	TABLE 43. ICSI pins
	TABLE 44. ICSO pins

	Registers
	TABLE 45. Hardware registers

	Instructions
	TABLE 46. Alphabetical list of instructions
	Instruction description notations
	TABLE 47. Abbreviations used in SWAN instructions

	CHAPTER 9 Registers
	Register types
	Software registers
	Hardware registers
	Specifying registers in SWAN instructions
	TABLE 48. Field abbreviations

	Initializing software and hardware registers
	TABLE 49. Hardware registers

	R32 General Purpose - 0000
	R33 General Purpose - FFFF
	R34 General Purpose - FF00
	R35 General Purpose - 0040
	R36-write Bit Bucket register
	R37-R39 General Purpose registers
	R40-R41 Host Communication registers
	R42-read External State Signals (ESS) register
	R42-write Mode Configuration register
	R43-read Fast Memory Bit Swap register (R42w[8]=0)
	R43-read Special Features register (R42w[8]=1)
	R43-write UTOPIA Control FIFO register
	R44-R47 CRC32PRX and CRC32PRY registers
	R48-R51 Local Address registers (rla)
	R52 Alternate Byte Count/ID register
	R53 Instruction Base Address register
	R54-R55 Programmable Interval Timer registers
	R56 Fast Memory Data register
	R57-read Sparse Event/ICS register
	R57-write Sparse Event/ICS register (Set/Clear)
	R58 Fast Memory Shadow register
	R59 Branch register
	R60 The Cell Scheduling System (CSS) Configuration register
	R61-read Scheduled Address register
	R62 The UTOPIA Configuration register
	TABLE 50. Signal utilization for 1-PHY and 2-PHY modes

	R63 The System register

	CHAPTER 10 Arithmetic Logic Unit Instructions
	Addressing modes
	Triadic register
	FIGURE 78. Triadic register operation
	FIGURE 79. Triadic instruction format

	Immediate
	FIGURE 80. Immediate 10-bit instruction format
	FIGURE 81. Immediate 6-bit instruction format

	Overflow flag
	Instruction options
	Modulo arithmetic
	TABLE 51. Modulo arithmetic options

	Automatic memory updates
	The Update Memory field (UM)

	ALU branching
	The ALU Branch Condition field (abc)
	TABLE 52. ALU Branch Conditions for all instructions except Compare and Min/Max instructions
	TABLE 53. ALU Branch Conditions for Compare and Min/Max instructions

	The Always Execute field (AE)

	ADD Add Registers
	ADDI Add Register and Immediate
	AND And Registers
	ANDI And Register and Immediate
	CMP Compare Two Registers
	CMPI Compare Register and Immediate
	CMPP Compare Two Registers with Previous
	CMPPI Compare Register and Immediate with Previous
	FLS Find Last Set
	LIMD Load Immediate
	MAX Maximum of Two Registers
	MAXI Maximum of Register and Immediate
	MIN Minimum of Two Registers
	MINI Minimum of Register and Immediate
	OR Or Registers
	ORI Or Register and Immediate
	SFT Shift Signed Amount
	SFTA Shift Right Arithmetic
	SFTAI Shift Right Arithmetic Immediate
	SFTC Shift Left Circular
	SFTCI Shift Circular Immediate
	SFTRI/SFTLI Shift Right or Left Immediate
	SUB Subtract Registers
	SUBI Subtract Register and Immediate
	XOR XOR Registers
	XORI XOR Register and Immediate

	CHAPTER 11 Branch Instructions
	General Branch instruction information
	Introduction
	FIGURE 82. Branch instruction format (simplified)

	Target address
	FIGURE 83. Target address format in Fast Memory
	TABLE 54. Methods of specifying the Branch target field

	Condition code (ESS Field)
	TABLE 55. External State Signals register (R42) bits

	The logical state identifier (S-Bit)
	TABLE 56. Use of the S-bit

	Committed slot instructions
	The Conditional operator (C-bit)
	TABLE 57. Use of the Conditional and Nullify operators
	TABLE 58. Example �- conditional branch, condition satisfied
	TABLE 59. Example �- conditional branch, condition not met�
	TABLE 60. Example - unconditional branch
	TABLE 61. Example �- conditional operator, conditional branch, condition satisfied
	TABLE 62. Example �- conditional operator, conditional branch, condition not satisfied

	Subroutine linking
	TABLE 63. Example �- Branch with link, and return

	Counter system operation
	TABLE 64. The CSO field

	BF Branch Fast Memory Shadow Register
	BFL Branch Fast Memory Shadow Register and Link
	BI Branch Immediate
	BIL Branch Immediate and Link
	BR Branch Register
	BRL Branch Register and Link

	CHAPTER 12 Cell Scheduling Instructions
	Cell Scheduling System target address
	POPC Service Schedule
	POPF POP Fast
	PUSHC Schedule
	PUSHF Push Fast

	CHAPTER 13 Direct Memory Access Instructions
	General DMA instruction information
	Introduction
	FIGURE 84. DMA instruction format (simplified)

	Op codes for DMA instructions
	TABLE 65. Op codes for DMA instructions

	The RLA increment bit (i-bit)
	TABLE 66. Use of Bit 26
	TABLE 67. Timing chart for accessing rla after a DMA

	The Byte Count instruction field option (BC)
	TABLE 68. Use of the BC field
	The “Use Alternate Byte Count Register (R52)” Feature
	Use of odd BC values

	The Control instruction field option
	FIGURE 85. Control field format)
	TABLE 69. Use of the Control byte

	DMA1R Direct Memory Operation - Port1 Read
	DMA1W Direct Memory Operation - Port1 Write
	DMA2R Direct Memory Operation - Port2 Read
	DMA2W Direct Memory Operation - Port2 Write

	CHAPTER 14 Load and Store Fast Memory Instructions
	General information for Load and Store Fast Memory instructions
	Introduction
	TABLE 70. Load Fast Memory instruction format
	TABLE 71. Store Fast Memory instruction format

	Transfer size (the #HW field)
	Fast Memory address (the rsa and rsb fields)
	TABLE 72. Use of the rsa and rsb fields

	Address masking (the Z-bit)
	TABLE 73. Use of the Z-bit
	FIGURE 86. Z-bit usage example

	Destination register (the rd field)
	Linking (the LNK bit)
	FIGURE 87. Simplified Channel Descriptors
	TABLE 74. Limits on #HW when linking to rd
	FIGURE 88. Channel Descriptor for LMFM and UM example
	TABLE 75. Memory alignment requirements

	Instructions for accelerating CRC operations
	Alternate address (the adr field)
	TABLE 76. Use of the adr field

	Hardware register (reg field)
	TABLE 77. Use of the reg field

	Least significant bits (the lsbs field)

	LMFM Load Multiple from Fast Memory
	TABLE 78. Restrictions on access to rd registers after LMFM

	SHFM Store Halfword to Fast Memory
	SRH Store Register Halfword

	CHAPTER 15 Load and Store Internal RAM Instructions
	General information for Load and Store internal RAM instructions
	Introduction
	TABLE 79. Load internal RAM instruction format
	TABLE 80. Store internal RAM instruction format

	Register load address (rla field)
	TABLE 81. Use of the rla field

	The index field (IDX)
	Using IDX to calculate the target address
	FIGURE 89. XOR operation between IDX and rla

	Selecting the Cell Buffer RAM or the Scoreboard
	Cell Buffer RAM accesses
	FIGURE 90. Gather method accesses

	Cell Scheduling System Scoreboard accesses

	Byte swap support
	The Swap field
	TABLE 82. Byte-swapping Load instructions
	TABLE 83. Byte-swapping Store instructions

	LD Load Register
	LDD Load Double Register
	ST Store Register
	STD Store Double Register

	CHAPTER 16 Swan Instruction Reference Examples
	Add and Subtract examples
	Branch examples
	Load and Store Fast Memory examples
	Load and Store Internal RAM examples
	Logical examples
	Shift examples
	Miscellaneous examples

	CHAPTER 17 Timing
	MXT3010EP timing - general information
	Definition of switching levels
	FIGURE 91. Switching level voltages

	Input clock details
	FIGURE 92. Input clock waveform (pin FN)
	TABLE 84. Input clock timing parameters

	MXT3010EP Fast Memory interface timing
	TABLE 85. Fast Memory timing for the Maker MXT3010EP
	FIGURE 93. Timing for Fast Memory reads
	FIGURE 94. Timing for Fast Memory writes

	MXT3010EP UTOPIA interface timing
	FIGURE 95. FN and half-speed RX_CLK/TX_CLK
	FIGURE 96. FN and quarter-speed RX_CLK/TX_CLK
	TABLE 86. UTOPIA timing for Maker MXT3010EP
	TABLE 87. Delay of UTOPIA clocks relative to MXT3010EP internal clock (CLK)
	FIGURE 97. UTOPIA port receive timing
	FIGURE 98. UTOPIA port transmit timing

	MXT3010EP Port1 timing
	TABLE 88. Port1 timing table
	FIGURE 99. Port1 read timing
	FIGURE 100. Port1 write timing
	FIGURE 101. COMMIN register write, COMMOUT register read timing

	MXT3010EP Port2 timing
	TABLE 89. Port2 timing table
	FIGURE 102. Port2 read timing
	FIGURE 103. Port2 write timing

	MXT3010EP miscellaneous control signal timing
	TABLE 90. Miscellaneous control signal timing
	FIGURE 104. Timing of CIN_BUSY and COUT_RDY
	MXT3010EP Reset timing
	TABLE 91. MXT3010EP reset timing
	FIGURE 105. MXT3010EP reset timing
	FIGURE 106. Reset trailing edge timing
	TABLE 92. MXT3010EP RESET_ timing parameters
	FIGURE 107. Reset timing circuit

	MXT3010EP Fast Memory interface operation
	MXT3010EP JTAG operation

	CHAPTER 18 Pin Information
	MXT3010EP pinout
	FIGURE 108. MXT3010EP package/pin diagram

	MXT3010EP signal descriptions
	TABLE 93. MXT3010EP Port1 signal descriptions
	TABLE 94. MXT3010EP Port2 signal descriptions
	TABLE 95. UTOPIA port signal description
	TABLE 96. MXT3010EP Fast Memory controller signal description
	TABLE 97. MXT3010EP inter-chip and communication registers signal description
	TABLE 98. MXT3010EP miscellaneous clock, control, and test signal descriptions
	TABLE 99. Power and ground pin descriptions

	MXT3010EP JTAG/PLL pin termination
	TABLE 100. MXT3010EP pin terminations

	MXT3010EP pin listing
	TABLE 101. MXT3010EP pin listing
	I/O pad reference
	TABLE 102. I/O pad types

	CHAPTER 19 Electrical Parameters
	MXT3010EP maximum ratings and operating conditions
	TABLE 103. Absolute maximum ratings (VSS = 0V)
	TABLE 104. Recommended operating conditions
	DC electrical characteristics
	TABLE 105. DC Electrical characteristics

	AC electrical characteristics
	I/O performance levels

	MXT3010EP power sequencing
	Overview
	Damage to I/O pad metal
	I/O pad latch-up

	MXT3010EP PLL considerations
	Overview
	VAA decoupling
	FIGURE 109. Generating a quiet VAA

	General decoupling
	FIGURE 110. MXT3010EP decoupling capacitor location

	Reference clock jitter
	Circuit design goals

	CHAPTER 20 Mechanical and Thermal Information
	MXT3010EP mechanical/thermal information
	FIGURE 111. MXT3010EP package/pin diagram - top view
	FIGURE 112. MXT3010EP package/pin diagram - side view
	TABLE 106. MXT3010EP package summary

	APPENDIX A Acronyms
	APPENDIX B Device Initialization
	Initializing the MXT3010EP
	Downloading firmware
	How the system determines the boot path
	TABLE 107. Selecting boot mode with ISCO_A and ICSO_B

	How the application uses the output pins
	How the code set is structured
	TABLE 108. User code set’s four fields

	How to boot
	Booting from Port1
	Booting from Port2
	Booting from the COMMIN Register

	Limitations on the size of boot code

	Initializing the Mode Configuration register
	Restrictions on starting addresses
	TABLE 109. Bootstrap starting addresses for Fast Memory mode 1

	APPENDIX C Quick Reference
	Hardware register summary
	TABLE 110. Hardware registers

	ALU instruction field summary
	TABLE 111. MODx fields
	TABLE 112. abc fields
	TABLE 113. AE field
	TABLE 114. UM field

	Shift amount summary
	TABLE 115. Shift amount chart for SFT, SFTLI, and SFTRI
	TABLE 116. Shift amount chart for SFTC and SFTCI
	TABLE 117. Shift amount chart for SFTA
	TABLE 118. Shift amount chart for SFTAI

	Branch instruction field summary
	TABLE 119. The ESS field (condition codes)
	TABLE 120. The S-bit field
	TABLE 121. The C-bit field
	TABLE 122. The CSO field

	DMA instruction field summary
	TABLE 123. Use of the I-bit
	TABLE 124. Use of the BC field
	TABLE 125. Use of the Control byte

	Instruction summary
	TABLE 126. Instruction summary

