NEC

User’s Manual

V850E/MS1™, V850E/MS2™

32-Bit Single-Chip Microcontrollers

Architecture

V850E/MS1: V850E/MS2:
1PD703100 1PD703130
1PD703100A
1PD703101
uPD703101A
1PD703102
1PD703102A
LPD70F3102
LPD70F3102A

Document No. U12197EJ6VOUMOO (6th edition)
Date Published November 2002 N CP(K)

© NEC Electronics Corporation 1996
Printed in Japan

[MEMO]

2 User’'s Manual U12197EJ6VOUM

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

® STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is notinitialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

V800 Series, V850 Series, V850/SA1, V850/SB1, V850/SB2, V850/SC1, V850/SC2, V850/SC3, V850/SF1,
V850/SV1, V850E/IA1, V850E/IA2, VB50E/MA1, V850E/MA2, V850E/MS1, V850E/MS2, V851, V852, V853, V854,
and IEBus are trademarks of NEC Electronics Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.

User's Manual U12197EJ6VOUM 3

These commodities, technology or software, must be exported in accordance
with the export administration regulations of the exporting country.
Diversion contrary to the law of that country is prohibited.

The information in this document is current as of August, 2002. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with NEC Electronics sales
representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such NEC Electronics products. No license, express, implied or
otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or
others.

Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers
or third parties arising from the use of these circuits, software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC

Electronics products, customers must incorporate sufficient safety measures in their design, such as

redundancy, fire-containment and anti-failure features.

NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and

"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC

Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to

determine NEC Electronics's willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
(as defined above).

M8E 02. 11

User's Manual U12197EJ6VOUM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, please contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

« Device availability
« Ordering information

« Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics America, Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

e Sucursal en Espana
Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

¢ Succursale Francaise
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

¢ Filiale ltaliana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

¢ Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

e Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

¢ United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

User's Manual U12197EJ6VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China

Tel: 021-6841-1138

Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 6253-8311

Fax: 6250-3583

Jo2.11

Major Revisions in This Edition

Page Description
p.60 Modification of description of CLR1 instruction in 5.3 Instruction Set
p.90 Modification of description of NOT1 instruction in 5.3 Instruction Set
p.105 Modification of description of SET1 instruction in 5.3 Instruction Set
p.110 Modification of description of SLD1 instruction in 5.3 Instruction Set
p.112 Addition of description of SST instruction in 5.3 Instruction Set
p.185 Addition of APPENDIX F REVISION HISTORY

The mark x shows major revised points.

User's Manual U12197EJ6VOUM

Readers

Purpose

Organization

How to Read This Manual

PREFACE

This manual is intended for users who wish to understand the functions of the
VB50E/MS1 and V850E/MS2 for designing systems using the V850E/MS1 and
V850E/MS2. The following products are described.
* V850E/MS1: uPD703100, 703100A, 703101A, 703102, 703102A, 70F3102,
70F3102A
* V850E/MS2: uPD703130

This manual presents information on the architecture and instruction set of the
V850E/MS1 and V850E/MS2.

This manual contains the following information:
* Register set
¢ Data type
* Instruction format and instruction set
* Interrupts and exceptions
* Pipeline flow

It is assumed that the reader of this manual has general knowledge in the fields of
electrical engineering, logic circuits, and microcontrollers.

To learn about the hardware functions,
— Read V850E/MS1 Hardware User’s Manual and V850E/MS2 Hardware User’s
Manual.

To learn about the functions of a specific instruction in detail,
— Read CHAPTER 5 INSTRUCTIONS.

To learn about the electrical specifications,
— Read the DATA SHEET of each device.

To understand the overall functions of the V850E/MS1 and V850E/MS2,
— Read this manual in the order of the contents.

With the V850E/MS1 and V850E/MS2, data consisting of 2 bytes is called a halfword,
and data consisting of 4 bytes is called a word.

In this manual, the VB50E/MS1 is explained as the typical product unless there are any
functional differences.

User's Manual U12197EJ6VOUM 7

Conventions

Related Documents

Data significance: Higher digits on the left and lower digits on the right

Active low: XXX (overscore over pin or signal name)

Memory map addresses: Higher addresses on the top and lower addresses on the
bottom

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... xxxx or xxxxB

Decimal ... xxxx
Hexadecimal ... xxxxH
Prefix indicating the power of 2 (address space, memory capacity):
K (Kilo): 21 =1024
M (Mega): 220 = 10242
G (Giga): 23%0=10243
Data type: Word...32 bits
Halfword...16 bits
Byte...8 bits

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

e Documents related to devices

Document Name

Document Number

1PD703100-33, 703100-40, 703101-33, 703102-33 Data Sheet U13995E
1PD703100A-33, 703100A-40, 703101A-33, 703102A-33 Data Sheet U14168E
1PD70F3102-33 Data Sheet U13844E
1PD70F3102A-33 Data Sheet U13845E
1PD703130 Data Sheet U15390E
VB850E/MS1 Hardware User’'s Manual U12688E
VB850E/MS2 Hardware User’s Manual U14985E
VB850E/MS1, VB850E/MS2 Architecture User's Manual This manual
V850E/MS1 Hardware Application Note U14214E

User's Manual U12197EJ6VOUM

e Documents related to development tools (user’s manuals)

Document Name

Document Number

IE-703102-MC (In-circuit emulator) U13875E
IE-703102-MC-EM1, IE-703102-MC-EM1-A U13876E
(In-circuit emulator option board)
CA850 (Ver.2.30 or Later) Operation U14568E
(C compiler package) C language U14566E
Project manager U14569E
Assembly language U14567E
ID850 (Integrated debugger) Operation Windows™ based U14580E
Ver.2.20
SM850 (System simulator) Operation Windows based U14782E
Ver.2.20
SM850 System Simulator External Part User Open Interface U14873E
(Ver. 2.00 or Later) Specifications
RX850 (Ver.3.13 or Later) Fundamental U13430E
(Real-time OS) Installation U13410E
Technical U13431E
RX850 Pro (Ver.3.13) Fundamental U13773E
(Real-time OS) Installation U13774E
Technical U13772E
RD850 (Ver.3.01) (Task debugger) U13916E
RD850 Pro. (Ver.3.01) (Task debugger) U13737E
AZ850 (Ver.3.0) (System performance analyzer) U11181E
PG-FP3 (Flash memory programmer) U13502E

User's Manual U12197EJ6VOUM

CONTENTS

CHAPTER 1 INTRODUCTION.......cciiiiieerrsssmerrsssmerrssssmserssssmsesesssnmessassnmsseassnmssssssamsssassamsssessansesessansssessansssassnns 14
R O € =T 47T - 14
0 - |1 -, 15
IR TN S 0T 18Tz g =3 [o Ty =T o 16
I S 0 S U I 00T | T 11 - 1 { o o 17
1.5 Differences with Architecture of V850 CPU........ccccueciiieminninissmssms s sssss s sssss s sssssssmsssssssnsas 18

CHAPTER 2 REGISTER SETicicciiiiitiiiiimssiissssssisssssssssssss s sasssss s sasssss s sasssss s sassass s iasssss s iassnns snsssansssassansssnssans 20
P20 T o o T T = 1 TN 2 LT o] =T 20

211 Program regiStEr SEEcoui e e e 20
P VL (=T 1T 5 =Y o TS =T 23
2.2.1 Interrupt Status SAVING FEQISTEIS i e e e 23
2.2.2 NMI Status SAVING FEOISTEIS. ...ttt e e e e e e e s r e e e e e e s sbrreeeeeeeesnnne 24
P22 NG B = (o1=T o) i [0 g Woz= TU L= (=T 1 =T ORI 24
2.2.4 Program STAIUS WOIQuiieiiiiiiiiiiiie ettt e et e e e e e sttt e e e s e b e et e e e e e e an b n e e e e e e e e a b nreeeeeeenann 24
225 CALLT caller status SAVING rEGISTEISciiiiiiiieiiiieiee sttt sttt ettt e sae e e sane e snneesaneas 26
2.2.6 ILGOP caller Status SAVING FEQISTEIS.ueiiiiiiiie ittt ettt ettt e s st e e s aab e e s eneeeesanbeeeas 26
2.2.7 CALLT DASE POINTETei ittt ittt ettt ettt ettt sa e e e b et e sae e e sab e e sas e e sabe e easeesabe e eabeesaneesaneesaneesnneennneas 26
2.2.8 SyStEM regiSter NUMDETottt e e s bt e e s rab e e e aabe e e e e nneeeesnbeee s 27
CHAPTER 3 DATA TYPES.... o ccccrirrcmrrrsssrrrss s s sess s s sessms s sessams s sessamsesessamsssessamsesessamsssessansesessansssassansssnssnns 28
R 0 T = 1 - T8 o 3 = 28
3.1.1 Data type and @dArESSINGuueeeeieieiiiiiie ittt e a e nees 28
3.2 Data RepreSentationccccccierrrmissmmmmsssrimiss s s rs s s s s s s s s ea s s s s s en s s n e e en s an e nnnnanennaan 29
3.2.1 [a1 (=To =T PP PP PP S PPPPPRPP 29
T2 B U | o 1= T g T=To g1 (=T o =T O P PR PP 30
2 T = | O PO R TP PP POPPOPROP 30
R T T = 1 = I 1T [T = o . 30

CHAPTER 4 ADDRESS SPACE ...ttt siess s s s ssss s s ssss s s ssss s e ssms s e amn s e ams s sasams s snssans 31
T 30 B 111 1= 4 Lo V(1 - 32
L 3 Vo Lo [=== T T TN 1 oo [33

421 LTSy (0o o] g 1= To [0 [=TT RSP SPRPRPPPRPR 33
2 I © o T=Y =T To =T [[T S 36

CHAPTER 5 INSTRUCTIONSceoiiiiiiiiiiiessiinsess s issass s ssssass s rassass s s sams s asams s e ams s e amn e s e amn e s b amn s bnamn s ennsnns 39
5.1 Instruction FOrmat ... ———————— 39
5.2 Outline of INSIrUCHIONScoreir s s s e e 43
L T | =3 1T o - 47
5.4 Number of Instruction Execution ClOCK CYCIeS........ccucemiiiimnimmmnssmnss s ssses s s s sssnes 128

10 User's Manual U12197EJ6VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONSccooiiiiminienenemensssssssss s s ssssssssssssssssssssnsssanas 133

L0 T 121 (=Y 0 0T o ST VT | T 134
6.1.1 MaSKaDIE INTEITUPT ... e e e e e s e s s e e e e nre e 134

6.1.2 NON-MASKADIE INTEITUDL....uetititiiiiitiii s 136

(ST =) (= o (o] o T o Yo =T=] | T 137
6.2.1 Y011 LI (=Y o] o] o SO UPPRPRN 137

L2 B) (oT=T o] 1o o I 1 = o SR PRRRRPPR 138

6.3 Restoring from Interrupt/EXCEPlionccccciriimiinissmrinnsn i s s 139

L0 Y o I A = 1 = i 140
70 O | 411 = 1= Lo T 140
2%~ 1 = {1 1T LU o 140
CHAPTER 8 PIPELINEcceieecceresscrressssnesessssesssssssesessssmesessssmesesssssesesssnnesesssnnesesssnnenesssnnenenssnnenesssnneneass 141
2 T =T 1 (= - 142

£ 202 © 1V {11 7= 0 J'e YT o 13 T o 145
8.3 Pipeline Flow During Execution of INSIrUCLIONSccccemimiiimmminnmsr s 146
8.3.1 LOAA INSIIUCTIONS.....eeiiiiiiii it e s s b s e e e s s bre e 146

SR 2 (o1 1= 0 1 (1 o oo T SR 146

8.3.3 Arithmetic operation instructions (excluding multiply and divide instructions)ccccocceiiiiiiininnnen. 147

8.3.4 MUIIPIY INSTIUCTHIONS.eiiieeee e e e e e e e e sne e e s nre e e e anne e s nannes 147

8.3.5 DiVIAE INSHIUCHIONS........iiiiiiiiii i e e 148

8.3.6 Logical operation iNSIIUCTIONScviiiiiieeee et e e e e e snr e e e e enne e e e 148

8.3.7 Saturation operation iNSITUCHIONSccciiiiiiiiiiiii e e e e e e e e e e s e aeeeaeaeas 148

8.3.8 BranCh iNSTIUCHIONSttt ettt e e e e e et e e e e e e e e e e nneeeeeaeeeeannnneeaaaaean 149

8.3.9 Bit Manipulation INSIIUCHIONSuuiiiiiiiiiiiiiiieie s 151

8.3.10 SPECIAI INSIIUCTIONSecitiieitie ittt ettt e bt e bt e be e e ebe e e eae e e shbeeeae e e beeenaeeesbeeenaeeenene 152

< 0 S 1 o =Y 113 U= T o T e [T 155
8.4.1 AlIGNMENT NAZAIA ... e e s e e s et e s e e e e nre e e s anr e e e nnees 155

8.4.2 Referencing execution result of 10ad INSTIUCHIONccueiiiiiiiiii e 156

8.4.3 Referencing execution result of Multiply iNSrUCION...........ocviiiiiiiii e 156

8.4.4 Referencing execution result of LDSR instruction for EIPC and FEPCcc.cccoiiiiiiiiiieeeeieee e 157

8.4.5 Cautions When Creating PrOgIAIMScoiueiiriiiaiiteritee sttt ete et et ee st e e et e st e e bt e e beeesae e e saneesaneesbeeennneeneee 157
APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER).......ccccocmmmismmrmmsssnsnsssssansnsanss 158
APPENDIX B INSTRUCTION LIST ...cccccciiiiismnriissassrissssssssssssssssssssssssssssssssassssssssssansssasssssssassansssnssannsssassansnsans 171
APPENDIX C INSTRUCTION OPCODE MAP.......iiiiiriiinntrinnsasssssssssssssssss s sssssss s sssssssssssssss s ssssassssnsssssnsass 175
APPENDIX D INSTRUCTIONS ADDED TO VB50Eccccoocmimirumrmmssnnnsmssssssssssssssssssssssssssssssssssansssssssnssnnns 180
APPENDIX E INDEX ... ceiiiiiiiiiisessessrmisisissmssss s rnssssssssss s s rna s s s s s s e £ raaa e s s e e £ £ £ e e A e AR RS R R R R ER AR R RmRRREERRRR AR R Rnmnnns 182
* APPENDIX F REVISION HISTORYcciiiiiiiiiiimmiiiimsniissmssissssmsssssssmsssassams s sassmss snsssmss sssssmss sssssmsssasssmnsnnssannnns 185

User's Manual U12197EJ6VOUM 11

LIST OF FIGURES

Figure No. Title Page
1-1 VAL RS Y=Y 1T N T o SRR 16
1-2 INtErNal CONFIGUIATION ...ttt e e b e s bt e e b e e sabe e eabe e s beesaneeebeesnneeans 17
2-1 Program REGISTEISoieeiiiiieie et e e e e e e e e e e e n e e e e nr e nnnes 21
2-2 Program RegiSter OPEratiONS..........uii ittt ettt ettt s ab e e s st e e s bee e e s bb e e e e ane e e e nnees 22
2-3 SYSIEM REGISTEIS ...ttt ettt et et h et e bt e s he e e eh et e sae e e sa b e e eab e e sa b e e ene e e sabeesareesnbeesnneenareas 23
4-1 V1= 0 g 1Y =T o J RPN 32
4-2 Relative Addressing (JR diSp22/JARL diSP22, rEJ2)cuueteiiiureieiiiiee ettt eeieee ettt e sttt e s e e sbre e s e e snes 33
4-3 Relative Addressing (BCOND GISPO)eeeuiiiiieiiieeiiee sttt ee st ettt ettt i e sae e e sabe e sabe e sbeeebe e e beesabeeenseesneeens 34
4-4 Register AAdressing (JMP [FEGT]) ..eeiiiuieieiiiiie ettt e e et e e e aab e e e s anee e e s rnb e e e s anbee e e sannes 35
4-5 Based AdAreSSING (TYPE 1) ..uuii i iiie ittt ettt ettt ettt e ettt e e bt e s be e eab e e e be e e be e e ameeeabeesbeesaneesbeesaneeans 36
4-6 (ST To Yo (o [Ty aTo [N Q)Y o112 I PSPPSR OPPR 37
4-7 =T Yo [0 =TT oo SRR RPPP R 38
6-1 Maskable Interrupt ServiCing FOIMALooiiiiiiiiie e e sr e 135
6-2 Non-Maskable Interrupt SErvicing FOMMAL.........cuuiiiiiiiii e 136
6-3 Software Exception Processing FOIMALcc.eiiiiiiiiiiiiii et 137
6-4 [l1egal INSTIUCHON GOcoiiiieeeiitie ettt st e e s bt e e sttt e e sabe e e e s abb e e e eabe e e e sabeeeeenbeeenans 138
6-5 Exception Trap Processing FOIMALoooiiii i e e e e s 138
6-6 Restoration from INterrUpt/EXCEPLION.........uuiiiiii e e e e e e e e s e araeeeaaa s 139
8-1 Pipeling CONfIGUIATIONcoiiiiiiieete et e ettt s et e e e st bt e e eane e e e sabeeeeennreeenans 141
8-2 NON-BIOCKING LOAA/STONEtiiiiiiiiiie ettt ettt ettt b e bt a e sae e s he e e sbe e e sat e e sab e e smbeesabeesnneenareas 142
8-3 Pipeline Operations with Branch INStrUCHIONScciiiiiiiiiiiiice e e e e e e 143
8-4 Parallel Execution of Branch INStrUCHONSc i e e e 144
8-5 Example of Executing Nine Standard INStrUCHIONSouiiiiiiiiii e 145
8-6 AlIgN HazZard EXAMPIE ...ttt e e e e e e st e e e e e e e e e e e e e e 155
8-7 Example of Execution Result of Load INSTIUCHIONooiiiiiiiiiie e a e 156
8-8 Example of Execution Result of Multiply INSTFUCHION...........oviiiiiii e 156
8-9 Example of Execution Result of LDSR Instruction for EIPC and FEPCccooiiiiiiiiiiieeee e 157

12

User's Manual U12197EJ6VOUM

LIST OF TABLES

Table No. Title Page
1-1 Differences Between VB50E CPU and V850 CPUcoooiiiiiiiiiiie et e e e 18
2-1 System ReGISTEr NUMDET ... ittt b et a et b et s bt e sab e e sar e e sab e e s mreesabeesareenareas 27
5-1 (o= T 1 (oY £= 0 [T (T (] SR 43
5-2 Arithmetic Operation INSTIUCHIONSoiiiii e e e e e e e e e e e e e e e e ssns e e e e e e e easansreees 43
5-3 Saturated Operation INSTIUCHIONS.........oiiuiii it e et s e e sar e e sareenaneas 44
5-4 Logical Operation INSITUCTIONSoiiieieieiiiee ettt ettt e e s bt e e e aab et e e snee e e s bbe e e saneee e nanees 44
5-5 T =g o] o [S W Lo (1] 1= PP 45
5-6 Bit Manipulation INSIFUCHIONScoo oottt ettt e e e ettt e eeteteteeeaeeeeeeeeeeeeeeeenansnnnes 46
5-7 SPECIAI INSTIUCTIONS ...ttt ettt b e e bt e eb e e e b et e eae e e abe e e sae e e eae e e ambeesabeeeareesabeeenneenareas 46
5-8 Conditional BranCh INSIIUCHIONS.cooiiiiiiiiee ettt s sabe e e e snreeeeans 56
5-9 (@70 TaTo 11 {To o TN 7 oo =Y. S 104
5-10 List of Number of Instruction Execution ClOCK CYCIES.........coiiiiiiiiiiiiiiiriiie et 128
6-1 [0 (=T g 0T o) 74 = Col=T o) o] I @7 o [= T PR PRRR 134
7-1 Register STatus AfEr RESEL......coi ittt e e s e e e s sab e e e e e nbe e e e 140
8-1 ACCESS TIMES (IN CIOCKS) ..vvtieiieeiieiiititiet e e ettt e e e e ettt e e e e e e st e e e e eeeessa s baaeeeaaaeeesasstaaeaaeseasnssaneeaaeeesases 146
A-1 Instruction Mnemonics (in AlphabetiCal OrAEr)cooiuiiiiiiii e e e e e e e e e eanes 159
B-1 [[a =T 0 Te] o1 To N] PSSP PPPP PP PPPPPPP 171
B-2 1S LW o3 1T T T SR 173
D-1 Instructions Added to V850E CPU and V850 CPU Instructions with Same Instruction Code......................... 180

User's Manual U12197EJ6VOUM 13

CHAPTER 1 INTRODUCTION

The V850 Series™ is a collection of NEC Electronics single-chip microcontrollers that have a CPU core that uses
the RISC microprocessor technology of the V800 Series™, and incorporate functions such as internal ROM/RAM and
peripheral I/O.

The V850 Series of microcontrollers provides a migration path to NEC Electronics’ existing 78K Series of original
single-chip microcontrollers, and boasts a higher cost-performance.

The V850 Series includes products that incorporate the V850 CPU and products that incorporate the V850E CPU.
The V850E/MS1 is one of the latter.

This chapter briefly outlines the V850 Series.

1.1 General

Real-time control systems are used in a wide range of applications, including:

« Office equipment such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles,
¢ Automotive electronics such as engine control systems and ABSs (Antilock Braking Systems)
* Factory automation equipment such as NC (Numerical Control) machine tools and various controllers.

The great majority of these systems conventionally employ 8-bit or 16-bit microcontrollers. However, the
performance level of these microcontrollers has become inadequate in recent years as control operations have risen
in complexity, leading to the development of increasingly complicated instruction sets and hardware design. As a
result, the need has arisen for a new generation of microcontrollers operable at much higher frequencies to achieve
an acceptable level of performance under today’s more demanding requirements.

The V850 Series of microcontrollers was developed to satisfy this need. This series uses RISC architecture that
provides maximum performance with simpler hardware, allowing users to obtain a performance approximately 15
times higher than that of the existing 78K/Ill Series and 78K/IV Series of CISC single-chip microcontrollers at a lower
total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 Series is provided with special
instructions such as saturation, bit manipulation, and multiply/divide (executed by a hardware multiplier), which are
especially well suited to digital servo control systems. Moreover, instruction formats are designed for maximum
compiler coding efficiency, allowing the reduction in the object code size.

14 User's Manual U12197EJ6VOUM

CHAPTER 1 INTRODUCTION

1.2 Features

® High-performance 32-bit architecture for embedded control

Number of instructions: 81

32-bit general-purpose registers: 32

Load/store instructions in long/short format

3-operand instruction

5-stage pipeline of 1 clock cycle per stage

Hardware interlock on register/flag hazards

Memory space Program space: 64 MB linear
Data space: 4 GB linear

® Special instructions

Saturation operation instructions

Bit manipulation instructions

On-chip multiplier executing multiplication in 1 to 2 clocks
* 16 bits x 16 bits — 32 bits

e 32 bits x 32 bits — 32 or 64 bits

User's Manual U12197EJ6VOUM

15

CHAPTER 1 INTRODUCTION

1.3 Product Development

The V850 Series is part of the V800 Series and consists of single-chip microcontrollers using a RISC
microprocessor core.

The members of V850 Series are the V851™, v852™, v853™, vg54™, v850/SV1™, V850/SA1™, v850/SB1™,
v850/SB2™, v850/SF1™, v850/SC1™, v850/SC2™, and V850/SC3™, which incorporate the V850 CPU, and the
V850E/MS1, V850E/MS2, V850E/MA1™, V850E/MA2™, V850E/IA1™, V850E/IA2™, and V850E/xxx, which
incorporate the V850E CPU.

The versions incorporating the V850 CPU are single-chip microcontrollers for control, and the versions

incorporating the V850E CPU are single-chip microcontrollers that feature an enhanced bus interface and are suitable
for data processing in addition to control.
Moreover, the V850E CPU differs from the V850 in that it provides additional instructions mainly for high-level
languages, such as C language switch statement processing, table lookup branching, stack frame
generation/deletion, and data conversion. The instruction code is upwardly compatible at the object code level with
the V850 CPU, allowing the software resources contained in the V850 CPU to be used as is.

Figure 1-1. V850 Series Lineup

Performance

V850E CPU Core

V850E/MA1 [| VB50E/IAT |
Enhanced memory Inverter control

controller and with CAN
support of SDRANM x

pertormance VB50EMST [VesoEmaz | [VesoEnaz |

Memory controller

. Compact version Compact version
Internal flash added Compact version
V850 CPU Core =
V853 " V854 ——— | V850/SV1

5V, low-power version with many pins

5V, low-power version with
many pins and IEBus

V850/SB2_==sf vB50/SF1
5V, low-power version 5 v, jow-power version V850/SC3 - §
with IEBus™ with CAN /?n ;/&o;;go;g (v:irﬁlon with

Ultra-low power
consumption

V850/SA1

3V, low-power version

V, low-power version

3V, low-power version with many pins
VCR servo control /
V850/SB1 /

Year of development

16 User's Manual U12197EJ6VOUM

CHAPTER 1 INTRODUCTION

1.4 CPU Configuration
Figure 1-2 shows the internal configuration of the V8B50E/MS1.

Figure 1-2. Internal Configuration

- Internal ROM CPU BIU
ROM/ DRAM
Flash I Instruction — control
memo - queue — Multiplier |
Y 32 %32 - 64 |
—\
System —| Barrel
Internal registers Shifter ROM |
peripheral o Internal RAM \ contro
1/0 General-
purpose
registers ALU :
S B 32 bits x 32
(N Bus
control
Internal bus
The function of each hardware block is as follows.
CPU e Executes almost all instructions such as address calculations, arithmetic and logical

operations, and data transfers in one clock by using a 5-stage pipeline. Contains
dedicated hardware such as a multiplier (32 x 32 bits) and a barrel shifter (32 bits/clock)
to execute complicated instructions at high speeds.

Internal ROMcceeee. <V850E/MS1>
ROM or flash memory mapped from address 00000000H. Can be accessed by the CPU
in one clock during instruction fetch.
<VB850E/MS2>
Internal ROM is not provided.

Internal RAMcvvvvvenee RAM mapped to a space preceding address FFFFEFFFH. Can be accessed by the CPU
in one clock during data access.

Internal peripheral 1/0O Peripheral I/O area mapped from address FFFFFOOOH.

BIU .. Starts a necessary bus cycle based on a physical address obtained by the CPU.

User's Manual U12197EJ6VOUM 17

CHAPTER 1 INTRODUCTION

1.5 Differences with Architecture of V850 CPU

The differences between the architecture of the V850E CPU and that of the V850 CPU are listed below.

Table 1-1. Differences Between V850E CPU and V850 CPU (1/2)

ltem V850E CPU V850 CPU
Instructions (including operand) BSH reg2, reg3 Provided Not provided
BSW reg2, reg3
CALLT immé6

CLR1 reg2, [reg1]

CMOV cccc, immb5, reg2, reg3

CMOV cccc, regt, reg2, reg3
CTRET

DISPOSE immb5, list12
DISPOSE imm5, list12 [reg1]

DIV regl, reg2, reg3

DIVH reg1, reg2, reg3
DIVHU reg1, reg2, reg3

DIVU reg1, reg2, reg3
HSW reg2, reg3

LD.BU disp16 [regl], reg2
LD.HU disp16 [reg1], reg2
MOV imm32, reg1

MUL imm9, reg2, reg3

MUL reg1l, reg2, reg3
MULU reg1, reg2, reg3
MULU immo9, reg2, reg3
NOT1 reg2, [reg1]
PREPARE list12, imm5
PREPARE list12, imm5, sp/imm
SASF cccc, reg2

SET1 reg2, [regl]
SLD.BU disp4 [ep], reg2
SLD.HU disp5 [ep], reg2
SWITCH reg1

SXB reg1

SXH reg1

TST1 reg2, [regl]

ZXB regi

ZXH regl

18 User's Manual U12197EJ6VOUM

CHAPTER 1 INTRODUCTION

Table 1-1. Differences Between V850E CPU and V850 CPU (2/2)

Item V850E CPU | V850 CPU
Instruction format Format IV Format is different for some instructions.
Format Xl Provided Not provided
Format XII
Format Xill
Instruction execution clocks Value differs for some instructions.
Program space 64 MB linear 16 MB linear
Valid bits of program counter (PC) Lower 26 bits Lower 24 bits
System registers CALLT execution status save Provided Not provided

registers (CTPC, CTPSW)
CALLT base pointer (CTBP)

Exception trap status save registers DBPC, DBPSW EIPC, EIPSW

Instruction code of illegal instruction code trap Instruction code areas differ.

Misalign access enable/disable setting Can be set. Cannot be set.
(misalign access
prohibited)

Access time (No. of clocks) Internal RAM (at instruction fetch) 1or2 3

External memory 2% 4 No. of waits 3 + No. of waits

Pipeline At next instruction, pipeline flow differs.

 Arithmetic instruction (except multiply instruction)
e Branch instruction

 Bit manipulation instruction

e Special instruction (TRAP, RETI)

Note When external memory type is set to SRAM, 1/O

User's Manual U12197EJ6VOUM 19

CHAPTER 2 REGISTER SET

The registers of the V850 Series can be classified into two types: program registers that can be used for general

programming, and system registers that can control the execution environment. All the registers consist of 32 bits.

2.1 Program Registers

2.1.1 Program register set

(1) General-purpose registers

20

The V850 Series has thirty-two general-purpose registers, rO through r31. All these registers can be used for
data or address storage.

However, r0 and r30 are implicitly used by instructions, and care must be exercised in using these registers. r0 is
a register that always holds 0, and is used for operations and offset 0 addressing. r30 is used as a base pointer
when accessing memory using the SLD and SST instructions. r1, r3, r4, r5, and r31 are implicitly used by the
assembler and C compiler. Before using these registers, therefore, their contents must be saved so that they are
not lost. The contents must be restored to the registers after the registers have been used. The real-time OS
may use r2. When real-time OS does not use r2, r2 can be used as a variable register.

User's Manual U12197EJ6VOUM

CHAPTER 2 REGISTER SET

31

Figure 2-1. Program Registers

ro

Zero register

r1

Reserved for address generation

r2

r3

Stack pointer (SP)

r4

Global pointer (GP)

r5

Text pointer (TP)

ré

r7

r8

r9

r10

r11

r12

r13

ri4

r15

r16

ri7

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

Element pointer (EP)

r31

Link pointer (LP)

PC

Program counter

User's Manual U12197EJ6VOUM

21

CHAPTER 2 REGISTER SET

Figure 2-2. Program Register Operations

Name Usage Operation
r0 Zero register Always holds 0.
r Assembler-reserved Used as working register for address generation.
register

r2 Address/data variable registers (when the real-time OS does not use r2)

r3 Stack pointer Used for stack frame generation when function is
called.

r4 Global pointer Used to access global variable in data area.

r5 Text pointer Used as register for pointing start address of text
areaNme

r6 to r29 Address/data variable registers

r30 Element pointer Used as base pointer for address generation when
memory is accessed.

r31 Link pointer Used when compiler calls function.

PC Program counter Holds instruction address during program

execution.

Note Text area: Area where program code is placed.

Remark For detailed descriptions of r1, r3, r4, r5, r31 used by the assembler and C compiler, see the

CA850 (C Compiler Package) User’s Manual.

(2) Program counter

22

This register holds an instruction address during program execution. The lower 26 bits of this register are valid,

and bits 31 through 26 are reserved fields (fixed to 0). If a carry occurs from bit 25 to 26, it is ignored.
Bit O is always fixed to 0, and execution cannot branch to an odd address.

PC

2625

Remark RFU: Reserved field (Reserved for Future Use)

User's Manual U12197EJ6VOUM

CHAPTER 2 REGISTER SET

2.2 System Registers
The system registers control the status of the V850 Series and hold information on interrupts.

Figure 2-3. System Registers

31 0
EIPC Exception/Interrupt PC
EIPSW Exception/Interrupt PSW
FEPC Fatal Error PC
FEPSW Fatal Error PSW
ECR Exception Cause Register
PSW Program Status Word
CTPC CALLT Caller PC
CTPSW CALLT Caller PSW
DBPC ILGOP Caller PC
DBPSW ILGOP Caller PSW
CTBP CALLT Base Pointer

2.2.1 Interrupt status saving registers

Two interrupt status saving registers are provided: EIPC and EIPSW.

The contents of the PC and PSW are respectively saved in these registers if a software exception or interrupt
occurs. If an NMI occurs, however, the contents of the PC and PSW are saved to the NMI status saving registers.

When a software exception or interrupt occurs, the address of the following instruction is saved in the EIPC
register. If an interrupt occurs while a division (DIV/DIVH/DIVU) instruction is being executed, the address of the
division instruction currently being executed is saved.

The current value of the PSW is saved to the EIPSW.

Because only one pair of interrupt status saving registers is provided, the contents of these registers must be
saved by program when multiple interrupts are enabled.

Bits 26 through 31 of the EIPC and bits 8 through 31 of the EIPSW are fixed to 0.

31 26 25 0

EIPC RFU PC

EIPSW

User's Manual U12197EJ6VOUM 23

CHAPTER 2 REGISTER SET

2.2.2 NMI status saving registers
The V850 Series is provided with two NMI status saving registers: FEPC and FEPSW.
The contents of the PC and PSW are respectively saved in these registers when an NMI occurs.
The value saved to the FEPC is, like the EIPC, the address of the instruction next to the one executed when the

NMI has occurred (if the NMI occurs while a division (DIVH/DIV/DIVU) instruction is being executed, the address of
the division instruction under execution is saved).

The current value of the PSW is saved to the FEPSW.
Bits 26 through 31 of the FEPC and bits 8 through 31 of the FEPSW are fixed to 0.

31 26 25

FEPC

FEPSW

2.2.3 Exception cause register

The exception cause register (ECR) holds the cause information of an exception, maskable interrupt, or NMI when
any of these events occur. The ECR holds a code which identifies each interrupt source.

This is a read-only register, and therefores no data can be written to it by using the LDSR instruction.

16 15 0
rrrrrrrrrrrrrr T
ECR FECC EICC
Bit Position Field Function

3110 16 FECC Fatal Error Cause Code
NMI code

15100 EICC Exception/Interrupt Cause Code
Exception/interrupt code

2.2.4 Program status word

The program status word is a collection of flags that indicate the status of the program (result of instruction
execution) and the status of the CPU. If the contents of the PSW register are modified by the LDSR instruction, the
PSW will assume the new value immediately after the LDSR instruction has been executed. In setting the ID flag to
1, however, interrupts are already disabled even while the LDSR instruction is being executed.

—_
o

PSW

T 2|
T m|o

—>0n |~
< 0w
< O|m™

5
I
D

24 User's Manual U12197EJ6VOUM

CHAPTER 2 REGISTER SET

Bit Position Flag Function
31t08 RFU Reserved for Future Use
Reserved field (fixed to 0).
7 NP NMI Pending
Indicates that NMI processing is in progress. This flag is set when an NMl is
acknowledged.
The NMI request is then masked, and multiple interrupts are disabled.
NP = 0: NMI processing is not in progress
NP = 1: NMI processing is in progress
6 EP Exception Pending
Indicates that exception processing is in progress. This flag is set when an exception
occurs. Even when this bit is set, interrupt requests can be acknowledged.
EP = 0: Exception processing is not in progress
EP = 1: Exception processing is in progress
5 ID Interrupt Disable
Indicates whether external interrupt request can be acknowledged.
ID = 0: Interrupt can be acknowledged
ID =1: Interrupt cannot be acknowledged
4 SAT" " Saturated
Indicates that an overflow has occurred in a saturated operation and the result is
saturated. This is a cumulative flag. Once the result is saturated, the flag is set to 1 and
is not reset to 0 even if the next result is not saturated. To reset this flag, load data to the
PSW.
This flag is neither set nor reset by general arithmetic operation instruction.
SAT = 0: Not saturated
SAT =1: Saturated
3 cY Carry
Indicates whether a carry or borrow occurred as a result of the operation.
CY =0: Carry or borrow did not occur
CY =1: Carry or borrow occurred
2 ov™e Overflow
Indicates whether an overflow occurred as a result of the operation.
OV = 0: Overflow did not occur
OV = 1: Overflow occurred
1 ghere Sign
Indicates whether the result of the operation is negative
S =0: Result is positive or zero
S =1: Result is negative
0 4 Zero

Indicates whether the result of the operation is zero
Z =0: Resultis not zero
Z =1: Resultis zero

Note In the case of saturation instructions, the SAT, S, and OV flags will be set according to the result of the
operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag has been
set due to an overflow condition caused by a saturation instruction.

User's Manual U12197EJ6VOUM 25

CHAPTER 2 REGISTER SET

Status of Operation Result Status of Flag Result of Saturation Processing

SAT ov S

Maximum positive value is 1 1 0 7FFFFFFFH

exceeded

Maximum negative value is 1 1 1 80000000H

exceeded

Positive (Maximum value not Value prior 0 0 Operation result

exceeded) to operation

Negative (Maximum value not retained 1

exceeded)

2.2.5 CALLT caller status saving registers
The V850E Series is provided with two CALLT caller status saving registers: CTPC and CTPSW.
The contents of the PC and PSW are respectively saved in these registers when a CALLT instruction is executed.
The value saved to CTPC is, like the EIPC, the address of the instruction next to the one executed.
The current value of the PSW is saved to CTPSW.
Bits 26 through 31 of CTPC and bits 8 through 31 of CTPSW are fixed to 0.

31 26 25 0
I et
CTPC

RFU PC

CTPSW

2.2.6 ILGOP caller status saving registers
The V850E Series is provided with two ILGOP caller status saving registers: DBPC and DBPSW.
The contents of the PC and PSW are respectively saved in these registers when ILGOP is detected.
The value saved to DBPC is, like the EIPC, the address of the instruction next to the one executed.
The current value of the PSW is saved to DBPSW.
Bits 26 through 31 of DBPC and bits 8 through 31 of DBPSW are fixed to 0.

31 26 25 0
I et
DBPC

RFU PC

DBPSW

2.2.7 CALLT base pointer
The CALLT base pointer CTBP is used to specify a table address and to generate a target address.

31 26 25 0
Tt

CTBP 0
RFU Base address

26 User's Manual U12197EJ6VOUM

CHAPTER 2 REGISTER SET

2.2.8 System register number
Data in the system registers is accessed by using the load/store system register instructions, LDSR and STSR.
Each register is assigned a unique number which is referenced by the LDSR and STSR instructions.

Table 2-1. System Register Number

Number System Register Operand Specification
LDSR STSR
0 EIPC O O
1 EIPSW O @)
2 FEPC O O
3 FEPSW O O
4 ECR — O
5 PSW O O
16 CTPC O O
17 CTPSW O @)
18 DBPC O O
19 DBPSW O O
20 CTBP O O
6to 15 Reserved — —
21 to 31

— Access prohibited

O: Access enabled

Reserved: Accessing registers in this range is prohibited and will lead to undefined
results.

Caution When using the LDSR instruction with the EIPC, FEPC and CTPC registers, only even address
values should be specified. After interrupt processing has ended with a RETI instruction, bit 0 in
the EIPC, FEPC and CTPC registers will be ignored and assumed to be zero when the PC is
restored.

User's Manual U12197EJ6VOUM 27

3.1

3.1

CHAPTER 3 DATA TYPES

Data Format
The V850 Series supports the following data types.
* Integer (8, 16, 32 bits)
® Unsigned integer (8, 16, 32 bits)

* Bit

.1 Data type and addressing
The V850 Series supports three types of data lengths: word (32 bits), halfword (16 bits), and byte (8 bits). Byte 0

of any data is always the least significant byte (this is called little endian) and is shown at the rightmost position in
figures throughout this manual. The following paragraphs describe the data format where data of a fixed length is in
the memory.

M

)

Byte (BYTE)

A byte is 8-bit contiguous data that starts from any byte boundary"®. Each bit is assigned a number from 0 to 7.
The LSB (Least Significant Bit) is bit 0 and the MSB (Most Significant Bit) is bit 7. A byte is specified by its
address A.

lote

Data

A Address

Halfword (HALF-WORD)

A halfword is 2 byte (16-bit) contiguous data that starts from any halfword boundary"®. Each bit is assigned a
number from 0 to 15. The LSB is bit 0 and the MSB is bit 15. A halfword is specified by its address A (with the
lowest bit fixed to 0 when misalign access is disabled) ", and occupies 2 bytes, A and A+1.

15 87 0

Data

A+1 A Address

28 User's Manual U12197EJ6VOUM

CHAPTER 3 DATA TYPES

(3) Word (WORD)
A word is 4-byte (32-bit) contiguous data that starts from any word boundary
from 0 to 31. The LSB is bit 0 and the MSB is bit 31. A word is specified by its address A (with the 2 lowest bits
fixed to 0 when misalign access is disabled) Nt and occupies 4 bytes, A, A+1, A+2, and A+3.

N Each bit is assigned a humber

31 24 23 16 15 87 0

Data

A+3 A+2 A+1 A Address

(4) Bit (BIT)
A bit is 1-bit data at the nth bit position in 8-bit data that starts from any byte boundary
address A and bit number n.

Note

. A bit is specified by its

7 n 0 Bit number

[T
Byte of address A - - cc e cmmaoaaaaaaa Data

A Address

Note The V850E Series can access any byte boundary whether access is in halfword or word units
when misalign access is enabled.
Refer to 3.3 Data Alignment.

3.2 Data Representation

3.2.1 Integer

With the V850 Series, an integer is expressed as a binary number of 2’s complement and is 8, 16, or 32 bits long.
Regardless of its length, bit O of an integer is the least significant bit. The higher the bit number, the more significant
the bit. Because 2’s complement is used, the most significant bit is used as a sign bit.

Data Length Range
Byte 8 bits -128to +127
Halfword 16 bits —32768 to +32767
Word 32 bits —2147483648 to +2147483647

User's Manual U12197EJ6VOUM 29

CHAPTER 3 DATA TYPES

3.2.2 Unsigned integer

While an integer is data that can take either a positive or a negative value, an unsigned integer is an integer that is
not negative. Like an integer, an unsigned integer is also expressed as 2’s complement and is 8, 16, or 32 bits long.
Regardless of its length, bit 0 of an unsigned integer is the least significant bit, and the higher the bit number, the
more significant the bit. However, no sign bit is used.

Data Length Range
Byte 8 bits 0to 255
Halfword 16 bits 0 to 65535
Word 32 bits 0 to 4294967295

3.2.3 Bit
The V850 Series can handle 1-bit data that can take a value of 0 (cleared) or 1 (set). Bit manipulation can only be
performed on 1-byte data in the memory space in the following four ways.

® Set

® (Clear
* |nvert
® Test

3.3 Data Alignment

With the VB50E Series, data to be allocated in memory must be aligned at an appropriate boundary when misalign
access is disabled. Therefore, word data must be aligned at a word boundary (the lower 2 bits of the address are 0),
and halfword data must be aligned at a halfword boundary (the lower 1 bit of the address is 0). If data is not aligned
at a boundary and misalign access disabled, the data is accessed with the lowest bit(s) of the address (lower 2 bits
in the case of word data and lowest 1 bit in the case of halfword data) automatically masked. This will cause loss of
data and truncation of the least significant bytes.

When misalign access is enabled, it is possible to place any data at any address, irrespective of the data format
when data is word or halfword and is not aligned at a boundary, however one or more bus cycles is generated, which
lowers the bus efficiency.

30 User's Manual U12197EJ6VOUM

CHAPTER 4 ADDRESS SPACE

The V850 Series supports a 4 GB linear address space. Both memory and I/O are mapped to this address space
(memory-mapped I/0). The V850 Series outputs 32-bit addresses to the memory and 1/0. The maximum address
is 2821,

Byte ordering is little endian. Byte data allocated at each address is defined with bit 0 as LSB and bit 7 as MSB.
In regards to multiple-byte data, the byte with the lowest address value is defined to have the LSB and the byte with
the highest address value is defined to have the MSB.

Data consisting of 2 bytes is called a halfword, and 4-byte data is called a word. In this user's manual, data
consisting of 2 or more bytes is illustrated as shown below, with the lower address shown on the right and the higher
address on the left.

7 0
ByteofaddreSS A = = = = = = = = = = = @ 2 s - e e e e s e e e m .- Data
A Address
15 87 0
Halfword at address A = = = = = = = == = == === === ==@====- Data
A+1 A Address
31 2423 1615 87 0
Word at address A = === === ==~ Data
A+3 A+2 A+1 A Address

User's Manual U12197EJ6VOUM 31

CHAPTER 4 ADDRESS SPACE

4.1 Memory Map
The V850 Series employs a 32-bit architecture and supports a linear address space (data space) of up to 4 GB.
It supports a linear address space (program space) of up to 64 MB for instruction addressing.

Figure 4-1 shows the memory map of the V850 Series.

Figure 4-1. Memory Map

FFFFFFFFH ~
Peripheral I/O
FFFFEFFFH
Internal RAM
>— 4 GB linear
Internal ROM/
flash memory
00000000H ~

32 User's Manual U12197EJ6VOUM

CHAPTER 4 ADDRESS SPACE

4.2 Addressing Mode

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch
operations; and operand addresses used for data access.

4.2.1 Instruction address

An instruction address is determined by the contents of the program counter (PC), and is automatically
incremented (+2) according to the number of bytes of an instruction to be fetched each time an instruction has been
executed. When a branch instruction is executed, the branch destination address is loaded into the PC using one of
the following two addressing modes.

(1) Relative addressing (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: disp) is added to the value of the program
counter (PC). At this time, the displacement is treated as 2’s complement data with bits 8 and 21 serving as sign
bits.
This addressing is used for Bcond disp9, JR disp22, and JARL disp22, reg2 instructions.

Figure 4-2. Relative Addressing (JR disp22/JARL disp22, reg2)

31 26 25 0
N B B I B I B) B B S I B I S I B O BN B B N
000O0O00O PC 0
31 22 21 0
T T T T T T T 1 T T T T T T T T T T T T T T T T T T 11

Sign extension S disp22 0

31 26 25 0
N B R) B N B Y B N

000O0O00O PC 0

Memory to be manipulated

\

User's Manual U12197EJ6VOUM 33

CHAPTER 4 ADDRESS SPACE

34

Figure 4-3. Relative Addressing (Bcond disp9)

31 26 25 0
I R T T T T T T T T T T T T T T T T T T T 1
000O0O00O PC 0
31 0
N B S S B I S N N B B B B B B B B B N

Sign extension disp9 0

31 26 25 0
I R B T T T T T T T T T T T T T 1.1 T T T T T 1
00 0O0OTO PC 0

Memory to be manipulated

User's Manual U12197EJ6VOUM

\

CHAPTER 4 ADDRESS SPACE

(2) Register addressing (address indirect)
The contents of a general-purpose register (r0 to r31) specified by an instruction are transferred to the program

counter (PC).

This addressing is applied to the JMP [reg1] instruction.

Figure 4-4. Register Addressing (JMP [reg1])

31 0
T T T 1 L L L e L L L
reg1
31 26 25 0
I L L L e L L L
000O0O0O PC 0

Memory to be manipulated

User's Manual U12197EJ6VOUM

\J

35

CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes.

(1) Register addressing
The general-purpose register (or system register) specified in the general-purpose register specification field is
accessed as the operand. This addressing mode applies to instructions using the operand format reg1, reg2, or
reglD.

(2) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained directly in the instruction. This addressing mode applies to
instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: An operand that is 5-bit immediate data that specifies the trap vector (OOH to 1FH), and is
used by the TRAP instruction.
ccce: An operand consisting of 4-bit data used by the SETF and CMOV instructions to specify the
condition code. Assigned as part of the instruction code as 5-bit immediate data by
appending a 1-bit 0 above the highest bit.

(3) Based addressing
The following two types of based addressing are supported.

(a) Type1i
The address of the data memory location to be accessed is determined by adding the value in the specified
general-purpose register to the 16-bit displacement value contained in the instruction. This addressing
mode applies to instructions using the operand format disp16 [reg1].

Figure 4-5. Based Addressing (Type 1)

31 0
B B B B B B B O
regi
31 16 15 0
T 1 T T 1 T 1 1 1 1 1T T T 1.1 T 1 T T 1 T 1 1 1 1 1T T T 1.1
Sign extension disp16

Memory to be manipulated

Y

36 User's Manual U12197EJ6VOUM

CHAPTER 4 ADDRESS SPACE

(b) Type 2
The address of the data memory location to be accessed is determined by adding the value in the 32-bit
element pointer (r30) to the 7- or 8-bit displacement value contained in the instruction. This addressing
mode applies to SLD and SST instructions.

Figure 4-6. Based Addressing (Type 2)

r30 (element pointer)

I

31 7 0

I I I S B S B) B E N B T 1
000000O0ODOOOOOOOOOOOOOOOOO di(S)IrJB
(Zero extension) disp7

Memory to be manipulated

Y

Byte access = disp7
Halfword access and word access = disp8

User's Manual U12197EJ6VOUM 37

CHAPTER 4 ADDRESS SPACE

(4) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) in 1 byte of the memory space to be
manipulated by using an operand address which is the sum of the contents of a general-purpose register and a
16-bit displacement sign-extended to word length. This addressing mode applies only to bit manipulation
instructions.

Figure 4-7. Bit Addressing

31 0
I Y Y E H B B
regi
31 16 15 0
1 T T 1 T 1 1 1 1 1 1 1 1.1 B B B B B B
Sign extension disp16

Memory to be manipulated

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

38 User's Manual U12197EJ6VOUM

5.1 Instruction Format

CHAPTER 5 INSTRUCTIONS

The V850 Series has two types of instruction formats: 16-bit and 32-bit. The 16-bit instructions include binary
operation, control, and conditional branch instructions, and the 32-bit instructions include load/store, jump, and
instructions that handle 16-bit immediate data.
Some instructions have an unused field (RFU). This field is reserved for future expansion and must be fixed to 0.
An instruction is actually stored in memory as follows.

Lower bytes of instruction (including bit 0)
Higher bytes of instruction (including bit 15 or bit 31) — Higher address

(1) reg-reg instruction (Format I)
A 16-bit instruction format having a 6-bit opcode field and two general-purpose register specification fields for

&)

3

operand specification.

15

— Lower address

reg2

imm-reg instruction (Format Il)
A 16-bit instruction format having a 6-bit opcode field, a 5-bit immediate field, and a general-purpose register

specification field.

15

reg2

Conditional branch instruction (Format lil)

A 16-bit instruction format having a 4-bit opcode field, a 4-bit condition code, and 8-bit displacement.

opcode disp

User's Manual U12197EJ6VOUM

39

CHAPTER 5 INSTRUCTIONS

@

®)

(6)

)

40

16-bit load/store instruction (Format IV)
A 16-bit instruction format having a 4-bit opcode field, a general-purpose register specification field, and 7-bit
displacement (or 6-bit displacement + 1-bit sub-opcode).

T

disp/sub-opcode

A 16-bit instruction format having a 7-bit opcode field, a general-purpose register specification field, and 4-bit
displacement.

15 11
T o R
reg2

Jump instruction (Format V)
A 32-bit instruction format having a 5-bit opcode field, a general-purpose register specification field, and 22-bit
displacement.

15

reg2 opcode

3-operand instruction (Format VI)
A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and 16-
bit immediate field.

15

imm 0

reg2 opcode

32-bit load/store instruction (Format Vil)
A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and 16-
bit displacement (or 15-bit displacement + 1-bit sub-opcode).

15 1110 5 4

opcode

disp/sub-opcode

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

(8) Bit manipulation instruction (Format VIil)
A 32-bit instruction format having a 6-bit opcode field, 2-bit sub-opcode, 3-bit bit specification field, a general-
purpose register field, and 16-bit displacement.

151413

1110

sub

bit #

opcode

(9) Extended instruction format 1 (Format IX)
A 32-bit instruction format having a 6-bit opcode field, a 6-bit sub-opcode, and two general-purpose register
specification fields (one field may be regID or cond).

15 1110 4 0 31 27 26 2120 16
e |1 RN
reg2 opcode reg1/reglD/cond RFU sub-opcode RFU 0
(10) Extended instruction format 2 (Format X)
A 32-bit instruction format having a 6-bit opcode field and a 6-bit sub opcode.
15 1312 1110 4 0 31 27 26 21 20 16
| \ N T T T Il
T RFU opcode T RFU sub-opcode RFU |0

L L

(11) Extended instruction format 3 (Format XI)
A 32-bit instruction format having a 6-bit opcode field, a 6-bit and 1-bit sub-opcode, and three general-purpose
register specification fields.

RFU/sub-opcode RFU/immediate/vector

1110 5 2120 181716
crrrprerrrryprr eyt

sub-opcode RFU

15

reg2 opcode regi

(12) Extended instruction format 4 (Format Xil)
A 32-bit instruction format having a 6-bit opcode field, a 4-bit and 1-bit sub-opcode, a 10-bit immediate field, and
two general-purpose register specification fields.

1110 27 26 23 22 1817 16

imm (high)

15

imm (low) sub-opcode

User's Manual U12197EJ6VOUM 41

CHAPTER 5 INSTRUCTIONS

(13) Stack manipulation instruction (Format XIII)
A 32-bit instruction format having a 5-bit opcode field, a 5-bit immediate field, a 12-bit register list field, and one
general-purpose register specification field (or sub-opcode field).

15 1110 6 5 1.0 31 2120 16
crrrprrrrrrrrryp et

RFU opcode imm list reg2/sub-opcode

Remark RFU: Reserved field (Reserved for Future Use)

42 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

5.2 Outline of Instructions

Load/store instructions Transfer data from memory to a register or from a register to memory.

Table 5-1. Load/Store Instructions

SLD
LD
SST
ST

Arithmetic operation instructions Add, subtract, multiply, divide, transfer, or compare data between
registers.

Table 5-2. Arithmetic Operation Instructions

MOV
MOVHI
MOVEA
ADD
ADDI
SUB
SUBR
MUL
MULH
MULHI
MULU
DIV
DIVH
DIVHU
DIVU
CMP
CMOV
SETF
SASF

User's Manual U12197EJ6VOUM 43

CHAPTER 5 INSTRUCTIONS

44

Saturated operation instructions......... Execute saturation addition or subtraction. If the result of the operation
exceeds the maximum positive value (7FFFFFFFH), 7FFFFFFFH is
returned. If the result exceeds the negative value (80000000H),
80000000H is returned.

Table 5-3. Saturated Operation Instructions

SATADD
SATSUB
SATSUBI
SATSUBR

Logical operation instructions............ These instructions include logical operation instructions, shift instructions
and data type transfer. The shift instructions include arithmetic shift and
logical shift instructions. Operands can be shifted by two or more bit
positions in one clock cycle by the universal barrel shifter.

Table 5-4. Logical Operation Instructions

TST
OR
ORI
AND
ANDI
XOR
XORlI
NOT
SHL
SHR
SAR
ZXB
ZXH
SXB
SXH
BSH
BSW
HSW

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

Branch instructions Branch instruction include unconditional branch along with conditional
branch instructions which alter the flow of control, depending on the status
of conditional flags in the PSW. Program control can be transferred to the
address specified by a branch instruction.

Table 5-5. Branch Instructions

JMP
JR
JARL
BGT
BGE
BLT
BLE
BH
BNL
BL
BNH
BE
BNE
BV
BNV
BN
BP
BC
BNC
BZ
BNZ
BR
BSA

User's Manual U12197EJ6VOUM 45

CHAPTER 5 INSTRUCTIONS

46

Bit manipulation instructions......... Execute a logical operation to bit data in memory. Only the specified bit is
affected as a result of executing a bit manipulation instruction.

Table 5-6. Bit Manipulation Instructions

SET1
CLR1
NOT1
TST1

Special instructions....................... These instructions are special in that they do not fall into any of the
categories of instructions described above.

Table 5-7. Special Instructions

LDSR
STSR
SWITCH
PREPARE
DISPOSE
CALLT
CTRET
TRAP
RETI
HALT

DI

El

NOP

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

5.3 Instruction Set

Example of instruction description

Mnemonic of instruction

Meaning of instruction

Instruction format Indicates the description and operand of the instruction. The following symbols are used in the
description of an operand.

Symbol

Meaning

regi

General-purpose register (used as source register)

reg2

General-purpose register (mainly used as destination register. Some are also
used as source registers)

reg3

General-purpose register (mainly used as remainder or higher 32 bits of
multiply results)

bit#3

3-bit data for specifying bit number

immx

x-bit immediate

dispx

x-bit displacement

reglD

System register number

vector

5-bit data for trap vector (00H to1FH) specification

cccc

4-bit data for condition code specification

ep

Element Pointer (r30)

listx

Lists of registers (x is the maximum number of registers)

User's Manual U12197EJ6VOUM 47

CHAPTER 5 INSTRUCTIONS

Operation Describes the function of the instruction. The following symbols are used.
Symbol Meaning
«— Assignment
GR[] General-purpose register
SR][] System register

zero-extend (n) Zero-extends n to word

sign-extend (n) Sign-extends n to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, ¢) Writes data b of size c to address a

load-memory-bit (a, b) Reads bit b from address a

store-memory-bit (a, b, ¢) Writes c to bit b of address a

saturated (n) Performs saturation processing of n.
If n > 7FFFFFFFH as result of calculation, 7FFFFFFFH.

If n < 80000000H as result of calculation, 80000000H.

result Reflects result on flag
Byte Byte (8 bits)
Half-word Halfword (16 bits)
Word Word (32 bits)

+ Add

- Subtract

Il Bit concatenation

X Multiply

+ Divide

% Remainder (Divide)
AND And

OR Or

XOR Exclusive Or

NOT Logical negate

logically shift left by

Logical left shift

logically shift right by

Logical right shift

arithmetically shift right by

Arithmetic right shift

Indicates instruction format number.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

Opcode

Flag

Instruction

Explanation

Remark

Caution

Describes the separate bit fields of the instruction opcode.
The following symbols are used.

Symbol Meaning

R 1-bit data of code specifying reg1 or reglD

=

1-bit data of code specifying reg2

w 1-bit data of code specifying reg3
d 1-bit data of displacement

| 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

ccce 4-bit data for condition code specification
bbb 3-bit data for bit number specification
L 1-bit data of code specifying register list

Indicates the flags that are altered after executing the instruction.
CY - <« Indicates that the flag is not affected.

OV 0 <« Indicates that the flag is cleared to 0.

S 1 <« Indicates that the flag is set to 1.

Z —

SAT -

Describes the function of the instruction.

Explains the operation of the instruction.

Supplementary information on the instruction

Important cautions regarding use of this instruction

User's Manual U12197EJ6VOUM

49

CHAPTER 5 INSTRUCTIONS

Instruction List

Mnemonic Function Mnemonic Function
Load/store instructions Logical operation instructions
SLD.B Load Byte TST Test
SLD.H Load Half-word OR Or
SLD.W Load Word ORI Or Immediate
SLD.BU Load Byte Unsigned AND And
SLD.HU Load Half-word Unsigned ANDI And Immediate
LD.B Load Byte XOR Exclusive-Or
LD.H Load Half-word XORI Exclusive-Or Immediate
LD.W Load Word NOT Not
LD.BU Load Byte Unsigned SHL Shift Logical Left
LD.HU Load Half-word Unsigned SHR Shift Logical Right
SST.B Store Byte SAR Shift Arithmetic Right
SST.H Store Half-word ZXB Zero Extend Byte to Word
SST.W Store Word ZXH Zero Extend Half-word to Word
ST.B Store Byte SXB Sign Extend Byte to Word
STH Store Half-word SXH Sign Extend Half-word to Word
ST.W Store Word BSH Byte Swap Half-word
Arithmetic instructions BSW Byte Swap Word
MOV Move HSW Half-word Swap Word
MOVHI Move High half-word Branch instructions
MOVEA Move Effective Address JMP Jump
ADD Add JR Jump Relative
ADDI Add Immediate JARL Jump and Register Link
SuB Subtract Bcond Branch on Condition Code
SUBR Subtract Reverse Bit manipulation instructions
MUL Multiply Word SETH Set Bit
MULH Multiply Half-word CLR1 Clear Bit
MULHI Multiply Half-word Immediate NOT1 Not Bit
MULU Multiply Word Unsigned TST1 Test Bit
DIV Divide Word Special instructions
DIVH Divide Half-word LDSR Load System Register
DIVHU Divide Half-word Unsigned STSR Store System Register
DIVU Divide Word Unsigned SWITCH Jump with Table Look Up
CMP Compare PREPARE Function Initial Operation
CMOV Conditional Move DISPOSE Function Close Operation
SETF Set Flag Condition CALLT Call with Table Look Up
SASF Shift And Set Flag Condition CTRET Return from CALLT
Saturate instructions TRAP Trap
SATADD Saturated Add RETI Return from Trap or Interrupt
SATSUB Saturated Subtract HALT Halt
SATSUBI Saturated Subtract Immediate DI Disable Interrupt
SATSUBR Saturated Subtract Reverse El Enable Interrupt
NOP No Operation

50

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

ADD

Add

Instruction format (1) ADD reg1, reg2
(2) ADD immb5, reg2

Operation (1) GR[reg2] « GR [reg2] + GR [reg1]
(2) GR[reg2] « GR [reg2] + sign-extend (imm5)

Format (1) Formatl
(2) Formatll

Opcode 15 0

(1) |rrrrr001llORRRRR |

15 0

Flag CcY 1 if a carry occurs from MSB; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
z 1 if the result of an operation is 0; otherwise O.
SAT -

Instruction (1) ADD Add Register
(2) ADD Add Immediate (5-bit)

Explanation (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose
register reg2, and stores the result in general-purpose register reg2. The data of general-
purpose register reg1 is not affected.

(2) Adds 5-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg2, and stores the result in general-purpose register reg2.

User's Manual U12197EJ6VOUM 51

CHAPTER 5 INSTRUCTIONS

ADDI

Add Immediate

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

52

ADDI imm16, reg1, reg2

GR [reg2] « GR [reg1] + sign-extend (imm16)

Format VI

15 0 31 16

rrrrr110000RRRRR 111131131131131131111

CcYy 1 if a carry occurs from MSB; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise 0.
SAT -

ADDI Add immediate

Adds 16-bit immediate data, sign-extended to word length, to the word data of general-purpose
register reg1, and stores the result in general-purpose register reg2. The data of general-

purpose register reg1 is not affected.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

AND

And

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

AND regt, reg2

GR [reg2] « GR [reg2] AND GR [reg1]

Format |

15 0

rrrrr001010RRRRR

CcY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise O.

SAT -

AND And

ANDs the word data of general-purpose register reg2 with the word data of general-purpose
register reg1, and stores the result in general-purpose register reg2. The data of general-
purpose register reg1 is not affected.

User's Manual U12197EJ6VOUM 53

CHAPTER 5 INSTRUCTIONS

ANDI

And Immediate

Instruction format ANDI imm16, reg1, reg2

Operation GR [reg2] « GR [reg1] AND zero-extend (imm16)
Format Format VI
Opcode 15 0 31 16

rrrrr110110RRRRR 111131131131131131111

Flag CcY -
ov 0
S 0
Z 1 if the result of an operation is 0; otherwise 0.
SAT -
Instruction ANDI And Immediate (16-bit)
Explanation ANDs the word data of general-purpose register reg1 with the value of the 16-bit immediate

data, zero-extended to word length, and stores the result in general-purpose register reg2.
The data of general-purpose register reg1 is not affected.

54 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

Bcond

Branch on Condition Code

Instruction format Bcond disp9

Operation if conditions are satisfied
then PC « PC + sign-extend (disp9)

Format Format Il
Opcode 15 0
dddddl01l1ldddcccc

dddddddd is the higher 8 bits of disp9.

Flag CYy -
ov -
S —
Z —
SAT -

Instruction Bcond Branch on Condition Code with 9-bit displacement

Explanation Tests the condition flag specified by the instruction. Branches if the specified condition is
satisfied; otherwise, executes the next instruction. The branch destination PC holds the sum
of the current PC value and 9-bit displacement, which is 8-bit immediate shifted 1 bit and sign-
extended to word length.

Remark Bit 0 of the 9-bit displacement is masked to 0. The current PC value used for calculation is the

address of the first byte of this instruction. If the displacement value is 0, therefore, the branch
destination is this instruction itself.

User's Manual U12197EJ6VOUM 55

CHAPTER 5 INSTRUCTIONS

Table 5-8. Conditional Branch Instructions

Condition Code
Instruction Status of Condition Flag Branch Condition
(ccee)
Signed BGT 1111 ((SxorOV)orz)=0 Greater than signed
integer BGE 1110 (SxorOV)=0 Greater than or equal signed
BLT 0110 (S xor QV) =1 Less than signed
BLE 0111 ((SxorQV)orZ)=1 Less than or equal signed
Unsigned | BH 1011 (CYorz)=0 Higher (Greater than)
integer BNL 1001 Cy=0 Not lower (Greater than or equal)
BL 0001 CY =1 Lower (Less than)
BNH 0011 (CYorZ) =1 Not higher (Less than or equal)
Common BE 0010 Z=1 Equal
BNE 1010 Z=0 Not equal
Others BV 0000 oV =1 Overflow
BNV 1000 Oov=0 No overflow
BN 0100 S=1 Negative
BP 1100 S=0 Positive
BC 0001 CY =1 Carry
BNC 1001 Cy=0 No carry
BZ 0010 Z=1 Zero
BNZ 1010 Z=0 Not zero
BR 0101 - Always (unconditional)
BSA 1101 SAT =1 Saturated
Caution If executing a conditional branch instruction of a signed integer (BGT, BGE, BLT, or BLE)

56

when the SAT flag is set to 1 as a result of executing a saturated operation instruction, the
branch condition loses its meaning. In ordinary arithmetic operations, if an overflow condition
occurs, the S flag is inverted (0 — 1 or 1 — 0). This is because the result is a negative value if
it exceeds the maximum positive value and it is a positive value if it exceeds the maximum
negative value.

However, when a saturated operation instruction is executed, and if the result exceeds the
maximum positive value, the result is saturated with a positive value; if the result exceeds the
maximum negative value, the result is saturated with a negative value. Unlike the ordinary
operation, therefore, the S flag is not inverted even if an overflow occurs.

Hence, the S flag of the PSW is affected differently when the instruction is a saturate
operation, as opposed to an ordinary arithmetic operation. A branch condition which is an
XOR of the S and OV flags will therefore have no meaning.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

BSH

Byte Swap Half-word

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

BSH reg2, reg3

GR [reg3] « GR [reg2] (23:16) Il GR [reg2] (31:24) Il GR [reg2] (7:0) Il GR [reg2] (15:8)

Format XIlI

15 0 31 16

rrrrr11111100000 wwwww(01101000010

CcY 1 if one or more bytes in result halfword is 0; otherwise 0.

ov 0

S 1 if the result of the operation is negative; otherwise, 0.
Z 1 if the result of the operation is 0; otherwise, 0.

SAT -

BSH Byte Swap Half-word

Endian translation.

User's Manual U12197EJ6VOUM 57

CHAPTER 5 INSTRUCTIONS

BSwW

Byte Swap Word

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

58

BSW reg2, reg3

GR [reg3] « GR [reg2] (7:0) Il GR [reg2] (15:8) Il GR [reg2] (23:16) || GR [reg2] (31:24)

Format XII

15 0 31 16

rrrrr11111100000 wwwww(01101000000

CYy 1 if one or more bytes in result word is 0; otherwise 0.

ov 0

S 1 if the result of the operation is negative; otherwise, 0.
Z 1 if the result of the operation is 0; otherwise, 0.

SAT -

BSW Byte Swap Word

Endian translation.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

CALLT

Call with Table Look Up

Instruction format CALLT imm6

Operation CTPC « PC + 2 (restore PC)
CTPSW « PSW
adr < CTBP + zero-extend (immé6 logically shift left by 1)
PC « CTBP + zero-extend (Load-memory (adr, Half-word))

Format Format Il
Opcode 15 0
0000001000iiiiii
Flag CYy -
ov -
S —
Z —
SAT -
Instruction CALLT Call with Table Look Up
Explanation (1) Transfers the restore PC and PSW to CTPC and CTPSW.

(2) Adds the CTBP and data of imm6, logically shifted left by 1 and zero-extended to word
length, to generate a 32-bit table entry address.

(3) Then loads the halfword entry data and zero-extends to word length.

(4) Adds the data and CTBP to generate a 32-bit target address.

(5) Then jumps it to the target address generated in (4).

User's Manual U12197EJ6VOUM 59

CHAPTER 5 INSTRUCTIONS

CLR1

Clear Bit

Instruction format

Operation

Format

Opcode

Flag

Instruction

* Explanation

Remark

60

(1) CLR1 bit#3, disp16 [reg1]
(2) CLR1 reg2, [reg1]

(1) adr « GR [reg1] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 0)

(2) adr <« GR [reg1]
Z flag « Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 0)

(1) Format VIII
(2) Format IX

15 0 31 16
(1) | 10bbb111110RRRRR | dddddddddddddddd |

15 0 31 16
) |rrrrr111111RRRRR |00000000111001oo |

V4 1 if bit specified by operands = 0.
0 if bit specified by operands = 1.
SAT -

CLR1 Clear Bit

(1) Adds the data of general-purpose register reg1 to the 16-bit displacement, sign-extended
to word length, to generate a 32-bit address. Then reads the byte data referenced by the
generated data, clears the bit specified by the bit number of bit 3, and writes the data to
the former address.

(2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Then reads
the byte data referenced by the generated address, clears the bit specified by the data of
the lower 3 bits of reg2, and writes the data to the former address.

The Z flag of the PSW indicates whether the specified bit was a 0 or 1 before this instruction

was executed. It does not indicate the contents of the specified bit after this instruction has
been executed.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

CMOV

Conditional Move

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

(1) CMOV cccec, regt, reg2, reg3
(2) CMOV cccc, immb, reg2, reg3

(1) if conditions are satisfied
then GR [reg3] « GR [reg1]
else GR [reg3] « GR [reg2]
(2) if conditions are satisfied
then GR [reg3] « sign-extend (immb5)
else GR [reg3] « GR [reg2]

(1) Format Xl
(2) Format Xl

15 0 31 16

(1) |rrrrr111111RRRRR |wwwww01lOOlccccO |

15 0 31 16

cY -
ov -
S -
Z -
SAT -

CMOV Conditional Move

(1) The data of general-purpose register reg1 is transferred to general-purpose register reg3
if the condition specified by condition code “cccc” is satisfied; otherwise, the data of
general-purpose register reg2 is transferred. One of the codes shown in Table 5-9
Condition Codes should be specified as the condition code “cccc”.

(2) The data of 5-bit immediate, sign-extended to word length, is transferred to general-
purpose register reg3 if the condition specified by condition code “cccc” is satisfied;
otherwise, the data of general-purpose register reg2 is transferred. One of the codes
shown in Table 5-9 Condition Codes should be specified as the condition code “cccc”.

See SETF Pages.

User's Manual U12197EJ6VOUM 61

CHAPTER 5 INSTRUCTIONS

CMP

Compare

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

62

(1)

)

cY
ov
S

Y4
SAT

(1)
)

(1)

@)

CMP regi, reg2
CMP immb5, reg2

result < GR [reg2] — GR [reg1]
result < GR [reg2] — sign-extend (imm5)

Format |
Format Il

15 0

| rrrrr001111RRRRR |

15 0

1 if a borrow to MSB occurs; otherwise, 0.

1 overflow occurs; otherwise 0.

1 if the result of the operation is negative; otherwise, 0.
1 if the result of the operation is 0; otherwise, 0.

CMP Compare Register
CMP Compare Immediate (5-bit)

Compares the word data of general-purpose register reg2 with the word data of general-
purpose register reg1, and indicates the result by using the condition flags. To compare,
the contents of general-purpose register regl are subtracted from the word data of
general-purpose register reg2. The data of general-purpose registers reg1 and reg2 are
not affected.

Compares the word data of general-purpose register reg2 with 5-bit immediate data, sign-
extended to word length, and indicates the result by using the condition flags. To
compare, the contents of the sign-extended immediate data are subtracted from the word
data of general-purpose register reg2. The data of general-purpose register reg2 is not
affected.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

CTRET

Return from CALLT

Instruction format CTRET

Operation PC « CTPC
PSW « CTPSW
Format Format X
Opcode 15 0 31 16

0000011111100000 0000000101000100

Flag CYy Value read from CTPSW is restored.
ov Value read from CTPSW is restored.
S Value read from CTPSW is restored.
z Value read from CTPSW is restored.
SAT Value read from CTPSW is restored.

Instruction CTRET Return from CALLT

Explanation This instruction restores the restore PC and PSW from the appropriate system register and
returns from a routine called by CALLT. The operations of this instruction are as follows.
(1) The restore PC and PSW are read from CTPC and CTPSW.
(2) Once the PC and PSW are restored in the return values, control is transferred to the
return address.

User's Manual U12197EJ6VOUM 63

CHAPTER 5 INSTRUCTIONS

DI

Disable Interrupt

Instruction format DI

Operation PSW.ID « 1 (Disables maskable interrupt)
Format Format X
Opcode 15 0 31 16

0000011111100000 0000000101100000

Flag CcY -

Instruction DI Disable Interrupt

Explanation Sets the ID flag of the PSW to 1 to disable the acknowledgement of maskable interrupts during
execution of this instruction.

Remark Interrupts are not sampled during execution of this instruction. The ID flag actually becomes
valid at the start of the next instruction. But because interrupts are not sampled during
instruction execution, interrupts are immediately disabled. Non-maskable interrupts are not
affected by this instruction.

64 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

DISPOSE

Function Dispose

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

@)

DISPOSE immb5, list12
DISPOSE imm5, list12, [reg1]

sp « sp + zero-extend (immb logically shift left by 2)
GR [reg in list12] « Load-memory (sp, Word)
sp«sp+4

repeat 2 steps above until all regs in list12 are loaded
sp « sp + zero-extend (immb logically shift left by 2)
GR [reg in list12] « Load-memory (sp, Word)
sp«sp+4

repeat 2 states above until all regs in list12 are loaded
PC « GR[reg1]

Format XllI

15 0 31 16

RRRRR must not be 00000.

The bit assignment of list12 is shown below
15 0 31 2827 242321 16
---- ---- ---- ---3 (2222 2222 223- ----
---- ---- ---- ---0]4567 0123 891- ----
cYy -
ov -
S —
Z —
SAT -

DISPOSE Function Dispose

(1)

@)

Adds the data of 5-bit immediate imm5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pops the (loads data from the address specified by sp and adds
4 to sp) general-purpose registers listed in list12. Bit 0 of the address is masked by 0.
Adds the data of 5-bit immediate immb5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pops (loads data from the address specified by sp and adds 4 to
sp) the general-purpose registers listed in list12, and transfers control to the address
specified by general-purpose register reg1. Bit O of the address is masked by 0.

User's Manual U12197EJ6VOUM 65

CHAPTER 5 INSTRUCTIONS

Remark

66

General-purpose registers in list12 are loaded in the downward direction. (r31, r30, ... r20)

The 5-bit immediate immb5 is used to restore a stack frame for auto variables and temporary
data.

The lower 2 bits of the address specified by sp are always masked by 0 even if misalign
access is enabled.

If an interrupt occurs while this instruction is being executed, execution is aborted, and the
interrupt is processed. Upon returning from the interrupt, execution is restarted. Also, sp will
retain its original value prior to the start of execution.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

DIV

Divide Word

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

DIV regi, reg2, reg3

GR [reg2] « GR [reg2] + GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format XI

15 0 31 16

rrrrrl111111RRRRR wwwww01011000000

CcY -

oV 1 if overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise, 0.

SAT -

DIV Divide Word

Divides the word data of general-purpose register reg2 by the word data of general-purpose
register reg1, and stores the quotient in general-purpose register reg2, and the remainder in
general-purpose register reg3. If the data is divided by 0, an overflow occurs, and the quotient
is undefined. The data of general-purpose register reg1 is not affected.

An overflow occurs when the maximum negative value (80000000H) is divided by —1 (in which
case the quotient is 80000000H) and when data is divided by O (in which case the quotient is
undefined).

If an interrupt occurs while this instruction is being executed, division is aborted, and the
interrupt is processed. Upon returning from the interrupt, the division is restarted from the
beginning, with the return address being the address of this instruction. Also, general-purpose
registers reg1 and reg2 will retain their original values prior to the start of execution.

If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(=reg3).

User's Manual U12197EJ6VOUM 67

CHAPTER 5 INSTRUCTIONS

DIVH

Divide Half-word

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

68

(1)

)

CcY
ov
S

z
SAT

DIVH reg1, reg2
DIVH reg1, reg2, reg3

GR [reg2] « GR [reg2] + GR [reg1]
GR [reg2] « GR [reg2] + GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format |
Format Xl
15 0
| rrrrr000010RRRRR |
15 0 31 16

| rrrrrl1l11111RRRRR | wwwww01010000000

1 if overflow occurs; otherwise, 0.
1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

DIVH Divide Half-word

(1)

Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register reg1, and stores the quotient in general-purpose register reg2. If
the data is divided by 0, an overflow occurs, and the quotient is undefined.

The data of general-purpose register reg1 is not affected.

Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register reg1, and stores the quotient in general-purpose register reg2,
and the remainder in general-purpose register reg3. If the data is divided by 0, an
overflow occurs, and the quotient is undefined. The data of general-purpose register reg1
is not affected.

The remainder is not stored.

An overflow occurs when the maximum negative value (80000000H) is divided by —1 (in
which case the quotient is 80000000H) and when data is divided by 0 (in which case the
quotient is undefined).

If an interrupt occurs while this instruction is being executed, division is aborted, and the
interrupt is processed. Upon returning from the interrupt, the division is restarted from the
beginning, with the return address being the address of this instruction. Also, general-
purpose registers reg1 and reg2 will retain their original values prior to the start of

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

execution.

Do not specify r0 as the destination register reg2.

The higher 16 bits of general-purpose register reg1 are ignored when division is executed.
An overflow occurs when the maximum negative value (80000000H) is divided by —1 (in
which case the quotient is 80000000H) and when data is divided by 0 (in which case the
quotient is undefined).

If an interrupt occurs while this instruction is being executed, division is aborted, and the
interrupt is processed. Upon returning from the interrupt, the division is restarted from the
beginning, with the return address being the address of this instruction. Also, general-
purpose registers regl and reg2 will retain their original values prior to the start of
execution.

The higher 16 bits of general-purpose register reg1 are ignored when division is executed.
If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(=reg3).

User's Manual U12197EJ6VOUM 69

CHAPTER 5 INSTRUCTIONS

DIVHU

Divide Half-word Unsigned

Instruction format DIVHU reg1, reg2, reg3

Operation GR [reg2] « GR [reg2] + GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format Format XI

Opcode 15 0 31 16

rrrrrl111111RRRRR wwwww01010000010

Flag CYy -
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise, 0.
SAT -
Instruction DIVH Divide Half-word Unsigned
Explanation Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1, and stores the quotient in general-purpose register reg2, and the
remainder in general-purpose register reg3. If the data is divided by 0, an overflow occurs,
and the quotient is undefined. The data of general-purpose register reg1 is not affected.

Remark An overflow occurs when data is divided by 0 (in which case the quotient is undefined).
If an interrupt occurs while this instruction is being executed, division is aborted, and the
interrupt is processed. Upon returning from the interrupt, the division is restarted from the
beginning, with the return address being the address of this instruction. Also, general-purpose
registers reg1 and reg2 will retain their original values prior to the start of execution.
If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(=reg3).

70 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

DIVU

Divide Word Unsigned

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

DIVU reg1, reg2, reg3

GR [reg2] « GR [reg2] + GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format XI

15 0 31 16

rrrrrl111111RRRRR wwwww01011000010

CcY -

oV 1 if overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise, 0.

SAT -

DIVH Divide Word Unsigned

Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1, and stores the quotient in general-purpose register reg2, and the remainder to

general-purpose register reg3. If the data is divided by 0, overflow occurs, and the quotient is

undefined. The data of general-purpose register reg1 is not affected.

An overflow occurs when data is divided by 0 (in which case the quotient is undefined).
If an interrupt occurs while this instruction is being executed, division is aborted, and the

interrupt is processed. Upon returning from the interrupt, the division is restarted from the

beginning, with the return address being the address of this instruction. Also, general-purpose

registers reg1 and reg2 will retain their original values prior to the start of execution.

If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2

(=reg3).

User's Manual U12197EJ6VOUM

71

CHAPTER 5 INSTRUCTIONS

El

Enable Interrupt

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

72

El

PSW.ID « 0 (enables maskable interrupt)

Format X

15 0 31 16

1000011111100000 0000000101100000

cYy -

El Enable Interrupt

Resets the ID flag of the PSW to 0 and enables the acknowledgement of maskable interrupts
beginning at the next instruction.

Interrupts are not sampled during instruction execution.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

HALT

Halt

Instruction format

Operation.

Format

Opcode

Flag

Instruction

Explanation

Remark

HALT

Halts

Format X

15 0 31 16

0000011111100000 0000000100100000

cYy -
ov -
S -
Z -
SAT -

HALT Halt

Stops the operating clock of the CPU and places the CPU in the HALT mode.

The HALT mode is released by any of the following three events.

e RESET input

e NMI input

e Maskable interrupt request that is not masked
If an interrupt is acknowledged during the HALT mode, the address of the following instruction
is stored in EIPC or FEPC.

User's Manual U12197EJ6VOUM 73

CHAPTER 5 INSTRUCTIONS

HSW

Half-word Swap Word

Instruction format HSW reg2, reg3

Operation GR [reg3] « GR [reg2] (15:0) Il GR [reg2] (31:16)
Format Format XII
Opcode 15 0 31 16

rrrrr11111100000 wwwww(01101000100

Flag CYy 1 if one or more halfwords in result word is 0; otherwise 0.
ov 0
S 1 if the result of the operation is negative; otherwise, 0.
Z 1 if the result of the operation is 0; otherwise, 0.
SAT -
Instruction HSW Half-word Swap Word
Explanation Endian translation.

74 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

JARL

Jump and Register Link

Instruction format JARL disp22, reg2

Operation GR [reg2] « PC + 4
PC « PC + sign-extend (disp22)

Format Format V

Opcode 15 0 31 16
rrrrr11110dddddd | dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CYy -
ov -
S —
Z —
SAT -

Instruction JARL Jump and Register Link

Explanation Saves the current PC value plus 4 to general-purpose register reg2, adds the current PC value
and 22-bit displacement, sign-extended to word length, and transfers control to the PC. Bit 0
of the 22-bit displacement is masked by 0.

Remark The current PC value used for calculation is the address of the first byte of this instruction. If
the displacement value is 0, the branch destination is this instruction itself.
This instruction is equivalent to a call subroutine instruction, and stores the restore PC address
in general-purpose register reg2. The JMP instruction, which is equivalent to a subroutine-
return instruction, can be used to specify the general-purpose register storing the restore PC
as general-purpose register reg1.

User's Manual U12197EJ6VOUM 75

CHAPTER 5 INSTRUCTIONS

JMP

Jump Register

Instruction format JMP [reg1]

Operation PC « GR [reg1]
Format Format |
Opcode 15 0
0000000001 1RRRRR
Flag CcY -
ov -
S —
Z —
SAT -
Instruction JMP Jump Register
Explanation Transfers control to the address specified by general-purpose register reg1. Bit 0 of the

address is masked by 0.
Remark When using this instruction as the subroutine-return instruction, specify the restore PC using

general-purpose register regl. When using the JARL instruction, which is equivalent to the
subroutine-call instruction, store the restore PC address in general-purpose register reg2.

76 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

JR

Jump Relative

Instruction format JR disp22

Operation PC « PC + sign-extend (disp22)
Format Format V
Opcode 15 0 31 16

0000011110dddddd dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CcYy -
ov -
S —
Z —
SAT -

Instruction JR Jump Relative
Explanation Adds the 22-bit displacement, sign-extended to word length, to the current PC value and
stores the value in the PC, and then transfers control to the PC. Bit 0 of the 22-bit

displacement is masked by 0.

Remark The current PC value used for the calculation is the address of the first byte of this instruction
itself. Therefore, if the displacement value is 0, the jump destination is this instruction.

User's Manual U12197EJ6VOUM 77

CHAPTER 5 INSTRUCTIONS

LD

Load

Instruction format

Operation

Format

Opcode

78

(1) LD.B disp16 [reg1], reg2
(2) LD.H disp16 [reg1], reg2
(3) LD.W disp16 [reg1], reg2
(4) LD.BU disp16 [reg1], reg2
(5) LD.HU disp16 [reg1], reg2

(1) adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Byte))
(2) adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Half-word))
(3) adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « Load-memory (adr, Word)
(4) adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « zero-extend (Load-memory (adr, Byte))
(5) adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « zero-extend (Load-memory (adr, Half-word))

Format VII

15 0 31 16
(1) |rrrrr111000RRRRR |dddddddddddddddd |

15 0 31 16
@) |rrrrr111001RRRRR |ddddddddddddddd0 |

ddddddddddddddd is the higher 15 bits of disp16.

15 0 31 16
(3) | rrrrr111001RRRRR | dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16.

15 0 31 16
(4) | rrrrr11110bRRRRR | dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16, b is the bit O of disp 16.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

Flag

Instruction

Explanation

Caution

15 0 31 16

(5) | rrrrr111111RRRRR | dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16.

O RN Z=
ELepr

a1
-

(1)

@)

The

LD.B Load Byte

LD.H Load Half-word

LD.W Load Word

LD.BU Load Byte Unsigned
LD.HU Load Half-word Unsigned

Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to
word length to generate a 32-bit address. Byte data is read from the generated address,
sign-extended to word length, and stored in general-purpose register reg2.

Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to
word length to generate a 32-bit address. Halfword data is read from this 32-bit address
with its bit 0 masked by 0, sign-extended to word length, and stored in general-purpose
register reg2.

Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to
word length to generate a 32-bit address. Word data is read from this 32-bit address with
bits 0 and 1 masked by 0, and stored in general-purpose register reg2.

Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to
word length to generate a 32-bit address. Byte data is read from the generated address,
zero-extended to word length, and stored in general-purpose register reg2.

Do not specify r0 as the destination register reg2.

Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to
word length to generate a 32-bit address. Halfword data is read from this 32-bit address
with its bit 0 masked by 0, zero-extended to word length, and stored in general-purpose
register reg2.

Do not specify r0 as the destination register reg2.

result of adding the data of general-purpose register reg1 and the 16-bit displacement

sign-extended to word length is as follows.

Lower bits are not masked and address is generated.

User's Manual U12197EJ6VOUM 79

CHAPTER 5 INSTRUCTIONS

LDSR

Load to System Register

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

Caution

80

LDSR reg2, reglD

SR [reglD] « GR [reg2]

Format IX

15 0 31 16

rrrrr111111RRRRR 0000000000100000

Remark The fields used to define reg1 and reg2 are swapped in this instruction. Normally,
"RRR" is used for reg1 and is the source operand while “rrr” signifies reg2 and is
the destination operand. In this instruction, “RRR” is still the source operand, but
is represented by reg2, while “rrr” is the special register destination, as labeled
below.

rrrrr: reglD specification
RRRRR: reg2 specification

CcYy — (Refer to Remark below.)
oV — (Refer to Remark below.)
S — (Refer to Remark below.)
V4 — (Refer to Remark below.)
SAT - (Refer to Remark below.)

LDSR Load to System Register

Loads the word data of general-purpose register reg2 to a system register specified by the
system register number (reglD). The data of general-purpose register reg2 is not affected.

If the system register number (reglD) is equal to 5 (PSW register), the values of the
corresponding bits of the PSW are set according to the contents of reg2. This only affects the
flag bits, and the reserved bits remain 0. Also, interrupts are not sampled when the PSW is
being written with a new value. If the ID flag is enabled with this instruction, interrupt disabling
begins at the start of execution, even though the ID flag does not become valid until the
beginning of the next instruction.

The system register number reglID is a number which identifies a system register. Accessing

system registers which are reserved or write-prohibited is prohibited and will lead to undefined
results.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

MOV

Move

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

(1) MOV reg1, reg2
(2) MOV immb5, reg2
(3) MOV imm32, reg1

(1) GRI[reg2] < GR [regi]
(2) GR [reg2] « sign-extend (immb5)
(3) GR[reg1] « imm32

(1) Formatl
(2) Formatll

(38) Format VI

15 0

(1) |rrrrrOOOOOORRRRR |

15 0

15 0 31 16 47 32

(3) | 00000110001RRRRR iiiiiiiiiiiiiiii IITIIITITIIIIIIIIT

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.
| (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

CcYy -
ov -

(1) MOV Move Register
(2) MOV Move Immediate (5-bit)
(3) MOV Move Immediate (32-bit)

(1) Transfers the word data of general-purpose register reg1 to general-purpose register reg2.
The data of general-purpose register reg1 is not affected.

(2) Transfers the value of a 5-bit immediate data, sign-extended to word length, to general-
purpose register reg2.
Do not specify r0 as the destination register reg2.

(3) Transfers the value of a 32-bit immediate data to general-purpose register reg1.

User's Manual U12197EJ6VOUM 81

CHAPTER 5 INSTRUCTIONS

MOVEA

Move Effective Address

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

82

MOVEA imm16, reg1, reg2

GR [reg2] « GR [reg1] + sign-extend (imm16)

Format VI

15 0 31 16

rrrrr110001RRRRR 111131131131131131111

cYy -
ov -
S -
Z -
SAT -

MOVEA Move Effective Address

Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg1, and stores the result in general-purpose register reg2. The data of

general-purpose register reg1 is not affected. The flags are not affected by the addition.

Do not specify r0 as the destination register reg2.

This instruction calculates a 32-bit address and stores the result without affecting the PSW

flags.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

MOVHI

Move High Half-word

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

MOVHI imm186, reg1, reg2
GR [reg2] « GR [reg1] + (imm16 Il 016)
Format VI

15 0 31 16

rrrrr110010RRRRR 111131131131131131111

cYy -
ov -
S -
Z -
SAT -

MOVHI Move High half-word

Adds a word value, whose higher 16 bits are specified by the 16-bit immediate data and lower
16 bits are 0, to the word data of general-purpose register reg1 and stores the result in

general-purpose register reg2. The data of general-purpose register reg1 is not affected. The

flags are not affected by the addition.
Do not specify r0 as the destination register reg2.

This instruction is used to generate the higher 16 bits of a 32-bit address.

User's Manual U12197EJ6VOUM

83

CHAPTER 5 INSTRUCTIONS

MUL

Multiply Word

Instruction format (1) MUL reg1, reg2, reg3

(2) MUL imm9, reg2, reg3
Operation (1) GRreg3] Il GR [reg2] « GR [reg2] x GR [reg1]

(2) GRIreg3] Il GR [reg2] « GR [reg2] x sign-extend (imm9)
Format (1) Format Xl

(2) Format Xl
Opcode 15 0 31 16

(1) | rrrrr111111RRRRR | wwwww01000100000 |

15 0 31 16

2 | rrrrr111111iiiii | wwwww01001IIII00 |

iiiii is the lower 5 bits of 9-bit immediate data.

Illl is the higher 4 bits of 9-bit immediate data.
Flag CYy -

ov -

S —

Z —

SAT -
Instruction (1) MUL Multiply Word by Register

(2) MUL Multiply Word by Immediate (9-bit)
Explanation (1) Multiplies the word data of general-purpose register reg2 by the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2 and reg3 as
double word data. The data of general-purpose register reg1 is not affected.

(2) Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, sign-
extended to word length, and stores the result in general-purpose registers reg2 and reg3.

Remark The higher 32 bits of the result are stored in general-purpose register reg3.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are
stored in reg2 (=reg3)

84 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

MULH

Multiply Half-word
Instruction format (1) MULH reg1, reg2
(2) MULH immb5, reg2
Operation (1) GR[reg2] (32) « GR [reg2] (16) x GR [reg1] (16)
(2) GR[reg2] « GR [reg2] x sign-extend (immb5)
Format (1) Formatl
(2) Formatll
Opcode 15 0
(1) | rrrrr000111RRRRR |
15 0
2 | rrrrr010111iiiii |
Flag CYy -
ov -
S —
Z —
SAT -
Instruction (1) MULH Multiply Half-word by Register
(2) MULH Multiply Half-word by Immediate (5-bit)
Explanation (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of

general-purpose register reg1, and stores the result in general-purpose register reg2 as
word data. The data of general-purpose register reg1 is not affected.
Do not specify r0 as the destination register reg2.

(2) Multiplies the lower halfword data of general-purpose register reg2 by a 5-bit immediate
data, sign-extended to halfword length, and stores the result in general-purpose register
reg2.

Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general-purpose registers reg1 and reg2 are ignored in this operation.

User's Manual U12197EJ6VOUM 85

CHAPTER 5 INSTRUCTIONS

MULHI

Multiply Half-word Immediate

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

86

MULHI imm16, reg1, reg2

GR [reg2] « GR [reg1] x imm16

Format VI

15 0 31 16

rrrrr110111RRRRR 111131131131131131111

cYy -
ov -
S -
Z -
SAT -

MULHI Multiply Half-word by immediate (16-bit)

Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate
data, and stores the result in general-purpose register reg2. The data of general-purpose
register reg1 is not affected.

Do not specify r0 as the destination register reg2.

The higher 16 bits of general-purpose register reg1 are ignored in this operation.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

MULU

Multiply Word Unsigned

Instruction format (1) MULU reg1, reg2, reg3
(2) MULU imm9, reg2, reg3

Operation (1) GRreg3] Il GR [reg2] « GR [reg2] x GR [reg1]
(2) GR{reg3] Il GR [reg2] « GR [reg2] x zero-extend (imm9)

Format (1) Format Xl
(2) Format Xl

Opcode 15 0 31 16

(1) |rrrrr111111RRRRR |wwwwwOlOOOlOOOlO |

15 0 31 16

Illl is the higher 4 bits of 9-bit immediate data.

Flag CYy -
ov -

Instruction (1) MULU Multiply Word by Register
(2) MULU Multiply Word by Immediate (9-bit)

Explanation (1) Multiplies the word data of general-purpose register reg2 by the word data of general-
purpose register reg1, and stores the result in general-purpose registers reg2 and reg3 as
double word data. The data of general-purpose register reg1 is not affected.

(2) Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, zero-
extended to word length, and stores the result in general-purpose registers reg2 and reg3.

Remark The higher 32 bits of the result are stored in general-purpose register reg3.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are
stored in reg2 (=reg3).

User's Manual U12197EJ6VOUM 87

CHAPTER 5 INSTRUCTIONS

NOP

No Operation

Instruction format NOP

Operation Executes nothing and consumes at least one clock.
Format Format |
Opcode 15 0
0000000000000000
Flag CcY -
ov -
S —
Z —
SAT -
Instruction NOP No Operation
Explanation Executes nothing and consumes at least one clock cycle.
Remark The contents of the PC are incremented by two. The opcode is the same as that of MOV r0,
r0.

88 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

NOT

Not

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

NOT reg1, reg2

GR [reg2] « NOT (GR [reg1])

Format |

15 0

rrrrrO000001RRRRR

CcYy -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

NOT Not

Logically negates (takes the 1’s complement of) the word data of general-purpose register
reg1, and stores the result in general-purpose register reg2. The data of general-purpose
register reg1 is not affected.

User's Manual U12197EJ6VOUM 89

CHAPTER 5 INSTRUCTIONS

NOT1

Not Bit

Instruction format

Operation

Format

Opcode

Flag

Instruction

* Explanation

Remark

90

(1) NOT1 bit#3, disp16 [reg1]
(2) NOT1 reg2, [regl]

(1) adr « GR [reg1] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, Z flag)

(2) adr <« GR [reg1]
Z flag « Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, Z flag)

(1) Format VIII
(2) Format IX

15 0 31 16
(1) | 01bbb111110RRRRR | dddddddddddddddd |

15 0 31 16

) |rrrrr111111RRRRR |000000001110001o |

V4 1 if bit specified by operands = 0.
0 if bit specified by operands = 1.
SAT -

NOT1 Not Bit

(1) Adds the data of general-purpose register reg1 to a 16-bit displacement, sign-extended to
word length, to generate a 32-bit address. Then reads the byte data referenced by the
generated address, inverts the bit specified by the 3-bit field “bbb”, and writes the data to
the previous address.

(2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Then reads
the byte data referenced by the generated address, inverts the bit specified by the data of
the lower 3 bits of reg2, and writes the data to the previous address.

The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction was

executed, and does not indicate the contents of the specified bit after this instruction has been
executed.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

OR

Or

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

OR regi, reg2

GR [reg2] « GR [reg2] OR GR [reg1]

Format |

15 0

rrrrr001000RRRRR

CcY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

OR Or
ORs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1, and stores the result in general-purpose register reg2. The data of general-
purpose register reg1 is not affected.

User's Manual U12197EJ6VOUM 91

CHAPTER 5 INSTRUCTIONS

ORI

Or Immediate

Instruction format ORI imm16, reg1, reg2

Operation GR [reg2] « GR [reg1] OR zero-extend (imm16)
Format Format VI
Opcode 15 0 31 16

rrrrr110100RRRRR 111131131131131131111

Flag CcY -
ov 0
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Instruction OR Or immediate (16-bit)
Explanation ORs the word data of general-purpose register reg1 with the value of the 16-bit immediate

data, zero-extended to word length, and stores the result in general-purpose register reg2.
The data of general-purpose register reg1 is not affected.

92 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

PREPARE

Function Prepare

Instruction format (1) PREPARE list12, imm5
(2) PREPARE list12, imm5, sp / imm"*
Note sp/immis specified by sub-opcode bits 20 and 19.

Operation (1) Store-memory (sp - 4, GR [reg in list12], Word) sp « sp - 4
repeat 1 step above until all regs in list12 is stored
sp « sp - zero-extend (immb5)
(2) Store-memory (sp - 4, GR [reg in list12], Word) sp < sp -4
repeat 1 step above until all regs in list12 is stored
sp « sp - zero-extend (immb5)
ep < sp/imm

Format Format XIllI

Opcode 15 0 31 16

15 0 31 16 Optional (47-32 or 63-32)

) |OOOOOllllOiiiiiL |LLLLLLLLLLLffOll | imml6 / imm32

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32, bits
63 to 48 are the higher 16 bits of imm32.
ff = 00: Load sp to ep
01: Load 16-bit immediate data (bit 47 to 32), sign-extended, to ep
10: Load 16-bit immediate data (bit 47 to 32), logically shifted left by 16, to ep
11: Load 32-bit immediate data (bit 63 to 32) to ep
Bit assignment of list12 is below
15 0 31 2827 242321 16

=== === ---- ---3|2222 2222 223- ----
---- ---- ---- ---0]4567 0123 891- ----

Flag CYy -

SAT -
Instruction PREPARE Function Prepare
Explanation (1) Pushes (subtracts 4 from sp and stores the data in that address) the general-purpose

registers listed in list12. Then subtracts the data of 5-bit immediate immb5, logically shifted
left by 2 and zero-extended to word length, from sp.

User's Manual U12197EJ6VOUM 93

CHAPTER 5 INSTRUCTIONS

Remark

94

(2) Pushes (subtracts 4 from sp and stores the data in that address) the general-purpose
registers listed in list12. Then subtracts the data of 5-bit immediate imm5, logically shifted
left by 2 and zero-extended to word length, from sp.

Next, load the data specified by 3rd operand to ep.

The general-purpose registers in list12 are stored in the upward direction. (r20, r21, ... r31)
The 5-bit immediate imm5 is used to make a stack frame for auto variables and temporary
data.

The lower 2 bits of the address specified by sp are always masked by 0 even if misalign
access is enabled.

If an interrupt occurs while this instruction is being executed, execution is aborted, and the
interrupt is processed. Upon returning from the interrupt, execution is restarted. Also, sp and
ep will retain their original values prior to the start of execution.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

RETI

Return from Trap or Interrupt

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

RETI

if PSW.EP =1
then PC <« EIPC

PSW « EIPSW
else if PSW.NP =1

then PC « FEPC

PSW « FEPSW
else PC <« EIPC
PSW « EIPSW
Format X
15 0 31 16

0000011111100000 0000000101000000

CYy Value read from FEPSW or EIPSW is restored.
ov Value read from FEPSW or EIPSW is restored.
S Value read from FEPSW or EIPSW is restored.
4 Value read from FEPSW or EIPSW is restored.
SAT Value read from FEPSW or EIPSW is restored.

RETI Return from Trap or Interrupt

This instruction reads the restore PC and PSW from the appropriate system register, and
operation returns from an exception or interrupt routine. The operations of this instruction are
as follows.
(1) If the EP flag of the PSW is 1, the restore PC and PSW are read from EIPC and EIPSW,
regardless of the status of the NP flag of the PSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restore PC and PSW
are read from FEPC and FEPSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 0, the restore PC and PSW
are read from EIPC and EIPSW.
(2) Once the restore PC and PSW values are set to the PC and PSW, the operation returns to
the address immediately before the trap or interrupt occurred.

User's Manual U12197EJ6VOUM 95

CHAPTER 5 INSTRUCTIONS

Caution

96

When returning from an NMI or exception routine using the RETI instruction, the PSW.NP and
PSW.EP flags must be set accordingly to restore the PC and PSW:
* When returning from non-maskable interrupt routine using the RETI instruction:
PSW.NP = 1 and PSW.EP =0
* When returning from an exception routine using the RETI instruction:
PSW.EP =1
Use the LDSR instruction for setting the flags.

Interrupts are not acknowledged in the latter half of the ID stage during LDSR execution
because of the operation of the interrupt controller.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SAR

Shift Arithmetic Right

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

(1) SAR reg1, reg2
(2) SAR immb5, reg2

(1) GR[reg2] « GR [reg2] arithmetically shift right by GR [reg1]
(2) GR[reg2] « GR [reg2] arithmetically shift right by zero-extend

(1) Format IX
(2) Formatll

15 0 31 16

(1) |rrrrr111111RRRRR |00000000101ooooo

15 0

cYy 1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise, 0.

SAT -

(1) SAR Shift Arithmetic Right by Register
(2) SAR Shift Arithmetic Right by Immediate (5-bit)

(1) Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’
positions, where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-
purpose register reg1 (after the shift, the MSB prior to shift execution is copied and set as
the new MSB value), and then writes the result in general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 retains the same value prior to
instruction execution. The data of general-purpose register reg1 is not affected.

(2) Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’
positions, where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-
extended to word length (after the shift, the MSB prior to shift execution is copied and set
as the new MSB value), and then writes the result in general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 retains the same value prior to
instruction execution.

User's Manual U12197EJ6VOUM 97

CHAPTER 5 INSTRUCTIONS

SASF

Shift and Set Flag Condition

Instruction format SASF cccc, reg2

Operation if conditions are satisfied
then GR [reg2] < (GR [reg2] Logically shift left by 1) OR 00000001H
else GR [reg2] « (GR [reg2] Logically shift left by 1) OR 00000000H

Format Format IX

Opcode 15 0 31 16

rrrrrl1111110cccc 0000001000000000

Flag CcYy -
ov -
S —
Z —
SAT -

Instruction SASF Shift And Set Flag Condition

Explanation General-purpose register reg2 is logically shifted left by 1, and its LSB is set to 1 if the
condition specified by condition code “cccc” is satisfied; otherwise, the LSB is set to 0. One of
the codes shown in Table 5-9 Condition Codes should be specified as the condition code

“ccec”.

Remark See SETF Pages.

98 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SATADD

Saturated Add

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

Caution

SATADD regl, reg2
SATADD immb5, reg2

GR [reg2] « saturated (GR [reg2] + GR [reg1])
GR [reg2] « saturated (GR [reg2] + sign-extend (imm5))

Format |
Format Il

15 0

(1) |rrrrr000110RRRRR |

15 0

cY
ov
S

Y4
SAT

(1)
)

(1)

The

1 if a carry occurs from MSB; otherwise, 0.

1 if overflow occurs; otherwise, 0.

1 if the result of the saturated operation is negative; otherwise, 0.
1 if the result of the saturated operation is 0; otherwise, 0.

1 if OV = 1; otherwise, not affected.

SATADD Saturated add register
SATADD Saturated add Immediate (5-bit)

Adds the word data of general-purpose register reg1 to the word data of general-purpose
register reg2, and stores the result in general-purpose register reg2. However, if the
result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if
the result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2.
The SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

Do not specify r0 as the destination register reg2.

Adds a 5-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg2, and stores the result in general-purpose register reg2. However, if
the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in
reg2; if the result exceeds the maximum negative value 80000000H, 80000000H is stored
in reg2. The SAT flag is set to 1.

Do not specify r0 as the destination register reg2.

SAT flag is a cumulative flag. Once the result of the saturated operation instruction has

been saturated, this flag is set to 1 and is not reset to 0 even if the result of the subsequent
operation is not saturated.
Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U12197EJ6VOUM 99

CHAPTER 5 INSTRUCTIONS

SATSUB

Saturated Subtract

Instruction format SATSUB reg1, reg2

Operation GR [reg2] « saturated (GR [reg2] — GR [reg1])
Format Format |
Opcode 15 0
rrrrr000101RRRRR
Flag CYy 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Instruction SATSUB Saturated Subtract

Explanation Subtracts the word data of general-purpose register reg1 from the word data of general-
purpose register reg2, and stores the result in general-purpose register reg2. However, if the
result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The
SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the
subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

100 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SATSUBI

Saturated Subtract Inmediate

Instruction format SATSUBI imm16, reg1, reg2

Operation GR [reg2] « saturated (GR [reg1] — sign-extend (imm16))
Format Format VI
Opcode 15 0 31 16

rrrrr110011RRRRR 111131131131131131111

Flag CYy 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Instruction SATSUBI Saturated Subtract Immediate

Explanation Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of
general-purpose register reg1, and stores the result in general-purpose register reg2.
However, if the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is
stored in reg2; if the result exceeds the maximum negative value 80000000H, 80000000H is
stored in reg2. The SAT flag is set to 1. The data of general-purpose register reg1 is not
affected.
Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the
subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U12197EJ6VOUM 101

CHAPTER 5 INSTRUCTIONS

SATSUBR

Saturated Subtract Reverse

Instruction format SATSUBR regi, reg2

Operation GR [reg2] « saturated (GR [reg1] — GR [reg2])
Format Format |
Opcode 15 0
rrrrr000100RRRRR
Flag CYy 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Instruction SATSUBR Saturated Subtract Reverse

Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-
purpose register reg1, and stores the result in general-purpose register reg2. However, if the
result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The
SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the
subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

102 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SETF

Set Flag Condition

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

Remark

SETF cccc, reg2

if conditions are satisfied
then GR [reg2] « 00000001H
else GR [reg2] « 00000000H

Format IX

15 0 31 16

rrrrrll111110cccc 0000000000000000

cYy -
ov -
S -
Z -
SAT -

SETF Set Flag Condition

General-purpose register reg2 is set to 1 if the condition specified by condition code “cccc” is
satisfied; otherwise, 0 is stored in the register. One of the codes shown in Table 5-9
Condition Codes should be specified as the condition code “cccc”.

Here are some examples of using this instruction.

(1) Translation of two or more condition clauses: If A of statement if (A) in C language
consists of two or more condition clauses (a1, az, as, and so on), it is usually translated to
a sequence of if (a1) then, if (a2) then. The object code executes a “conditional branch” by
checking the result of evaluation equivalent to an. Since a pipeline processor takes more
time to execute “condition judgment” + “branch” than to execute an ordinary operation, the
result of evaluating each condition clause if (an) is stored in register Ra. By performing a
logical operation on Ran after all the condition clauses have been evaluated, the delay due
to the pipeline can be prevented.

(2) Double-length operation: To execute a double-length operation such as Add with Carry,
the result of the CY flag can be stored in general-purpose register reg2. Therefore, a
carry from the lower bits can be expressed as a numeric value.

User's Manual U12197EJ6VOUM 103

CHAPTER 5 INSTRUCTIONS

104

Table 5-9. Condition Codes

Condition Condition Name Condition Expression
Code
(ccee)
0000 v oV=1
1000 NV ov=0
0001 CiL CY =1
1001 NC/NL Cy=0
0010 z Z=1
1010 NZ zZ=0
0011 NH (CYorz)=1
1011 H (CYorz)=0
0100 SIN S=1
1100 NS/P S=0
0101 T always
1101 SA SAT =1
0110 LT (S xor OV) = 1
1110 GE (SxorQV)=0
0111 LE ((SxorOV)orz)=1
1111 GT ((SxorOV)orZ) =0

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SET1

Set Bit

Instruction format (1) SET1 bit#3, disp16 [reg1]
(2) SET1 reg2, [regl]

Operation (1) adr « GR [reg1] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 1)
(2) adr <« GR [reg1]
Z flag « Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 1)

Format (1) Format VIII
(2) Format IX

Opcode 15 0 31 16
(1) | 00bbb111110RRRRR | dddddddddddddddd |

15 0 31 16
) |rrrrr111111RRRRR |0000000011100000 |

Flag CYy -
ov -
S —
Z 1 if bit specified by operands = 0.
0 if bit specified by operands = 1.
SAT -

Instruction SET1 Set Bit

Explanation (1) Adds the 16-bit displacement, sign-extended to word length, to the data of general-
purpose register reg1 to generate a 32-bit address. Then reads the byte data referenced
by the generated address, inverts the bit specified by the 3-bit field “bbb”, and writes the
data to the previous address. Bits other than the specified bit are not affected.

(2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Then reads
the byte data referenced by the generated address, inverts the bit specified by the data of
the lower 3 bits of reg2, and writes the data to the previous address. Bits other than the
specified bit are not affected.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction was

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

User's Manual U12197EJ6VOUM 105

CHAPTER 5 INSTRUCTIONS

SHL

Shift Logical Left

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

106

(1) SHL regt, reg2
(2) SHL immb5, reg2

(1) GR[reg2] « GR [reg?] logically shift left by GR [reg1]
(2) GR[reg2] < GR [reg2] logically shift left by zero-extend (immb5)

(1) Format IX
(2) Formatll

15 0 31 16

(1) |rrrrr111111RRRRR |0000000011000000

15 0

cYy 1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise, 0.

SAT -

(1) SHL Shift Logical Left by Register
(2) SHL Shift Logical Left by Immediate (5-bit)

(1) Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-purpose register
regl (0 is shifted to the LSB side), and then writes the result in general-purpose register
reg2. If the number of shifts is 0, general-purpose register reg2 retains the same value
prior to instruction execution. The data of general-purpose register reg1 is not affected.

(2) Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to
word length (0 is shifted to the LSB side), and then writes the result in general-purpose
register reg2. If the number of shifts is 0, general-purpose register reg2 retains the value
prior to instruction execution.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SHR

Shift Logical Right

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

(1) SHR regi, reg2
(2) SHR immb5, reg2

(1) GR[reg2] « GR [reg2] logically shift right by GR [reg1]
(2) GR[reg2] « GR [reg2] logically shift right by zero-extend (immb5)

(1) Format IX
(2) Formatll

15 0 31 16

(1) |rrrrr111111RRRRR |000000001ooooooo

15 0

cYy 1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise, 0.

SAT -

(1) SHR Shift Logical Right by Register
(2) SHR Shift Logical Right by Immediate (5-bit)

(1) Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions
where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-purpose register
regl (0 is shifted to the MSB side). This instruction then writes the result in general-
purpose register reg2. If the number of shifts is 0, general-purpose register reg2 retains
the same value prior to instruction execution. The data of general-purpose register reg1 is
not affected.

(2) Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the 5-bit inmediate data, zero-extended to
word length (0 is shifted to the MSB side). This instruction then writes the result in
general-purpose register reg2. If the number of shifts is 0, general-purpose register reg2
retains the same value prior to instruction execution.

User's Manual U12197EJ6VOUM 107

CHAPTER 5 INSTRUCTIONS

SLD

Short Load

Instruction format (1) SLD.B disp7 [ep], reg2
(2) SLD.H disp8 [ep], reg2
(3) SLD.W disp8 [ep], reg2
(4) SLD.BU disp4 [ep], reg2
(

5) SLD.HU disp5 [ep], reg2

Operation (1) adr « ep + zero-extend (disp7)
GR [reg2] « sign-extend (Load-memory (adr, Byte))
(2) adr < ep + zero-extend (disp8)
GR [reg2] « sign-extend (Load-memory (adr, Half-word))
(3) adr « ep + zero-extend (disp8)
GR [reg2] « Load-memory (adr, Word)
(4) adr < ep + zero-extend (disp4)
GR [reg2] « zero-extend (Load-memory (adr, Byte))
(5) adr « ep + zero-extend (disp5)
GR [reg2] « zero-extend (Load-memory (adr, Half-word))

Format Format IV

Opcode 15 0
(1) |rrrrr0110ddddddd |

15 0
@) |rrrrr1000ddddddd |

ddddddd is the higher 7 bits of disp8.

15 0
(3) | rrrrr1010d4dddddo

dddddd is the higher 6 bits of disp8.

15 0
(4) | rrrrr0000110dddd

rrrrr must not be 00000.

15 0
(5) | rrrrr0000111dddd

dddd is the higher 4 bits of disp5, rrrrr must not be 00000.

108 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

Flag

Instruction

Explanation

Caution

cYy
ov

SAT

~ o~ o~~~
A W N

¢]]
-~

(1)

SLD.B Short format Load Byte

SLD.H Short format Load Half-word

SLD.W Short format Load Word

SLD.BU Short format Load Byte Unsigned
SLD.HU Short format Load Half-word Unsigned

Adds the 7-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address. Byte data is read from the generated address, sign-extended
to word length, and stored in reg2.

Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address. Halfword data is read from this 32-bit address with bit 0
masked by 0, sign-extended to word length, and stored in reg2.

Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address. Word data is read from this 32-bit address with bits 0 and 1
masked by 0, and stored in reg2.

Adds the 4-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address. Byte data is read from the generated address, zero-extended
to word length, and stored in reg2.

Do not specify r0 as the destination register reg2.

Adds the 5-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address. Halfword data is read from this 32-bit address with bit 0
masked by 0, zero-extended to word length, and stored in reg2.

Do not specify r0 as the destination register reg2.

The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (halfword, word)
and the misaligned mode setting.

Lower bits are masked by 0 and address is generated (when misalign access is

disabled)
Lower bits are not masked and address is generated (when misalign access is enabled)

User's Manual U12197EJ6VOUM 109

CHAPTER 5 INSTRUCTIONS

For details on misalign access, see 3.3 Data Alignment.

(2) If an interrupt to an SLD instruction that reads from the external memory space is
generated, the read value may be written to a register other than that specified by the SLD
instruction. To prevent this, change all the SLD instructions that access the external
memory to LD instructions.

110 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SST

Store

Instruction format

Operation

Format

Opcode

Flag

Instruction

(1) SST.B reg2, disp7 [ep]
(2) SST.H reg2, disp8 [ep]
(3) SST.W reg2, disp8 [ep]

(1) adr < ep + zero-extend (disp7)
Store-memory (adr, GR [reg2], Byte)

(2) adr < ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Half-word)

(3) adr « ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Word)

Format IV

15 0
(1) |rrrrr0111ddddddd |

15 0
@) |rrrrr1001ddddddd |

ddddddd is the higher 7 bits of disp8.

15 0
(3) | rrrrr1010ddddddl

dddddd is the higher 6 bits of disp8.

CcYy -
ov -
S -
Z -
SAT -

(1) SST.B Short format Store Byte

(2) SST.H Short format Store Half-word
(8) SST.W Short format Store Word

User's Manual U12197EJ6VOUM

111

CHAPTER 5 INSTRUCTIONS

Explanation (1) Adds the 7-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address, and stores the data of the lowest byte of reg2 in the generated
address.

(2) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address, and stores the lower halfword data of reg2 in the generated 32-
bit address with bit 0 masked by 0.

(3) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address, and stores the word data of reg2 in the generated 32-bit
address with bits 0 and 1 masked by 0.

Cautions (1) The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (halfword, word)
and the misaligned mode setting.

e Lower bits are masked by 0 and address is generated (when misalign access is
disabled)
e Lower bits are not masked and address is generated (when misalign access is enabled)

For details on misalign access, see 3.3 Data Alignment.

(2) Branch instructions may not be correctly executed in the following instruction sequence.

Instruction 1 sst/st instruction (access to the external memory)

Instruction 2 Any instruction string other than sst/st instruction (0 or more)

Instruction 3 sst instruction

Instruction 4 bcond (bc, be, bge, bgt, bh, bl, ble, blt, bn, bnc, bne, bnh, bnl, bnv, bnz,
bp, br, bsa, bv, bz) instruction

Perform either of the following to avoid the above.

* Replace the sst instruction immediately before the bcond instruction with the st
instruction

e Insert a nop instruction between the bcond instruction and the sst instruction
immediately before

112 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

ST

Store

Instruction format (1) ST.B reg2, disp16 [reg1]
(2) ST.H reg2, disp16 [reg1]
(3) ST.W reg2, disp16 [reg1]

Operation (1) adr « GR [reg1] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Byte)
(2) adr « GR [reg1] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Half-word)
(3) adr « GR [reg1] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Word)

Format Format VII

Opcode 15 0 31 16
(1) | rrrrr111010RRRRR | dddddddddddddddd |

15 0 31 16
@) |rrrrr111011RRRRR |ddddddddddddddd0 |

ddddddddddddddd is the higher 15 bits of disp16.

15 0 31 16
(3) | rrrrr111011RRRRR | dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16.

Flag CYy -
ov -
S —
Z —
SAT -

Instruction (1) ST.B Store Byte

(2) ST.H Store Half-word
(8) ST.W Store Word

User's Manual U12197EJ6VOUM 113

CHAPTER 5 INSTRUCTIONS

Explanation

Caution

114

(1) Adds the 16-bit displacement, sign-extended to word length, to the data of general-
purpose register reg1 to generate a 32-bit address, and stores the lowest byte data of
general-purpose register reg2 in the generated address.

(2) Adds the 16-bit displacement, sign-extended to word length, to the data of general-
purpose register reg1 to generate a 32-bit address, and stores the lower halfword data of
general-purpose register reg2 in the generated 32-bit address with bit 0 masked by 0.
Therefore, stored data is automatically aligned on a halfword boundary.

(3) Adds the 16-bit displacement, sign-extended to word length, to the data of general-
purpose register reg1 in generate a 32-bit address, and stores the word data of general-
purpose register reg2 in the generated 32-bit address with bits 0 and 1 masked by 0.
Therefore, stored data is automatically aligned on a word boundary.

The result of adding the data of general-purpose register reg1 and the 16-bit displacement
sign-extended to word length can be of two types depending on the type of data to be
accessed (halfword, word), and the misalign mode setting.
* Lower bits are masked by 0 and address is generated (when misalign access is
disabled)

e Lower bits are not masked and address is generated (when misalign access is enabled)

For details on misalign access, see 3.3 Data Alignment.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

STSR

Store Contents of System Register

Instruction format STSR regID, reg2

Operation GR [reg2] « SR [regID]
Format Format IX
Opcode 15 0 31 16

rrrrr111111RRRRR 0000000001000000

Flag CcY -
ov -
S —
Z —
SAT -

Instruction STSR Store Contents of System Register

Explanation Stores the contents of a system register specified by a system register number (regID) in
general-purpose register reg2. The contents of the system register are not affected.

Remark The system register number reglID is a number which identifies a system register. Accessing a
system register which is reserved is prohibited and will lead to undefined results.

User's Manual U12197EJ6VOUM 115

CHAPTER 5 INSTRUCTIONS

SUB

Subtract

Instruction format SUB reg1, reg2
Operation GR [reg2] « GR [reg2] — GR [reg1]
Format Format |
Opcode 15 0

rrrrr001101RRRRR
Flag CYy 1 if a borrow to MSB occurs; otherwise, 0.

oV 1 if overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT -
Instruction SUB Subtract
Explanation Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. The data of
general-purpose register reg1 is not affected.

116 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SUBR

Subtract Reverse

Instruction format SUBR reg1, reg2

Operation GR [reg2] « GR [reg1] — GR [reg2]
Format Format |
Opcode 15 0
rrrrr001100RRRRR
Flag CYy 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Instruction SUBR Subtract Reverse
Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. The data of
general-purpose register reg1 is not affected.

User's Manual U12197EJ6VOUM 117

CHAPTER 5 INSTRUCTIONS

SWITCH

Jump with Table Look Up

Instruction format SWITCH reg1

Operation adr < (PC + 2) + (GR[reg1] logically shift left by 1)
PC « (PC + 2) + (sign-extend (Load-memory (adr, Half-word))) logically shift left by 1

Format Format |
Opcode 15 0
0000000001 0RRRRR
Flag CYy -
ov -
S —
Z —
SAT -
Instruction Switch Jump with Table Look Up
Explanation <1> Adds the table entry address (address following the SWITCH instruction) and data of

general-purpose register reg1 logically shifted left by 1, and generates 32-bit table entry
address.

<2> Loads halfword data pointed by address generated in <1>.

<3> Sign-extends the loaded halfword data to word length, and adds the table entry address
after logically shifts it left by 1 bit (next address following SWITCH instruction) to
generate a 32-bit target address.

<4> Then jumps to the target address generated in <3>.

118 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

SXB

Sign Extend Byte

Instruction format SXB reg1

Operation GR [reg1] « sign-extend (GR [reg1] (7:0))
Format Format |
Opcode 15 0
00000000101RRRRR
Flag CcY -
ov -
S -
Z —
SAT -
Instruction SXB Sign Extend Byte
Explanation Sign-extends the lowest byte of general-purpose register reg1 to word length.

User's Manual U12197EJ6VOUM 119

CHAPTER 5 INSTRUCTIONS

SXH

Sign Extend Half-word

Instruction format SXH reg1

Operation GR [reg1] « sign-extend (GR [reg1] (15:0))
Format Format |
Opcode 15 0
00000000111RRRRR
Flag CcY -
ov -
S -
Z —
SAT -
Instruction SXH Sign Extend Half-word
Explanation Sign-extends the lower halfword of general-purpose register reg1 to word length.

120 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

TRAP

Software Trap

Instruction format TRAP vector

Operation EIPC < PC + 4 (restore PC)
EIPSW « PSW
ECR.EICC <« interrupt code
PSW.EP «— 1
PSW.ID «1
PC <« 00000040H (vector = 00H to OFH)
00000050H (vector = 10H to 1FH)

Format Format X

Opcode 15 0 31 16

000001111113iiii 0000000100000000

Flag CcY -
ov -
S —
Z —
SAT -

Instruction TRAP Trap

Explanation Saves the restore PC and PSW to EIPC and EIPSW, respectively; sets the exception code
(EICC of ECR) and the flags of the PSW (EP and ID flags); jumps to the address of the trap
handler corresponding to the trap vector specified by vector number (0-31), and starts
exception processing. The condition flags are not affected.

The restore PC is the address of the instruction following the TRAP instruction.

User's Manual U12197EJ6VOUM 121

CHAPTER 5 INSTRUCTIONS

TST

Test

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

122

TST regl, reg2

result < GR [reg2] AND GR [reg1]

Format |

15 0

rrrrr001011RRRRR

CcYy -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

TST Test

ANDs the word data of general-purpose register reg2 with the word data of general-purpose
register reg1. The result is not stored, and only the flags are changed. The data of general-
purpose registers reg1 and reg2 are not affected.

User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

TSTH

Test Bit

Instruction format (1) TST1 bit#3, disp16 [reg1]

(2) TST1 reg2, [regl]
Operation (1) adr « GR [reg1] + sign-extend (disp16)

Z flag < Not (Load-memory-bit (adr,bit#3))
(2) adr « GR [reg1]
Z flag < Not (Load-memory-bit (adr,reg2))

Format (1) Format VIII

(2) Format IX
Opcode 15 0 31 16

(1) | 11bbb111110RRRRR | dddddddddddddddd |

15 0 31 16

@) | rrrrr111111RRRRR | 0000000011100110 |
Flag CcYy -

ov -

S —

V4 1 if bit specified by operands = 0.

0 if bit specified by operands = 1.

SAT -
Instruction TST1 Test Bit
Explanation (1) Adds the data of general-purpose register reg1 to a 16-bit displacement, sign-extended to

word length, to generate a 32-bit address. Performs the test on the bit specified by the 3-
bit field “bbb”, at the byte data location referenced by the generated address. If the
specified bit is 0, the Z flag is set to 1; if the bit is 1, the Z flag is reset to 0. The byte data,
including the specified bit, is not affected.

(2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Performs a
test on the bit specified by the lower 3 bits of reg2, at the byte data location referenced by
the generated address. |If the specified bit is 0, the Z flag is set to 1; if the bit is 1, the Z
flag is reset to 0. The byte data, including the specified bit, is not affected.

User's Manual U12197EJ6VOUM 123

CHAPTER 5 INSTRUCTIONS

XOR

Exclusive Or

Instruction format XOR reg1, reg2
Operation GR [reg2] « GR [reg2] XOR GR [reg1]
Format Format |
Opcode 15 0

rrrrr001001RRRRR
Flag CcY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT -
Instruction XOR Exclusive Or
Explanation Exclusively ORs the word data of general-purpose register reg2 with the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. The data of
general-purpose register reg1 is not affected.

124 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

XORI

Exclusive Or Immediate

Instruction format

Operation

Format

Opcode

Flag

Instruction

Explanation

XORI imm186, reg1, reg2

GR [reg2] « GR [reg1] XOR zero-extend (imm16)

Format VI

15 0 31 16

rrrrr110101RRRRR 111131131131131131111

CcY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

XORI Exclusive Or Immediate (16-bit)
Exclusively ORs the word data of general-purpose register reg1 with a 16-bit immediate data,

zero-extended to word length, and stores the result in general-purpose register reg2. The data
of general-purpose register reg1 is not affected.

User's Manual U12197EJ6VOUM 125

CHAPTER 5 INSTRUCTIONS

ZXB

Zero Extend Byte

Instruction format ZXB reg1

Operation GR [reg1] « zero-extend (GR [reg1] (7:0))
Format Format |
Opcode 15 0
000000001 00RRRRR
Flag CcY -
ov -
S -
Z —
SAT -
Instruction ZXB Sign Extend Byte
Explanation Zero-extends the lowest byte of general-purpose register reg1 to word length.

126 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

ZXH

Zero Extend Half-word

Instruction format ZXH reg1

Operation GR [reg1] « zero-extend (GR [reg1] (15:0))
Format Format |
Opcode 15 0
00000000110RRRRR
Flag CcY -
ov -
S -
Z —
SAT -
Instruction ZXH Zero Extend Half-word
Explanation Zero-extends the lower halfword of general-purpose register reg1 to word length.

User's Manual U12197EJ6VOUM 127

CHAPTER 5

INSTRUCTIONS

5.4 Number of Instruction Execution Clock Cycles

The number of instruction execution clock cycles differs depending on the combination of instructions. For details,

refer to CHAPTER 8 PIPELINE.

Table 5-10 shows a list of the number of instruction execution clock cycles.

128

Table 5-10. List of Number of Instruction Execution Clock Cycles (1/3)

Instruction Mnemonic Operand Bytes Execution Clocks
i—r—I
Load SLD.B disp7 [ep], r 2 1—1—n"
SLD.H disp8 [ep], r 2 1—1-—n""
SLD.W disp8 [ep], r 2 1—1—n"
SLD.BU disp4 [ep], r 2 1—1-—n"*
SLD.HU disp5 [ep], r 2 1—1—n"
LD.B disp16 [R], r 4 1—1—n"e:
LD.H disp16 [R], r 4 1—1—n"e?
LD.W disp16 [R], r 4 1—1—n"e:
LD.BU disp16 [R], r 4 1—1—n"e?
LD.HU disp16 [R], r 4 1—1—n"e2
Store SST.B r, disp7 [ep] 2 1-1-1
SST.H r, disp8 [ep] 2 1-1-1
SST.W r, disp8 [ep] 2 1-1-1
ST.B r, disp16 [R] 4 1-1-1
ST.H r, disp16 [R] 4 1-1-1
ST.W r, disp16 [R] 4 1-1-1
Arithmetic MOV R, r 2 1-1-1
operation MOV imms5, r 2 1-1-1
MOV imm32, r 6 2-2-2
MOVEA imm16, R, r 4 1-1-1
MOVHI imm16, R, r 4 1-1-1
DIVH R, r 2 35-35-35
DIVH R, r,w 4 35-35-35
DIVHU R, r,w 4 34 -34-34
DIV R, r,w 4 35-35-35
DIVU R, r,w 4 34-34-34
MULH R, r 2 1-1-2
MULH immb5, r 2 1-1-2
MULHI imm16, R, r 4 1-1-2
MUL R, r,w 4 1-2%e_2
MUL immg, r, w 4 1—2%e_2

User's Manual U12197EJ6VOUM

CHAPTER 5

INSTRUCTIONS

Table 5-10. List of Number of Instruction Execution Clock Cycles (2/3)

Instruction Mnemonic Operand Bytes | Execution Clocks
i—r—1
Arithmetic MULU R rnw 4 1-2%e-2
operation MULU immo, r, w 4 1 =22
(continued) ADD R, r 2 1-1-1
ADD immb, r 2 1-1-1
ADDI imm16, R, r 4 1-1-1
CMP R, r 2 1-1-1
CMP imm5, r 2 1-1-1
SUBR R, r 2 1-1-1
SuB R, r 2 1-1-1
CMQV ccee, R, r,w 4 1-1-1
CMOV ccce, imm5, r, w 4 1-1-1
SASF ccee, r 4 1-1-1
SETF ccee, r 4 1-1-1
Saturated SATSUBR R, r 2 1-1-1
operation SATSUB R, r 2 1-1-1
SATADD R r 2 1-1-1
SATADD imm5, r 2 1-1-1
SATSUBI imm16, R, r 4 1-1-1
Logical NOT R, r 2 1-1-1
operation OR R, r 2 1-1-1
XOR R, r 2 1-1-1
AND R, r 2 1-1-1
TST R, r 2 1-1-1
SHR immb5, r 2 1-1-1
SAR imm5, r 2 1-1-1
SHL imm5, r 2 1-1-1
ORI imm16, R, r 4 1-1-1
XORI imm16, R, r 4 1-1-1
ANDI imm16, R, r 4 1-1-1
SHR R, r 4 1-1-1
SAR R, r 4 1-1-1
SHL R, r 4 1-1-1
ZXB R 2 1-1-1
ZXH R 2 1-1-1
SXB R 2 1-1-1
SXH R 2 1-1-1

User's Manual U12197EJ6VOUM

129

CHAPTER 5 INSTRUCTIONS

Table 5-10. List of Number of Instruction Execution Clock Cycles (3/3)

Instructions Mnemonic Operand Bytes Execution Clocks
i—r—1
Logical BSH r,w 4 1-1-1
operation BSW r,w 4 1-1-1
HSW r, w 4 1-1-1
Branch JMP [R] 2 3-3-3
(Continued) JR disp22 4 2-2-2
JARL disp22, r 4 2-2-2
Bcond disp9 | When condition is satisfied 2 Qeted_ phtoted_ piotes
When condition is not 2 1-1-1
satisfied
Bit SET1 bit#3, disp16 [R] hetes_ Gheres_ ghores
manipulation SET1 r, [R] gheres_ ghoes_ ghotes
CLR1 bit#3, disp16 [R] hetes_ gheres_ ghores
CLR1 r, [R] ghetes_ gheres_ ghetes
NOT1 bit#3, disp16 [R] hetes_ Gheres_ ghotes
NOT1 r, [R] ghetes_ gheres_ ghetes
TSTH bit#3, disp16 [R] hetes_ Gheres_ ghotes
TST1 r, [R] ghetes_ gheres_ ghetes
Special LDSR R, SR 1-1-1
STSR SR, r 1-1-1
SWITCH R 5-5-5

PREPARE list12, imm5 N+1" = N1 N e

PREPARE list12, imm5, sp N+2"" = N+2"e e N4 24

PREPARE list12, imm5, imm16 N+2"°— N2 N+2"'e®

PREPARE list12, imm5, imm32 N+3"" = N+3"°°— N+3""°

DISPOSE immb, list12 N+1"% = N+ N41"e®

DISPOSE imm5, list12, [R] N+3"" = N+3"°°— N+3""°

FNQ I O IO NG FNOR SR NG (SO OO O (O X = SO I O I\ (O NG I (G NGO VO I NG (NG I

CALLT imme6 4—-4-4
CTRET - 3-3-3
TRAP vector 3-3-3
RETI - 3-3-3
HALT - 1-1-1
El - 1-1-1
DI - 1-1-1
NOP - 1-1-1
Undefined instruction code trap 3-3-3

130 User's Manual U12197EJ6VOUM

CHAPTER 5 INSTRUCTIONS

Notes

1.

Depends on the number of wait states (1 if no wait states).

Depends on the number of wait states (2 if no wait states).

1 if r = w (lower 32 bits of results are not written to register) or w = r0 (higher 32 bits of results are
not written to register).

1 if last instruction involves PSW write access.

In case of no wait states (3 + number of read access wait states).

N is the total number of cycles to load registers in list12.

(Depends on the number of wait states, N is the number of registers in list12 if no wait states)

User's Manual U12197EJ6VOUM 131

CHAPTER 5 INSTRUCTIONS

Remarks 1. Operand conventions

Symbol Meaning
R: reg1 General-purpose register (used as source register)
r- reg2 General-purpose register (mainly used as destination register)
w: reg3 General-purpose register (mainly used as remainder or higher 32 bits of multiply results)

SR: System Register

System register

immx: immediate

x-bit immediate

dispx: displacement

x-bit displacement

bit#3: bit number

3-bit data for bit number specification

ep: Element Pointer

Element pointer

B: Byte Byte (8 bits)
H: Half-word Half-word (16 bits)
W: Word Word (32 bits)

ccce: conditions

4-bit data condition code specification

vector 5-bit data for trap vector (00H to 1FH) specification
listx List of registers (x is @ maximum number of registers)
2. Execution clock conventions
Symbol Meaning
i: issue When other instruction is executed immediately after executing an instruction
r: repeat When the same instruction is repeatedly executed immediately after the instruction has been
executed
I: latency When a subsequent instruction uses the result of execution of the preceding instruction immediately

after its execution

132

User's Manual U12197EJ6VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Interrupts are events that occur independently of the program execution and are divided into two types: maskable
and non-maskable interrupts. In contrast, an exception is an event whose occurrence is dependent on the program
execution.

The V850 Series can process various interrupt requests from the on-chip peripheral hardware and external
sources. In addition, exception processing can be started by an instruction (TRAP instruction) and by occurrence of
an exception event (exception trap).

The interrupts and exceptions supported in the V850 Series are described below. When an interrupt or exception
is deleted, control is transferred to a handler whose address is determined by the source of the interrupt or exception.
The source of the event is specified by the exception code that is stored in the exception cause register (ECR). Each
handler analyzes the exception cause register (ECR) and performs appropriate interrupt servicing or exception
processing. The restore PC and PSW are written to the status saving registers (EIPC, EIPSW/FEPC, FEPSW).

To restore execution from interrupt or exception processing, use the RETI instruction.

Read the restore PC and PSW from the status saving register, and transfer control to the restore PC.

® Types of interrupt/exception processing
The V850 Series handles the following four types of interrupts/exceptions.
* Non-maskable interrupts
* Maskable interrupts
* Software exceptions
* Exception traps

User's Manual U12197EJ6VOUM 133

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Table 6-1. Interrupt/Exception Codes

Interrupt/Exception Source Classification Exception Code Handler Restore PC
Name Trigger Address
NMI NMI input Interrupt 0010H 00000010H next PC "**
Maskable interrupt Note 2 Interrupt Note 2 Note 1 next PC "*
TRAPON (n =0 to FH) TRAP instruction Exception 004nH 00000040H next PC
TRAP1n (n =0 to FH) TRAP instruction Exception 005nH 00000050H next PC
ILGOP llegal opcode Exception 0060H 00000060H next PC "***

Notes 1. The higher 16 bits of the handler address are 0000H and the lower 16 bits of the handler address are
the same as the exception code.
2. Differs depending on the type of interrupt.
3. If an interrupt is acknowledged during execution of a DIV/DIVH/DIVU (divide) instruction, the restore
PC becomes the PC value for the currently executed instruction (DIV/DIVH/DIVU).
4. The execution address of the illegal instruction is obtained by “restore PC-4” when an illegal opcode
exception occurs.

The restore PC is the PC saved to EIPC or FEPC when interrupt/exception processing is started. “next PC” is the
PC that starts processing after interrupt/exception processing.

The processing of maskable interrupts is controlled by the user through the interrupt controller (INTC). The INTC
is different for each device in the V850 Series due to variations in on-chip peripherals, interrupt/exception sources
and exception codes.

6.1 Interrupt Servicing

6.1.1 Maskable interrupt

A maskable interrupt can be masked by the interrupt control register.

The interrupt controller (INTC) issues an interrupt request to the CPU, based on the received interrupt with the
highest priority.

If a maskable interrupt occurs due to INT input, the processor performs the following steps, and transfers control
to the handler routine.

Saves restore PC to EIPC.

Saves current PSW to EIPSW.

Writes exception code to lower halfword of ECR (EICC).

Sets ID bit of PSW and clears EP bit.

Sets handler address for each interrupt to PC and transfers control.

~ o~ o~~~
A W N
= L o

$]]
-~

Interrupts are held pending in the interrupt controller (INTC) when one of the following two conditions occurs:
when the interrupt input (INT) is masked by its interrupt controller, or when an interrupt service routine is currently
being executed (when the NP bit of the PSW is 1 or when the ID bit of the PSW is 1). Interrupts are enabled by
clearing the mask condition or by resetting the NP and ID bits of the PSW to 0 with the LDSR instruction, which will
enable servicing of a new or already pending interrupt.

EIPC and EIPSW are used as the status saving registers. These registers must be saved by program to enable
nesting of interrupts because there is only one set of EIPC and EIPSW provided. Bits 31 to 24 of EIPC and bits 31 to
8 of EIPSW are fixed to 0.

Figure 6-1 illustrates how a maskable interrupt is serviced.

134 User's Manual U12197EJ6VOUM

CHAPTER 6

INTERRUPTS AND EXCEPTIONS

Figure 6-1. Maskable Interrupt Servicing Format

INTC acknowledgement

CPU processing

- C INT input)

No

Interrupt request?

Priority higher than No

Is the interrupt
mask released?

that of interrupt currently
being serviced?

Priority higher No

than that of other interrupt
request?

ighest default

priority of interrupt requests No

with the same priority?

- CMaskabIe interrupt request)

C Interrupt request pending)

EIPC -«— Restored PC
EIPSW -— PSW

ECR. EICC -«— Exception code
PSW.EP =0

PSW.ID =1

PC -— Handler address

C Interrupt servicing)

User's Manual U12197EJ6VOUM

Clnterrupt servicing pending)

135

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.1.2 Non-maskable interrupt

A non-maskable interrupt cannot be disabled by an instruction and can therefore always be acknowledged. Non-
maskable interrupts of the V850 Series are generated by NMI input.

When the non-maskable interrupt is generated by NMI input, the processor performs the following steps, and
transfers control to the handler routine.

Saves restore PC to FEPC.

Saves current PSW to FEPSW.

Writes exception code (0010H) to higher halfword of ECR (FECC).

Sets NP and ID bits of PSW and clears EP bit.

Sets handler address (00000010H) for the non-maskable interrupt to PC and transfers control.

~ o~~~ —~
A W

¢]]
-~

Non-maskable interrupts are held pending in the interrupt controller INTC when another non-maskable interrupt is
currently being executed (when the NP bit of the PSW is 1). Non-maskable interrupts are enabled by resetting the
NP bit of the PSW to 0 with the RETI and LDSR instructions, which will enable servicing of a new or already pending
interrupt.

FEPC and FEPSW are used as the status saving registers.

Figure 6-2 illustrates how a non-maskable interrupt is serviced.

Figure 6-2. Non-Maskable Interrupt Servicing Format

- (NMI input)
1 (Non-maskable interrupt request)

INTC acknowledgement

CPU processing

No
PSW.NP =0
Yes
FEPC -«— Restored PC (Interrupt request pending)
FEPSW -— PSW

ECR.FECC -—0010H
PSW.NP =1

PSW.EP =0

PSW.ID -1

PC ~—00000010H

(Interrupt servicing)

136 User's Manual U12197EJ6VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2 Exception Processing

6.2.1 Software exception
A software exception is generated when the CPU executes the TRAP instruction and is always acknowledged.
If a software exception occurs, the CPU performs the following steps, and transfers control to the handler routine.

) Saves restore PC to EIPC.

) Saves current PSW to EIPSW.

Writes exception code to lower 16 bits (EICC) of ECR (interrupt cause).

Sets EP and ID bits of PSW.

Sets handler address (00000040H or 00000050H) for software exception to PC and transfers control.

~ e~~~ —~
A W
= =

$]]
-~

Figure 6-3 illustrates how the software exception is processed.

Figure 6-3. Software Exception Processing Format

Software
exception (TRAP instruction) occurs

EIPC < Restore PC
EIPSW <~ PSW
ECR.EICC < Exception code
PSW.EP — 1

PSW.ID — 1

PC < Handler address

[Exception processing]

Handler address: 00000040H (vector = OnH)
00000050H (vector = 1nH)

User's Manual U12197EJ6VOUM 137

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2.2 Exception trap

An exception trap is an interrupt requested when an instruction is illegally executed. The illegal opcode instruction
code trap (ILGOP: ILIeGal OPcode trap) is the exception trap in the V850 Series.

An illegal opcode instruction has an instruction code with an opcode (bits 10 through 5) of 111111B and sub-
opcodes of 0111B through 1111B (bits 26 through 23) and 0B (bit16). When this kind of an illegal opcode instruction
is executed, an illegal opcode instruction code trap occurs.

Figure 6-4. lllegal Instruction Code

15 13 12 11 10 5 4 0 31 27 26
T

23 22 21 20
T T T T T T T T T T T T T T T T T T

IR
00 1 1
X X X{x x|j1 1 1 11 1]X X X X X|[X X X X X to X XX X X X|X
11 1 1

17 16
I

Remark x: Don’t care
[J: Opcode/sub-opcode

If an exception trap occurs, the CPU performs the following steps, and transfers control to the handler routine.
1) Saves restore PC to DBPC.
2) Saves current PSW to DBPSW.

)
)

3) Sets NP, EP, and ID bits of PSW.
)

(
(
(
(4) Sets handler address (00000060H) for exception trap to PC and transfers control.

Figure 6-5 illustrates how the exception trap is processed.

Figure 6-5. Exception Trap Processing Format

Exception trap
(ILGOP) occurs
DBPC < Restore PC
DBPSW <~ PSW
PSW.NP — 1
PSW.EP — 1
PSW.ID — 1
PC 00000060H

[Exception processing]

The execution address of the illegal instruction is obtained by “restore PC - 4” when an exception trap occurs.
Caution In addition to the defined opcodes and illegal opcodes, there is a range of codes not recognized

by this processor. If an instruction corresponding to these codes is executed, normal operation
is undetermined.

138 User's Manual U12197EJ6VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.3 Restoring from Interrupt/Exception

All restoration from interrupt servicing/exception processing is executed by the RETI instruction.
With the RETI instruction, the processor performs the following steps, and transfers control to the address of the

restore PC.

(1) If the EP bit of the PSW is 0 and the NP bit of the PSW is 1, the restore PC and PSW are read from FEPC and

FEPSW. Otherwise, the restore PC and PSW are read from EIPC and EIPSW.

(2) Control is transferred to the address of the restored PC and PSW.

When execution has returned from exception processing or non-maskable interrupt servicing, the NP and EP bits
of the PSW must be set to the following values by using the LDSR instruction immediately before the RETI
instruction, in order to restore the PC and PSW normally:

To restore from non-maskable interrupt.............cccoe.... NP bit of PSW =1, EP bit=0
To restore from maskable interrupt processing............ NP bit of PSW =0, EP bit=0
To restore from exception processingcccoccvveeene EP bit of PSW = 1

Figure 6-6 illustrates how restoration from an interrupt/exception is performed.

Figure 6-6. Restoration from Interrupt/Exception

RETI instruction

Yes
Restoration
from
exception No
PSW.NP =0
Yes
™| Restoration Restoration from
from maskable pon-maskable
interrupt interrupt
PC < EIPC PC <~ FEPC
PSW < EIPSW PSW < FEPSW
- |

l Jump to PC l

User's Manual U12197EJ6VOUM

139

CHAPTER 7 RESET

When a low-level signal is input to the RESET pin, the system is reset, and all on-chip hardware is initialized.

7.1 Initialization
When a low-level signal is input to the RESET pin, the system is reset, and each hardware register is set in the
status shown in Table 7-1. When the RESET signal goes high, program execution begins. If necessary, initialize the

contents of each register by program control.

Table 7-1. Register Status After Reset

Hardware (Symbol) Status After Reset
Program counter PC 00000000H
Interrupt status saving registers EIPC Undefined
EIPSW Undefined
NMI status saving registers FEPC Undefined
FEPSW Undefined
Exception cause registers (ECR) FECC 0000H
EICC 0000H
Program status word PSW 00000020H
CALLT caller status saving registers CTPC Undefined
CTPSW Undefined
ILGOP caller status saving registers DBPC Undefined
DBPSW Undefined
CALLT base pointer CTBP Undefined
General-purpose registers r0 Fixed to 00000000H
ri to r31 Undefined

7.2 Starting Up

All devices in the V850 Series begin program execution from address 00000000H after reset. No interrupt
requests are acknowledged immediately after reset. To enable interrupts, clear the ID bit of the program status word
(PSW) to 0.

140 User's Manual U12197EJ6VOUM

CHAPTER 8 PIPELINE

The V850 Series is based on RISC architecture and executes almost all instructions in one clock cycle under the
control of a 5-stage pipeline.

The V850E/MS1 includes the VB50E CPU core. The V850E CPU core, by optimizing the pipeline, improves the
CPI (Cycles Per Instruction) rate over the previous V850 CPU core.

The pipeline configuration of the V850E CPU core is shown in Figure 8-1.

Figure 8-1. Pipeline Configuration

Master pipeline
(V850 CPU compatible)

- ID EX DF WB
IF Asynchronous WB pipeline
br/sld L’\V
— plpletl)lne MEM WB
Address calculation Load, store buffer
stage (1 stage each)
IF (instruction fetch): Instruction is fetched and fetch pointer is incremented.
ID (instruction decode): Instruction is decoded, immediate data is generated,
and register is read.
EX (execution of ALU, multiplier, and barrel shifter): The decoded instruction is executed.
MEM (memory access): The memory is accessed at a specified address.
WB (write back): Result of execution is written to register.
DF (data fetch): Execution data is transferred to the WB stage.

User's Manual U12197EJ6VOUM 141

CHAPTER 8 PIPELINE

8.1

1

142

Features
Non-blocking load/store
As the pipeline does not stop during external memory access, efficient processing is possible. For example,
Figure 8-2 shows a comparison of pipeline operations between the V850 CPU and the V850E CPU when the
ADD instruction is executed after the execution of a load instruction for external memory.
Figure 8-2. Non-Blocking Load/Store
| Previous version (V850 CPU)| Pipeline is stopped until MEM stage is complete
Load instruction | IF | 1D | EX 54" "r5 s | WB
ADD instruction IF ID EX MEM| WB
Next instruction IF ID EX |[MEM| WB
V850E CPU Efficient pipeline processing through use of asynchronous WB pipeline
Load instruction | IF | 1D | EX |"31 75 | WB
ADD instruction IF ID | EX | DF | WB
Next instruction IF ID | EX |MEM| WB
Notes 1. The basic bus cycle for the external memory of the V850 is 3 clocks.
2. The basic bus cycle for the external memory of the V850E is 2 clocks.
e V850 CPU
The EX stage of the ADD instruction is usually executed in 1 clock. However, a wait time is generated in the
EX stage of the ADD instruction during execution of the MEM stage of the previous load instruction. This is
because the same stage of the 5 stages on the pipeline cannot be executed in the same internal clock
interval. This also causes a wait time to be generated in the ID stage of the next instruction after the ADD
instruction.
* V850E CPU

An asynchronous WB pipeline for the instructions that are necessary for the MEM stage is provided in addition
to the master pipeline. The MEM stage of the load instruction is therefore processed on this asynchronous
WB pipeline. Because the ADD instruction is processed on the master pipeline, a wait time is not generated,
making it possible to execute instructions efficiently.

User's Manual U12197EJ6VOUM

CHAPTER 8 PIPELINE

(2) 2-clock branch
When executing a branch instruction, the branch destination is decided in the ID stage.
In the case of the conventional V850 CPU, the branch destination of when the branch instruction is executed
was decided after execution of the EX stage, but in the case of the VB50E CPU, due to the addition of an
address calculation stage for branch/short load instructions, the branch destination is decided in the ID stage.
Therefore, it is possible to fetch the branch destination instruction 1 clock faster than in the conventional V850
CPU.
Figure 8-3 shows a comparison between the V850 CPU and the V850E CPU for pipeline operations with branch
instructions.

Figure 8-3. Pipeline Operations with Branch Instructions

Previous version (V850 CPU) 17 Branch destination decided in EX stage

Branch instruction IF ID EX MEMJ- WB .

Branch destination
instruction

V850E CPU 17 Branch destination decided in ID stage

Branch instruction IF ID MEMJ- wWB .

Branch destination

- . IF ID EX | MEM | WB
instruction

(3) Efficient pipeline processing
Because the V850E CPU has an ID stage for branch/short-load instructions in addition to the ID stage on the
master pipeline, it is possible to perform efficient pipeline processing.
Figure 8-4 shows an example of a pipeline operation where the next branch instruction was fetched in the IF
stage of the ADD instruction. The products of the V850 Series are 32-bit single-chip microcontrollers and the
instruction fetch for the on-chip memory is performed in 32-bit (4-byte) units. Both ADD instructions and branch
instructions use a 2-byte length instruction code.

User's Manual U12197EJ6VOUM 143

CHAPTER 8 PIPELINE

144

Figure 8-4. Parallel Execution of Branch Instructions

Previous version (V850 CPU)

ADD instruction | IF ID EX |(MEM)| WB

Branch instruction v IF ID EX |[MEM' WB |
Branch destination instruction IF ID EX | MEM
V850E CPU

ADD instruction IF ID EX DF | WB

Branch instruction ID MEM} WB .

Branch destination instruction IF ID EX | MEM | WB

V850 CPU

Although the instruction codes up to the next branch instruction are fetched in the IF stage of the ADD
instruction, the ID stage of the ADD instruction and the ID stage of the branch instruction cannot operate
together within the same internal clock. Therefore, it takes 5 clocks from the branch instruction fetch to the
branch destination instruction fetch.

V850E CPU

Because V850E CPU has an ID stage for branch/short load instructions in addition to the ID stage on the
master pipeline, the parallel execution of the ID stage of the ADD instruction and the ID stage of the branch
instruction within the same internal clock is possible. Therefore, it takes only 3 clocks from the branch
instruction fetch to the branch destination instruction.

User's Manual U12197EJ6VOUM

CHAPTER 8 PIPELINE

8.2 Outline of Operation

The instruction execution sequence of the V850 Series usually consists of five stages including fetch and write-

back stages.

The execution time of each stage differs depending on the type of the instruction and the type of the memory to be

accessed.

As an example of pipeline operation, Figure 8-5 shows the processing of the CPU when nine standard instructions

are executed in succession.

Figure 8-5. Example of Executing Nine Standard Instructions

Time flow (state)

Internal systemeclock -~~~ [L[~ L [T L L LT LI LI LT LI LI1LJT1LTLT

Processing CPU performs | !

simultaneously @ 0 @ @O @ @ ®
Instruction 1 -+~ (F__ D [EX |MEM |WB : : : : : : :
Instruction 2 <= ---ceeeeeees LIF ID EX |MEM [WB ‘ | | | : ! !
INStruCtion 3 «-«+xcreeerrereeeeeenens IF ID EX |MEM |WB ‘ | | 1 ! !
INStrUCtiON 4 =+ veveverereerereneniaeaennanns IF 1D EX MEM |WB ! ' ! ! !
INSEIUCHION B + v vrerreermermncmneeieiiiiniiiieeans IF 1D EX MEM |WB ! ! ! !
INSEIUCHION B +v=crerrrermecmecenerininiiiiiinnenns beeeeees IF 1D EX MEM |WB ! ! !
INSTIUCHION 7 - vvvrerrrrerernemeneeneieniianaenns [ETTTEEE RRERRER IF ID EX MEM |WB ! !
INSEIUCHON 8 «+ v vevrerermeremnneenniiieniieinnieenns [EEPPRED Beeeenes eeeeees IF ID EX MEM |WB ‘ !
INSTIUCHON O +vvvvevverermnseenneeenaeeennaeennaeenns beveonns beeenens EPEPREE beeeeens ||: ID EX MEM ‘WB ‘

\i | End of ‘ End of | End of ‘ End of ! End of ! End of ! End of ! End of ! End of |

‘|nstruc \lnstruc \InStI'LJC wInStI'LJC L instruc- | instruc- | instruc- | instruc- | instruc- |
tion8 'tion9

‘tion1 !tion2 'tion3 'tion4

tion 5

tion 6

tion 7

Executes instruction every 1 clock cycle

J

1 through 13 in the figure above indicate the states of the CPU. In each state, write-back of instruction n, memory
access of instruction n+1, execution of instruction n+2, decoding of instruction n+3, and fetching of instruction n+4

are simultaneously performed. It takes five clock cycles to process a standard instruction, including fetching and

writeback. Because five instructions can be processed at the same time, however, a standard instruction can be

executed in 1 clock on average.

User's Manual U12197EJ6VOUM

145

CHAPTER 8 PIPELINE

8.3 Pipeline Flow During Execution of Instructions

This section explains the pipeline flow during the execution of instructions.
During instruction fetch (IF stage) and memory access (MEM stage), the internal ROM/flash memory and the internal
RAM are accessed, respectively. In this case, the IF and MEM stages are processed in 1 clock. In all other cases,
the required time for access consists of the fixed access time, with the addition in some cases of the path wait time.
Access times are shown in Figure 8-2 below.

Table 8-1. Access Times (in Clocks)

esource (Bus Width) |internal ROM/Flash Memory| Internal RAM Internal Peripheral /0 | External Memory""®
Stage (32 Bits) (32 Bits) (8/16 Bits) (8/16 Bits)
Instruction fetch 1 1or2 Not possible 2+n
Memory access (MEM) 3 1 3+n 2+n

Note When the external memory type is set to SRAM, I/O.

Remark n: Wait number

8.3.1 Load instructions

(1) LD
W @ @ @ 6 6
[Pipeline] LD instruction | IF 1D EX MEM |WB
Next instruction IF ID EX MEM |WB |

[Description]

execution result is placed immediately after the LD instruction, data wait time occurs.

(2) SLD
W @ 6 W 6 ©
[Pipeline] SLD instruction ||F ID MEM |wB
Next instruction IF ID EX MEM |WB |

[Description]

8.3.2 Store instructions

[Instructions]

[Pipeline]

Store instruction

ST, SST

The pipeline consists of 4 stages, IF, ID, MEM and WB.

D e ® @ ® ®

|IF ID

EX

MEM

WB

Next instruction IF

[Description]

ID

EX

MEM |WB |

performed in the WB stage, because no data is written to registers.

146

User's Manual U12197EJ6VOUM

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. If an instruction using the

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is

CHAPTER 8 PIPELINE

8.3.3 Arithmetic operation instructions (excluding multiply and divide instructions)
(1) Generic arithmetic operation instructions

[Instructions] MOV, MOVEA, MOVHI, ADD, ADDI, CMP, SUB, SUBR, SETF, SASF, CMOV, ZXB, ZXH,
SXB, SXH, BSH, BSW, HSW

©» & 6 @ 6 ®

. . Arithmetic operation
[Pipeline] instruction IF ID EX DF WB
Next instruction IF ID EX MEM |WB |

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF and WB.
(2) Move word instruction

[Instructions] MOV imm32

D @ 6 ®w 6 6 @

. . Arithmetic operation
[Pipeline] instruction IF ID EX1 |EX2 |DF WB
Next instruction IF - ID EX MEM [WB |

—: ldle inserted for wait

[Description] The pipeline consists of 6 stages, IF, ID, EX1, EX2, DF and WB.

8.3.4 Multiply instructions

[Instructions] MULH, MULHI, MUL, MULU

[Pipeline] (a) When next instruction is not multiply instruction
Multiply instruction | IF 1D EX1 |JEX2 |wWB
Next instruction IF ID EX MEM |WB |

(b) When next instruction is multiply instruction

W @ & @ 6 ©

Multiply instruction 1 ||F 1D EX1 EX2 |WB

Multiply instruction 2 IF 1D EX1 EX2 |WB |

[Description] The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB. The EX stage requires 2 clocks,
but the EX1 and EX2 stages can operate independently. Therefore, the number of clocks for
instruction execution is always 1, even if several multiply instructions are executed in a row.
However, if an instruction using the execution result is placed immediately after a multiply
instruction, data wait time occurs.

User's Manual U12197EJ6VOUM 147

CHAPTER 8 PIPELINE

8.3.5 Divide instructions

[Instructions]

[Pipeline]
Divide instruction

Next instruction

DIVH, DIV, DIVU, DIVHU

O @ 6 @

G @ G G @ @

Next to next instruction

—: ldle inserted for wait

[Description]

§s
|IF 1D EX1 |EX2 ” EX34 JEX35 |DF WB
IF - - ‘5 - ID EX MEM |WB
IF ID EX MEM |WB |

EX1 to EX34, DF, and WB.
When a DIVH or DIV instruction is executed, the pipeline consists of 39 stages of IF, ID, EX1
to EX35, DF, and WB.

8.3.6 Logical operation instructions

[Instructions]

Logical operation
instruction

[Pipeline]

Next instruction

[Description]

8.3.7 Saturation operation instructions

[Instructions]

Saturation operation
instruction

[Pipeline]

Next instruction

[Description]

148

NOT, OR, ORI, XOR, XORI, AND, ANDI, TST, SHR, SAR, SHL

W @ ® @ 6 ®

|IF ID

EX

DF

WB

IF

ID

EX

MEM

WB|

SATADD, SATSUB, SATSUBI, SATSUBR

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

W @ B @ 6 ®

|IF

ID

EX

DF

WB

IF

ID

EX

MEM

WB|

User's Manual U12197EJ6VOUM

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

When a DIVU or DIVHU instruction is executed, the pipeline consists of 38 stages of IF, ID,

CHAPTER 8 PIPELINE

8.3.8 Branch instructions
(1) Conditional branch instructions

[Instructions] Bcond instructions (BGT, BGE, BLT, BLE, BH, BNL, BL, BNH, BE, BNE, BV, BNV, BN, BP,
BC, BNC, BZ, BNZ, BSA): Except BR instruction

[Pipeline] (a) When the condition is not realized

Conditional branch ! !
instruction IF__|ID |MEM ,WB _

Next instruction IF 1D EX MEM |WB

(b) When the condition is realized

W @ 6 w &6 & @

Conditional branch CooTm T !

instruction IF 1D MEM 'WB |

Next instruction IF x

Branch destination instruction IF ||D |EX |MEM |WB |

IF x: Instruction fetch that is not executed

[Description] The pipeline consists of 4 stages, IF, ID, MEM, and WB. However, no operation is performed
in the MEM and WB stages, because memory is not accessed and no data is written to
registers.

(a) When the condition is not realized
The number of execution clocks for the branch instruction is 1.

(b) When the condition is realized
The number of execution clocks for the branch instruction is 2. IF stage of the next
instruction of the branch instruction is not executed. If an instruction overwriting the
contents of PSW occurs immediately before a branch instruction execution, condition wait
time occurs.

(2) Unconditional branch instructions
[Instructions] JR, JARL, BR

[Pipeline] O & & @ 6 © @

Unconditional branch | L

instruction IF 1D MEM ,WB* ,

Next instruction IF x

Branch destination instruction IF ||D |EX |MEM |WB |

IF x: Instruction fetch that is not executed
WB *: No operation is performed in the case of the JR instruction, and BR instruction but in
the case of the JARL instruction, data is written to the restore PC.

User's Manual U12197EJ6VOUM 149

CHAPTER 8 PIPELINE

[Description]

The pipeline consists of 4 stages, IF, ID, MEM, and WB. However, no operation is performed
in the MEM and WB stages, because memory is not accessed and no data is written to
registers. However, in the case of the JARL instruction, data is written to the restore PC in the
WB stage. Also, the IF stage of the next instruction of the branch instruction is not executed.

(3) Register indirect branch instructions

[Instructions]

[Pipeline]

[Description]

JMP, CTRET

H @ & @ 6 ® @

Register indirect | !)

branch instruction IF 1D EX MEM 'WB

Next instruction IF x

Branch destination instruction ||F ||D |EX |MEM |

IF x: Instruction fetch that is not executed

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and no data is
written to registers.

(4) Table indirect call instructions

[Instructions]

[Pipeline]

[Description]

CALLT
W @ ® @ & 66 O ©
Table indirect call ! !
instruction ||F 1D MEM |EX MEM ‘WB !
Next instruction IF x
Branch destination instruction |IF |ID |EX |MEM |WB |

IF x: Instruction fetch that is not executed

The pipeline consists of 6 stages, IF, ID, MEM, EX, MEM, and WB. However, no operation is
performed in the second MEM and WB stages, because there is no second memory access
and no data is written to registers.

(5) Table indirect branch instructions

[Instructions]

[Pipeline]

150

SWITCH

Table indirect branch .)

instruction 1D EX1 |MEM |EX2 |M_EM_ JWB

Next instruction IF x

Branch destination instruction | IF | ID | EX |MEM |WB |

IF x: Instruction fetch that is not executed

User's Manual U12197EJ6VOUM

CHAPTER 8 PIPELINE

[Description]

The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2, MEM, and WB. However, no
operation is performed in the second MEM and WB stages, because there is no second
memory access and no data is written to registers.

8.3.9 Bit manipulation instructions

(1) SET1, CLR1, NOT1

[Pipeline]

[Description]

(2) TST1

[Pipeline]

[Description]

SET1, CLR1, NOT1 ||F

instruction

Next instruction

Next to next instruction

W @ 6B @ 6 © O ©
D |Ext|MEM |Ex2 |MEM W_B__:
F |- |- D |EX |MEM |wB
F_ o lex |vem [we |

. ldle inserted for wait

The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2, MEM, and WB. However, no
operation is performed in the WB stage, because no data is written to registers.

In the case of these instructions, the memory access is read modify write, and the EX and
MEM stages require 2 and 2 clocks, respectively.

TST1 instruction | IF

Next instruction

Next to next instruction

W e & ®w 6 o @ 6 ©
D |Exi|MEM |Ex2 M_EI_\/I__:W_B__
F |- |- D |EX |MEM |wB
F_ o lex |vem [we |

. ldle inserted for wait

The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2, MEM, and WB. However, no
operation is performed in the second MEM and WB stages, because there is no second
memory access nor data write to registers.

In the case of this instruction, the memory access is read modify write, and the EX and MEM
stages require 2 and 2 clocks, respectively.

User's Manual U12197EJ6VOUM

151

CHAPTER 8 PIPELINE

8.3.10 Special instructions

(1) LDSR, STSR

[Pipeline]

[Description]

(2) NOP

[Pipeline]

[Description]

©» &® & @ 6 ©

LDSR, STSR
instruction IF 1D EX DF WB
Next instruction IF ID EX MEM |WB |

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB. If the STSR instruction using the
EIPC and FEPC system registers is placed immediately after the LDSR instruction setting
these registers, data wait time occurs.

O @ 6 @ 6 _ ©

NOP instruction |IF ID EX MEM \WB |

Next instruction IF 1D EX MEM |WB

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM and WB stages, because no operation and no memory access is
executed, and no data is written to registers.

(3) EI, DI
[Pipeline] El, DI instruction |IF D |Ex |MEM iwB |
Next instruction IF 1D EX MEM |WB
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and data is not
written to registers.
(4) HALT
[Pipeline]
@ @ @ _@___@_ @ HALT release
HALT | i ' /
instruction IF ID EX MEM_'WB_ ! 5 ¢{
VA
Next instruction IF - [— - | ‘(|— ID EX MEM |WB
V4
Next to next instruction IF 1D EX MEM |WB

[Description]

152

—: Idle inserted for wait
The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the

MEM and WB stages, because memory is not accessed and no data is written to registers.
Also, for the next instruction, the ID stage is delayed until the HALT state is released.

User's Manual U12197EJ6VOUM

CHAPTER 8 PIPELINE

(5) TRAP

[Pipeline]

[Description]

(6) RETI

[Pipeline]

[Description]

H» & 6 @ 6 & O

TRAP instruction | IF

D1 |iD2 |Ex |DF

we |

Next instruction

Jump destination instruction

IF x

|IF |ID

|EX |MEM |WB |

IF x: Instruction fetch that is not executed

ID1: TRAP code detect
ID2: address generate

The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB. The ID stage requires 2
clocks. Also, the IF stage of the next instruction is not executed.

RETI instruction | IF

Next instruction

Jump destination instruction

IF x

D1 |ID2 |Ex MEM 'WB |

|IF |ID

|EX |MEM |WB |

IF x: Instruction fetch that is not executed

ID1: register select
ID2: read EIPC/FEPC

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and no data is
written to registers. The ID stage requires 2 clocks. Also, the IF stage of the next instruction is

not executed.

(7) PREPARE / DISPOSE

[Instructions]

[Pipeline]

PREPARE, DISPOSE

(a) PREPARE or DISPOSE without JMP

@

@ & @

PREPARE, DISPOSE
instruction

Next instruction

Branch destination instruction

—: ldle inserted for wait

User's Manual U12197EJ6VOUM

1D EX MEM ‘l MEM |MEM [MEM JWB
)
IF - - 55 - ID EX MEM |WB
IF ID EX MEM |WB

153

CHAPTER 8 PIPELINE

(b) DISPOSE with JMP

O @ 6 @

DISPOSE instruction ||F 1D EX |MEM |

§s

P4
§$

|MEM |MEM |MEM |WB |

Next instruction IF x

Branch destination instruction

|IF |ID |EX

IF x: Instruction fetch that is not executed
—: Idle inserted for wait

[Description] The pipeline consists of n (Number of register lists) + 4 stages, IF, ID, EX, n + 1 times MEM,

and WB. The MEM stage requires n clocks.

154 User's Manual U12197EJ6VOUM

CHAPTER 8 PIPELINE

8.4 Pipeline Disorder

The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage basically requires 1
clock for processing, but the pipeline may become disordered, causing the number of execution clocks to increase.
This section describes the main causes of pipeline disorder.

8.4.1 Alignment hazard

If the branch destination instruction address is not word aligned (A1=1, A0=0) and is 4 bytes in length, it is
necessary to repeat IF twice in order to align instructions in word units. This is called an align hazard.

Look at this example: The instructions a to e are placed from address XOH, instruction b consists of 4 bytes, and
the other instructions each consist of 2 bytes. In this case, instruction b is placed at X2H (A1=1, A0=0), and is not
word aligned (A1=0, A0=0). Therefore, when this instruction b becomes the branch destination instruction, an align
hazard occurs. When an align hazard occurs, the number of execution clocks of the branch instruction becomes 4.

Figure 8-6. Align Hazard Example

(a) Memory map (b) Pipeline
~— 32 bits —> O @ 6 ® 6 6 o ©)
Branch instruction | IF ID EX |MEM :wB i
Instruc- | Instruc-) S e— e '
X8H [tiond [tion e Next instruction IF x
Branch destination instruction IF1 |||:2 D EX MEM |wB
Instruc- | Instruc- (instruction b) = 0 Ex VEM TWB
X4H |tionb ltion ¢ Branch destination's next instruction (instruction c)
XOH Instruc- | Instruc-
fona Lionb IF «: Instruction fetch that is not executed

IF1: First instruction fetch that occurs during align hazard. It is a 2-
Address of branch destination byte fetch that fetches the 2 bytes on the lower address of
instruction (instruction b)
instruction b.
IF2: Second instruction fetch that occurs during align hazard. It is
normally a 4-byte fetch that fetches the 2 bytes on the upper
address of instruction b in addition to instruction ¢ (2-byte

length).

Align hazards can be prevented through the following handling in order to obtain faster instruction execution.

¢ Use 2-byte branch destination instruction.
* Use 4-byte instructions placed at word boundaries (A1=0, A0=0) for branch destination instructions.

User's Manual U12197EJ6VOUM 155

CHAPTER 8 PIPELINE

8.4.2 Referencing execution result of load instruction

For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the
contents of the same register are used by the instruction immediately after the load instruction, it is necessary to
delay the use of the register by this later instruction until the load instruction has finished using that register. This is
called a hazard. The V850 Series has an interlock function that causes the CPU to automatically handle this hazard
by delaying the ID stage of the next instruction.

The V850 Series also has a short path that allows the data read during the MEM stage to be used in the ID stage
of the next instruction. This short path allows data to be read with the load instruction during the MEM stage and the
use of this data in the ID stage of the next instruction with the same timing.

As a result of the above, when using the execution result in the instruction following immediately after, the number
of execution clocks of the load instruction is 2.

Figure 8-7. Example of Execution Result of Load Instruction

O o 6 o 6 ®® O & 0

Load instruction 1

(LD [R4], R6) b |ex [mem, [ws

Instruction 2 (ADD 2, R6) IF IL ID Y |EX MEM |WB

Instruction 3 IF - ID EX MEM |(WB
Instruction 4 IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function
—: Idle inserted for wait
¢: Short path

As described in Figure 8-7, when an instruction placed immediately after a load instruction uses its execution
result, a data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in
execution speed can be avoided by placing instructions that use the execution result of a load instruction at least 2
instructions after the load instruction.

8.4.3 Referencing execution result of multiply instruction

For multiply instructions (MULH, MULHI), the operation result is saved to the register in the WB stage. Therefore,
if the contents of the same register are used by the instruction immediately after the multiply instruction, it is
necessary to delay the use of the register by this later instruction until the multiply instruction has ended using that
register (occurrence of hazard).

The V850 Series interlock function delays the ID stage of the instruction following immediately after. A short path
is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s operation result to
be used in the ID stage of the instruction following immediately after with the same timing.

Figure 8-8. Example of Execution Result of Multiply Instruction

@ & ® 66 ©® © ©® o

Multiply instruction 1

(MULH 3, R6) |IF ID Ex1 |Ex2 , |[wB

Instruction 2 (ADD 2, R6) IF IL ID Y |EX MEM |WB

Instruction 3 IF — ID EX MEM (WB
Instruction 4 IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function
—: Idle inserted for wait
¢: Short path

156 User's Manual U12197EJ6VOUM

CHAPTER 8 PIPELINE

As described in Figure 8-8, when an instruction placed immediately after a multiply instruction uses its execution
result, a data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in
execution speed can be avoided by placing instructions that use the execution result of a multiply instruction at least
2 instructions after the multiply instruction.

8.4.4 Referencing execution result of LDSR instruction for EIPC and FEPC

When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately after
referencing the same system registers with the STSR instruction, the use of the system registers for the STSR
instruction is delayed until the setting of the system registers with the LDSR instruction is completed (occurrence of
hazard).

The V850 Series interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an STSR
instruction following immediately after, the number of execution clocks of the LDSR instruction becomes 3.

Figure 8-9. Example of Execution Result of LDSR Instruction for EIPC and FEPC

LDSR instruction @ @ @ @ @ @ @ @

(sLTDsSRR R6, 0) Nete [|F ID EX |MEM |wB

instruction

(STSR 0, R7) Note IF IL IL ID EX MEM |WB

Next instruction IF - - ID EX MEM |WB

Next to next instruction IF ID EX MEM (WB

IL: Idle inserted for data wait by interlock function
—: Idle inserted for wait

Note System register 0 used for the LDSR and STSR instructions designates EIPC.

As described in Figure 8-9, when an STSR instruction is placed immediately after an LDSR instruction that uses
the operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the interlock
function causes a data wait time to occur, and the execution speed is lowered. This drop in execution speed can be
avoided by placing STSR instructions that reference the execution result of the preceding LDSR instruction at least 3
instructions after the LDSR instruction.

8.4.5 Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised by
observing the following cautions.

¢ Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions after the
load instruction.

* Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2 instructions
after the multiply instruction.

* If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the LDSR
instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

* For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at the word
boundary.

User's Manual U12197EJ6VOUM 157

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL

This appendix shows a list of the instruction mnemonics described previously.
These instruction mnemonics are listed in alphabetical order for easy reference.

ORDER)

Instruction Operand Format cY ov S 4 SAT
Mnemonic
Convention
ADD regi, reg2 * * * * -
Instruction Operand Indicates Describes
Mnemonic Name Instruction Format Movement of Flags
\ 4
Name Meaning
regi General-purpose register (used as source register)
reg2 General-purpose register (mainly used as destination register. Some are also used as
source registers)
reg3 General-purpose register (stores mainly division reminder and higher 32 bits of
multiplication results)

bit#3 3-bit data for bit number specification
immx x-bit immediate
dispx x-bit displacement
reglD system register number
vector Trap handler address corresponding to trap vector
ccee 4-bit data for 4-bit condition code specification
listx List of registers (x is @ maximum number of registers)

\4

Identifier Meaning

0 Reset (to 0)

* Set (to 1) or reset (to 0) according to instruction execution result

- No change

158 User's Manual U12197EJ6VOUM

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (1/12)

Instruction
Mnemonic

Operand

Format

Cy oV S Z SAT

Instruction Function

ADD

ADD

ADDI

AND

ANDI

Bcond

BSH

BSW

CALLT

CLR1

regl, reg2

immb5, reg2

imm16, reg1, reg2

regi, reg2

imm16, reg1, reg2

disp9

reg2, reg3

reg2, reg3

imm6

bit#3, disp16
[regl]

\

\

X1

Xl

VIl

User's Manual U12197EJ6VOUM

Add. Adds the word data of reg1 to the word
data of reg2, and stores the result in reg2.

Add. Adds the 5-bit immediate data, sign-
extended to word length, to the word data of
reg2, and stores the result in reg2.

Add Immediate. Adds the 16-bit immediate
data, sign-extended to word length, to the word
data of reg1, and stores the result in reg2.

And. ANDs the word data of reg2 with the word
data of reg1, and stores the result in reg2.

And. ANDs the word data of reg1 with the 16-bit
immediate data, zero-extended to word length,
and stores the result in reg2.

Branch on Condition Code. Tests a condition
flag specified by an instruction. Branches if the
specified condition is satisfied; otherwise,
executes the next instruction. The branch
destination PC holds the sum of the current PC
value and 9-bit displacement which is the 8-bit
immediate shifted 1 bit and sign-extended to
word length.

Byte Swap Halfword. Performs endian
conversion.

Byte Swap Word. Performs endian conversion.

Call with Table Look Up. Based on CTBP
contents, updates PC value and transfers
control.

Clear Bit. Adds the data of reg1 to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Then clears the bit
specified by the instruction bit field, of the byte
data referenced by the generated address.

159

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (2/12)

Instruction
Mnemonic

Operand

Format

CYy Ov S Z SAT

Instruction Function

CLR1

CMOV

CMOV

CMP

CMP

CTRET

DI

DISPOSE

160

reg2 [reg1]

ccce, regl, reg2, reg3

cccce, immb, reg2, reg3

regi, reg2

imm5, reg2

immb5, list12

Xl

Xl

XIll

User's Manual U12197EJ6VOUM

Clear Bit. First, reads the data of reg1 to
generate a 32-bit address. Then clears the bit
specified by the data of lower 3 bits of reg2 of
the byte data referenced by the generated
address.

Conditional Move. Reg3 is set to reg1 if the
condition specified by condition code “cccc” is
satisfied; otherwise, set to the data of reg2.

Conditional Move. Reg3 is set to the data of 5-
immediate, sign-extended to word length, if the
condition specified by condition code “cccc” is

satisfied; otherwise, set to the data of reg2.

Compare. Compares the word data of reg2 with
the word data of reg1, and indicates the result
by using the condition flags. To compare, the
contents of reg1 are subtracted from the word
data of reg2.

Compare. Compares the word data of reg2 with
the 5-bit immediate data, sign-extended to
word-length, and indicates the result by using
the condition flags. To compare, the contents of
the sign-extended immediate data are
subtracted from the word data of reg2.

Restore from CALLT. Fetches the restore PC
and PWS from the appropriate system register
and restores from the routine called by CALLT.

Disables Interrupt. Sets the ID flag of the PSW
to 1 to disable the acknowledgement of
maskable interrupts; interrupts are immediately
disabled at the start of this instruction
execution.

Function Dispose. Adds the data of 5-bit
immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pops
(loads data from the address specified by sp
and adds 4 to sp) the general-purpose registers
listed in list12.

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (3/12)

Instruction Operand Format CY OV S Z SAT Instruction Function
Mnemonic
DISPOSE immb, list12, [reg1] Xl - - - - - Function Dispose. Adds the data of 5-bit

immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pops
(load data from the address specified by sp and
adds 4 to sp) the general-purpose registers
listed in list12, transfers control to the address
specified by reg1.

DIV regi, reg2, reg3 Xl - * * * - Divide Word. Divides the word data of reg2 by
the word data of reg1, and stores the quotient in
reg2 and the remainder in reg3. In the case of
division by 0, overflow occurs and the quotient
is undefined.

DIVH regl, reg2 | - * - Divide Halfword. Divides the word data of reg2
by the lower halfword data of reg1, and stores
the quotient in reg2.

DIVH regi, reg2, reg3 Xl - * * * - Divide Halfword. Divides word data of reg2 by
lower halfword data of reg1, and stores the
quotient in reg2 and the remainder in reg3.

DIVHU regi, reg2, reg3 Xl - * - Divide Halfword Unsigned. Divides word data of
reg2 by lower halfword data of reg1, and stores
the quotient in reg2 and the remainder in reg3.

DIVU regi, reg2, reg3 Xl - * * * - Divide Word Unsigned. Divides the word data of
reg2 by the word data of reg1, and stores the
quotient in reg2 and the remainder in reg3.

El - X - - - - - Enable Interrupt. Resets the ID flag of the PSW
to 0 and enables the acknowledgement of
maskable interrupts at the beginning of the next
instruction.

HALT - X - - - - — Halt. Stops the operating clock of the CPU and
places the CPU in the HALT mode.

HSW reg2, reg3 Xl * 0 * * - Halfword Swap Word. Performs endian
conversion.
JARL disp22, reg2 \ - - - - - Jump and Register Link. Saves the current PC

value plus 4 to general register reg2, adds a 22-
bit displacement, sign-extended to word length,
to the current PC value, and transfers control to
the PC. Bit 0 of the 22-bit displacement is
masked by 0.

User's Manual U12197EJ6VOUM 161

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (4/12)

Instruction
Mnemonic

Operand

Format

CY ov S Z SAT

Instruction Function

JMP

JR

LD.B

LD.H

LD.W

LD.BU

LD.HU

LDSR

162

[reg1]

disp22

disp16 [reg1], reg2

disp16 [reg1], reg2

disp16 [reg1], reg2

disp16 [reg1], reg2

disp16 [reg1], reg2

reg2, reglD

Vil

\ll

\ill

Vi

\ll

User's Manual U12197EJ6VOUM

Jump Register. Transfers control to the
address specified by reg1. Bit 0 of the address
is masked by 0.

Jump Relative. Adds a 22-bit displacement,
sign-extended to word length, to the current PC
value, and transfers control to the PC. Bit 0 of
the 22-bit displacement is masked by 0.

Byte Load. Adds the data of reg1 to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Byte data is read
from the generated address, sign-extended to
word length, and then stored in reg2.

Halfword Load. Adds the data of reg1 to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Halfword data is read
from this 32-bit address with bit 0 masked by 0,
sign-extended to word length, and stored to
reg2.

Word Load. Adds the data of reg1 to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Word data is read
from this 32-bit address with bits 0 and 1
masked by 0, and stored in reg2.

Unsigned Byte Load. Adds the data of reg1 and
the 16-bit displacement sign-extended to word
length, and generates a 32-bit address. Then
reads the byte data from the generated address,
zero-extends it to word length, and stores it in
reg2.

Unsigned Halfword Load. Adds the data of reg1
and the 16-bit displacement sign-extended to
word length to generate a 32-bit address. Reads
the halfword data from the address masking bit
0 of this 32-bit address by 0, zero-extends it to
word length, and stores it in reg2.

Load to System Register. Set the word data of
reg2 to a system register specified by regID. If
reglD is PSW, the values of the corresponding
bits of reg2 are set to the respective flags of the
PSW.

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (5/12)

Instruction
Mnemonic

Operand

Format

Cy oV S Z SAT

Instruction Function

MOV

MOV

MOV

MOVEA

MOVHI

MUL

MUL

MULH

MULH

MULHI

MULU

regl, reg2

immb5, reg2

imm32, reg1

imm16, reg1, reg2

imm16, reg1, reg2

regl, reg2, reg3

imm9, reg2, reg3

regi, reg2

immb5, reg2

imm16, reg1, reg2

regl, reg2, reg3

Vi

Vi

\

Xl

Xl

Xl

User's Manual U12197EJ6VOUM

Move. Transfers the word data of reg1 to reg2.

Move. Transfers the value of a 5-bit immediate
data, sign-extended to word length, to reg2.

Move. Transfers the 32-bit immediate data to
regi.

Move Effective Address. Adds a 16-bit
immediate data, sign-extended to word length,
to the word data of reg1, and stores the result in
reg2.

Move High Halfword. Adds word data, in which
the higher 16 bits are defined by the 16-bit
immediate data while the lower 16 bits are set
to 0, to the word data of reg1 and stores the
result in reg2.

Multiply Word. Multiplies the word data of reg2
by the word data of reg1, and stores the result
in reg2 and reg3 as double-word data.

MultiplyWord. Multiplies the word data of reg2
by the 9-bit immediate data sign-extended to
word length, and stores the result in reg2 and
reg3.

Multiply Halfword. Multiplies the lower halfword
data of reg2 by the lower halfword data of reg1,
and stores the result in reg2 as word data.

Multiply Halfword. Multiplies the lower halfword
data of reg2 by a 5-bit immediate data, sign-
extended to halfword length, and stores the
result in reg2 as word data.

Multiply Halfword Immediate. Multiplies the
lower halfword data of reg1 by a 16-bit
immediate data, and stores the result in reg2.

Multiply Word Unsigned. Multiplies the word
data of reg2 by the word data of reg1, and
stores the result in reg2 and reg3 as double-
word data. reg1 is not affected.

163

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (6/12)

Instruction
Mnemonic

Operand Format

CYy Ov S Z SAT

Instruction Function

MULU

NOP

NOT

NOT1

NOT1

OR

ORI

PREPARE

PREPARE

164

imm9, reg2, reg3 Xl

regl, reg2

bit#3, disp16 [reg1] VI

reg2 [reg1] IX

regi, reg2

imm16, reg1, reg2 Vi

list12, imm5 Xl

list12, imm5, sp/imm Xl

User's Manual U12197EJ6VOUM

Multiply Word Unsigned. Multiplies the word
data of reg2 by the 9-bit immediate data sign-
extended to word length, and store the result in
reg2 and reg3.

No Operation.

Not. Logically negates (takes 1’s complement
of) the word data of reg1, and stores the result
in reg2.

Not Bit. First, adds the data of reg1 to a 16-bit
displacement, sigh-extended to word length, to
generate a 32-bit address. The bit specified by
the 3-bit field “bbb” is inverted at the byte data
location referenced by the generated address.

Not Bit. First, reads reg1 to generate a 32-bit
address. The bit specified by the lower 3 bits of
reg2 of the byte data of the generated address
is inverted.

Or. ORs the word data of reg2 with the word
data of reg1, and stores the result in reg2.

Or Immediate. ORs the word data of reg1 with
the 16-bit immediate data, zero-extended to
word length, and stores the result in reg2.

Function Prepare. The general-purpose register
displayed in list12 is saved (4 is subtracted from
sp, and the data is stored in that address). Next,
the data is logically shifted 2 bits to the left, and
the 5-bit immediate data zero-extended to word
length is subtracted from sp.

Function Prepare. The general-purpose register
displayed in list12 is saved (4 is subtracted from
sp, and the data is stored in that address). Next,
the data is logically shifted 2 bits to the left, and
the 5-bit immediate data zero-extended to word
length is subtracted from sp. Then, the data
specified by the third operand is loaded to ep.

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (7/12)

Instruction
Mnemonic

Operand

Format

Cy Ov S Z SAT

Instruction Function

RETI

SAR

SAR

SASF

SATADD

SATADD

regl, reg2

imm5, reg2

cccece, reg2

reg1, reg2

immb5, reg2

User's Manual U12197EJ6VOUM

Return from Trap or Interrupt. Reads the restore

PC and PSW from the appropriate system
register, and restores from an exception or
interrupt routine.

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions,
where ‘n’ is specified by the lower 5 bits of reg1
(the MSB prior to shift execution is copied and
set as the new MSB), and then writes the result
to reg2.

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions
specified by the lower 5-bit immediate data,
zero-extended to word length (the MSB prior to
shift execution is copied and set as the new
MSB), and then writes the result to reg2.

Shift and Set Flag Condition. Reg?2 is logically
shifted left by 1, and its LSB is set to 1 if the
condition specified by condition code “cccc” is
satisfied; otherwise, LSB is set to 0.

Saturated Add. Adds the word data of reg1 to
the word data of reg2, and stores the result in
reg2. However, if the result exceeds the
maximum positive value, the maximum positive
value is stored in reg2; if the result exceeds the
maximum negative value, the maximum
negative value is stored in reg2. The SAT flag is
setto 1.

Saturated Add. Adds the 5-bit immediate data,
sign-extended to word length, to the word data
of reg2, and stores the result in reg2. However,
if the result exceeds the maximum positive
value, the maximum positive value is stored in
reg2; if the result exceeds the maximum
negative value, the maximum negative value is
stored in reg2. The SAT flag is set to 1.

165

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (8/12)

Instruction
Mnemonic

Operand

Format

Instruction Function

SATSUB

SATSUBI

SATSUBR

SETF

SET1

SET1

166

regi, reg2

imm16, reg1, reg2

regi, reg2

cccece, reg2

bit#3, disp16 [reg1]

reg2, [reg1]

Vi

VIl

User's Manual U12197EJ6VOUM

Saturated Subtract. Subtracts the word data of
reg1 from the word data of reg2, and stores the
result in reg2. However, if the result exceeds
the maximum positive value, the maximum
positive value is stored in reg2; if the result
exceeds the maximum negative value, the
maximum negative value is stored in reg2. The
SAT flag is set to 1.

Saturated Subtract Immediate. Subtracts a 16-
bit immediate data, sign-extended to word
length, from the word data of reg1, and stores
the result in reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored in reg2; if the
result exceeds the maximum negative value,
the maximum negative value is stored in reg2.
The SAT flag is set to 1.

Saturated Subtract Reverse. Subtracts the word
data of reg2 from the word data of reg1, and
stores the result in reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored in reg2; if the
result exceeds the maximum negative value,
the maximum negative value is stored in reg2.
The SAT flag is set to 1.

Set Flag Condition. The reg2 is set to 1 if the
condition specified by condition code "cccc" is
satisfied; otherwise, a 0 is stored in the register.

Set Bit. First, adds a 16-bit displacement, sign-
extended to word length, to the data of reg1 to
generate a 32-bit address. The bits, specified by
the 3-bit field “bbb”, are set at the byte data
location specified by the generated address.

Set Bit. First, reads the data of general-purpose
register reg1 to generate a 32-bit address. The
bit specified by the data of the lower 3 bits of
reg2 is set at the byte data location referenced
by the generated address.

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (9/12)

Instruction Operand Format CY OV S Z SAT Instruction Function
Mnemonic
SHL regi, reg2 IX * 0 * * - Shift Logical Left. Logically shifts the word data

of reg2 to the left by ‘n’ positions (0 is shifted to
the LSB side), where ‘n’ is specified by the
lower 5 bits of reg1, and then writes the result to
reg2.

SHL immb5, reg2] * 0 * * - Shift Logical Left. Logically shifts the word data
of reg2 to the left by ‘n’ positions (0 is shifted to
the LSB side), where ‘n’ is specified by a 5-bit
immediate data, zero-extended to word length,
and then writes the result to reg2.

SHR regi, reg2 IX * 0 * * - Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by the lower 5 bits of reg1, and then writes the
result to reg2.

SHR immb5, reg2] * 0 * * - Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by a 5-bit immediate data, zero-extended to
word length, and then writes the result to reg2.

SLD.B disp7 [ep], reg2 \% - - - - - Byte Load. Adds the 7-bit displacement, zero-
extended to word length, to the element pointer
to generate a 32-bit address. Byte data is read
from the generated address, sign-extended to
word length, and then stored in reg2.

SLD.H disp8 [ep], reg2 1\ - - - - - Halfword Load. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address. Halfword
data is read from this 32-bit address with bit O
masked by 0, sign-extended to word length, and
stored in reg2.

SLD.W disp8 [ep], reg2 1\ - - - - - Word Load. Adds the 8-bit displacement, zero-
extended to word length, to the element pointer
to generate a 32-bit address. Word data is read
from this 32-bit address with bits 0 and 1
masked by 0, and stored in reg2.

User's Manual U12197EJ6VOUM 167

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (10/12)

Instruction
Mnemonic

Operand

Format

Instruction Function

SLD.BU

SLD.HU

SST.B

SST.H

SST.W

ST.B

ST.H

168

disp4 [ep], reg2

disp5 [ep], reg2

reg2, disp7 [ep]

reg2, disp8 [ep]

reg2, disp8 [ep]

reg2, disp16 [regi]

reg2, disp16 [regi]

Vil

Vil

User's Manual U12197EJ6VOUM

Unsigned Byte Load. Adds the 4-bit
displacement, zero-extended to word length, to
the element pointer to generate a 32-bit
address. Byte data is read from the generated
address, zero-extended to word-length, and
stored in reg2.

Unsigned Halfword Load. Adds the 5-bit
displacement, zero-extended to word length, to
the element pointer to generate a 32-bit
address. Halfword data is read from this 32-bit
address with bit 0 masked by 0, zero-extended
to word-length, and stored in reg2.

Byte Store. Adds the 7-bit displacement, zero-
extended to word length, to the element pointer
to generate a 32-bit address, and stores the
data of the lowest byte of reg2 in the generated
address.

Halfword Store. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address, and stores
the lower halfword of reg2 in the generated 32-
bit address with bit 0 masked by 0.

Word Store. Adds the 8-bit displacement, zero-
extended to word length, to the element pointer
to generate a 32-bit address, and stores the
word data of reg2 in the generated 32-bit
address with bits 0 and 1 masked by 0.

Byte Store. Adds the 16-bit displacement, sign-
extended to word length, to the data of reg1 to
generate a 32-bit address, and stores the lowest
byte data of reg2 in the generated address.

Halfword Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
reg1 to generate a 32-bit address, and stores
the lower halfword of reg2 in the generated 32-
bit address with bit 0 masked by 0.

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (11/12)

Instruction Operand Format CY OV S Z SAT Instruction Function
Mnemonic
ST.W reg2, disp16 [reg1] VIl - - - - - Word Store. Adds the 16-bit displacement, sign-

extended to word length, to the data of reg1 to
generate a 32-bit address, and stores the word
data of reg2 in the generated 32-bit address
with bits 0 and 1 masked by 0.

STSR reglD, reg2 IX - - - - - Store Contents of System Register. Stores the
contents of the system register specified by
reglD in reg2.

SUB regl, reg2 * * * * - Subtract. Subtracts the word data of reg1 from
the word data of reg2, and stores the result in
reg2.

SUBR reg1, reg2 * * * * - Subtract Reverse. Subtracts the word data of
reg2 from the word data of reg1, and stores the
result in reg2.

SWITCH regi - - - - - Jump with Table Look Up. Adds the table entry
address (address following the SWITCH
instruction) and data of reg1 logically shifted to
the left by 1 bit, and loads the halfword entry
data specified by the table entry address. Next,
logically shifts to the left by 1 bit the loaded
data, and after sign-extending it to word length,
branches to the target address added to the
table entry address (instruction following the
SWITCH instruction).

SXB regi - - - - - Sign Extend Byte. Sign-extends the lowermost
byte of reg1 to word length.

SXH regi - - - - - Sign Extend Halfword. Sign-extends lower
halfword of reg1 to word length.

TRAP vector X - - - - — Trap. Saves the restore PC and PSW to EIPC
and EIPSW, respectively; sets the exception
code (EICC and ECR) and the flags of the PSW
(EP and ID flags); jumps to the address of the
trap handler corresponding to the trap vector
specified by vector number (0 to 31), and starts
exception processing.

TST regl, reg2 - 0 * * - Test. ANDs the word data of reg2 with the word
data of reg1. The result is not stored, and only
the flags are changed.

User's Manual U12197EJ6VOUM 169

APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonics (in Alphabetical Order) (12/12)

Instruction
Mnemonic

Operand

Format

CYy Ov S Z SAT

Instruction Function

TSTH

TSTH

XOR

XORI

ZXB

ZXH

170

bit#3, disp16 [reg1]

reg2, [reg1]

regi, reg2

imm16, reg1, reg2

regi

reg1

Vil

Vi

User's Manual U12197EJ6VOUM

Test Bit. Adds the data of reg1 to a 16-bit
displacement, sigh-extended to word length, to
generate a 32-bit address. Performs the test on
the bit specified by the 3-bit field “bbb” at the
byte data location referenced by the generated
address. If the specified bit is 0, the Z flag is set
to 1; if the bit is 1, the Z flag is reset to 0. The
byte data, including the specified bit, is not
affected.

Test Bit. First, reads the data of reg1 to
generate a 32-bit address. If the bits indicated
by the lower 3 bits of reg2 of the byte data of
the generated address are 0, the Z flag is set,
and if they are 1, reset is performed.

Exclusive Or. Exclusively ORs the word data of
reg2 with the word data of reg1, and stores the
result in reg2.

Exclusive Or Immediate. Exclusively ORs the
word data of reg1 with a 16-bit immediate data,
zero-extended to word length, and stores the
result in reg2.

Zero Extend Byte. Zero-extends to word length
the lowest byte of reg1.

Zero Extend Halfword. Zero-extends to word
length the lower halfword of reg1.

APPENDIX B

Table B-1. Mnemonic List (1/2)

INSTRUCTION LIST

Mnemonic Function Mnemonic Function
Load/store SAR Shift Arithmetic Right
BSH Byte Swap Half-word
LD.B Load Byte BSW Byte Swap Word
LD.H Load Half-word HSW Half-word Swap Word
LD.W Load Word
LD.BU Load Byte Unsigned (2-operand immediate)
LD.HU Load Half-word Unsigned
SLD.B Load Byte MOV Move
SLD.H Load Half-word ADD Add
SLD.W Load Word CMP Compare
SLD.BU Load Byte Unsigned SATADD Saturated Add
SLD.HU Load Half-word Unsigned SETF Set Flag Condition
ST.B Store Byte SHL Shift Logical Left
ST.H Store Half-word SHR Shift Logical Right
ST.W Store Word SAR Shift Arithmetic Right
SST.B Store Byte SASF Shift and Set Flag Condition
SST.H Store Half-word
SST.W Store Word (3-operand register)
Integer arithmetic operation/logical MUL Multiply Word
operation/
saturated operation MULU Multiply Word Unsigned
(1-operand register) DIVH Divide Half-word
DIV Divide Word
ZXB Zero Extended Byte DIVHU Divide Half-word Unsigned
ZXH Zero Extended Half-word DIVU Divide Word Unsigned
SXB Sign Extended Byte
SXH Sign Extended Half-word (3-operand immediate)
(2-operand register) MOVHI Move High Half-word
MOVEA Move Effective Address
MOV Move ADDI Add Immediate
ADD Add MULHI Multiply Half-word Immediate
SuUB Subtract SATSUBI Saturated Subtract Immediate
SUBR Subtract Reverse ORI Or Immediate
MULH Multiply Half-word ANDI And Immediate
DIVH Divide Half-word XORI Exclusive Or Immediate
CMP Compare MUL Multiply Word
SATADD Saturated Add MULU Multiply Word Unsigned
SATSUB Saturated Subtract
SATSUBR Saturated Subtract Reverse Branch
TST Test
OR Or JMP Jump Register
AND And JR Jump Relative
XOR Exclusive Or JARL Jump and Register Link
NOT Not Bcond Branch on Condition Code
SHL Shift Logical Left
SHR Shift Logical Right

User's Manual U12197EJ6VOUM

171

APPENDIX B INSTRUCTION LIST

Table B-1. Mnemonic List (2/2)

Mnemonic Function
Bit manipulation
SET1 Set Bit
CLR1 Clear Bit
NOT1 Not Bit
TST1 Test Bit
Special
LDSR Load System Register
STSR Store System Register
TRAP Trap
RETI Return from Trap or Interrupt
HALT Halt
DI Disable Interrupt
El Enable Interrupt
NOP No Operation
SWITCH Jump with Table Look Up
PREPARE Function Prepare
DISPOSE Function Dispose
CALLT Call with Table Look Up
CTRET Return from CALLT

172 User's Manual U12197EJ6VOUM

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction Set (1/2)

Instruction Instruction Format Format Remarks
Code
b10 eeeeb5
000000 MOV reg1, reg2 When reg1, reg2 = 0, NOP
000001 NOT reg1, reg2
000010 DIHV reg1, reg2
000010 SWITCH regi
000011 JMP [reg1]
000101 SATSUBR regi, reg2
000100 ZXB regi
000101 SATSUB regl, reg2
000101 SXB regi
000110 SATADD regl, reg2
000110 ZXH regi
000111 MULH regl, reg2
001100 SXH regi
001000 OR regl, reg2
001001 XOR regl, reg2
001010 AND regl, reg2
001011 TST regl, reg2
001100 SUBR regl, reg2
001101 SuB regl, reg2
001110 ADD regl, reg2
001111 CMP regl, reg2
010000 MOV immb5, reg2 1]
010001 SATADD immb5, reg2
01000X CALLT imm6
010010 ADD immb5, reg2
010011 CMP immb5, reg2
010100 SHR immb5, reg2
010101 SAR immb5, reg2
010110 SHL immb5, reg2
010111 MULH immb5, reg2
000011 SLD.BU disp4 [ep], reg2 v
000011 SLD.HU disp5 [ep], reg2
0110XX SLD.B disp7 [ep], reg2
0111XX SST.B reg2, disp7 [ep]
1000XX SLD.H disp8 [ep], reg2
1001XX SST.H reg2, disp8 [ep]
1010XX SLD.W disp8 [ep], reg2
1010XX SST.W reg2, disp8 [ep]
1011XX Bcond disp9 1l
110000 ADDI imm16, reg, reg2 \
110001 MOVEA imm16, reg1, reg2
110001 MOV imm32, reg1
110010 MOVHI imm16, reg1, reg2
110011 SATSUBI imm16, reg1, reg2
110100 ORI imm16, reg1, reg2
110101 XORI imm16, reg1, reg2
110110 ANDI im16, reg1, reg2
110111 MULHI imm16, reg1, reg2
User's Manual U12197EJ6VOUM 173

APPENDIX B INSTRUCTION LIST

Table B-2. Instruction Set (2/2)

Instruction Instruction Format Format Remarks
Code
b10 eeeeb5
111000 LD.B disp16 [reg1], reg2 VIl
111001 LD.H disp16 [reg1], reg2
111010 LD.W disp16 [reg1], reg2
111010 ST.B reg2, disp16 [reg1]
111011 ST.H reg2, disp16 [reg1]
111011 ST.W reg2, disp16 [reg1]
11110X LD.BU disp16 [reg1], reg2
111111 LD.HU disp16 [reg1], reg2
11110X JARL disp22, reg2 \ When reg2 = 0, JR disp22
111110 SET1 bit#3, disp16 [reg1] VIl
111110 CLR1 bit#3, disp16 [reg1]
111110 NOT1 bit#3, disp16 [reg1]
111110 TSTH bit#3, disp16 [reg1]
111111 SETF ccce, reg2 IX
111111 LDSR reg2, reglD
111111 STSR reglD, reg2
111111 SHR regi, reg2
111111 SAR regi, reg2
111111 SHL regi, reg2
111111 SASF cccc, reg2
111111 CLR1 reg2, [reg1]
111111 NOT1 reg2, [reg1]
111111 SET1 reg2, [reg1]
111111 TSTH reg2, [reg1]
111111 TRAP vector X
111111 HALT
111111 RETI
111111 DI
111111 El
111111 CTRET
111111 Undefined instruction
111111 DIVH regi, reg2, reg3 Xl
111111 DIV regi, reg2, reg3
111111 DIVHU regi, reg2, reg3
111111 DIVU regi, reg2, reg3
111111 MUL regi, reg2, reg3
111111 MULU regi, reg2, reg3
111111 CMOV cccc, regl, reg2,
reg3

11 MUL imm9, reg2, reg3 Xl
111111 MULU imm9, reg2, reg3
111111 CMOV ccee, immb5 reg2,

reg3

111111 BSH reg2, reg3
111111 BSW reg2, reg3
111111 HSW reg2, reg3
11001X DISPOSE immb5, list12 Xl
11001X DISPOSE immb5, list12 [reg1]
11110X PREPARE list12, imm5
11110X PREPARE list12, imm5, sp/imm

174

User's Manual U12197EJ6VOUM

APPENDIX C INSTRUCTION OPCODE MAP

The opcode map for the instruction code is shown in (a) to (i).

For the operand conventions, refer to Table 5-10 Remark 1 Operand conventions.

Instruction Codes

e 16-bit instruction format

15 1110 5 4 0

|
L L Sub opcode (refer to (b))
Opcode (refer to (a))

e 32-bit instruction format

15 14 13 1110 5 4 0 31 27 26 21 20 19 18 17 16
| | | | |
L Opcode (refer to (a)) LSub—opcode (refer to (c))
Sub-opcode (refer to (h)) Sub-opcode
Sub-opcode (refer to (d), (h))

User's Manual U12197EJ6VOUM

Sub-opcode (refer to (e))

(refer to (f), (9). (1))

175

APPENDIX C INSTRUCTION OPCODE MAP

(a) Opcode
Bits 6 and 5 00 01 10 11 Format
Bits 10to 7
0000 MOV R, r NOT DIVH JMPeet (Y
NOPNoteI SWITCHNoteZ SLD.BUNmeS
Undefined"*** SLD.HU""*
0001 SATSUBR SATSUB SATADD R, r MULH
ZXBNoted SXBNoted ZXHNoted SXHane4
0010 OR XOR AND TST
0011 SUBR SUB ADD R, r CMP R, r |
0100 MOV immb5, r SATADD imm5, r ADD immb5, r CMP imm5, r Il
CALLTane4
0101 SHR imm5, r SAR imm5, r SHL imm5, r MULH imm5, r Il
Undefined""*
0110 SLD.B 1\
0111 SST.B v
1000 SLD.H 1\
1001 SST.H v
1010 SLD.wW"*? v
SST.W*e?
1011 Bcond 1
1100 ADDI MOVEA MOVHI SATSUBI VI, Xl
MOV imm32 R"** DISPOSE""*
1101 ORI XORI ANDI MULHI \
Undefined""*
1110 LD.B LD.H""® ST.B ST.H"** Vil
LD'WNoteR ST.WNmeB
1111 JR/JARL Bit manipulation 1"*° LD.HU" ™ " V, VII,
LD.BU™™ ™ Undefined"™™ VI,
PREPARE"™"" Expansion 1"*™ X
Notes 1. If reg1 =r0 and reg2 = r0 (instruction without reg1 and reg2)
2. Ifreg1 #r0 and reg2 = r0 (instruction with reg1 and without reg2)
3. Ifreg1 =r0 and reg2 = r0 (instruction without reg1 and with reg2)
4. If reg2 = r0 (instruction without reg2)
5. If bit4 = 0 and reg2 = r0 (instruction with reg2)

176

User's Manual U12197EJ6VOUM

APPENDIX C INSTRUCTION OPCODE MAP

If bit4 = 1 and reg2 # r0 (instruction with reg2)
Refer to (b)

Refer to (c)

9. Referto (d)

10. If bit16 = 1 and reg2 = r0 (instruction with reg2)
11. If bit16 = 1 and reg2 = r0 (instruction without reg2)
12. Referto (e)

© N

(b) Short format load/store instruction (displacement/sub-opcode)

Bit 0 0 1
Bits 10to 7
0110 SLD.B
0111 SST.B
1000 SLD.H
1001 SST.H
1010 SLD.W SST.W

(c) Load/store instruction (displacement/sub-opcode)

Bit 16 0 1
Bits 6 and 5
00 LD.B
01 LD.H | LD.W
10 ST.B
11 ST.H | ST.W

(d) Bit manipulation instruction 1 (sub-opcode)

Bit 14 0 1
Bit 15
0 SET1 NOT1
1 CLR 1 TST 1

User's Manual U12197EJ6VOUM

177

APPENDIX C INSTRUCTION OPCODE MAP

(e) Extend 1 (sub-opcode)

\W 00 01 10 11 Format
Bits 26 to 23
0000 SETF LDSR STSR Undefined IX
0001 SHR SAR SHL Bit IX
manipulation 2"’
0010 TRAP HALT RETI"*? El"e? X
CTR ETane 2 D Iane 3
Undefined Undefined
0011 Undefined —
0100 SASF MULR, r,w MUL imm9, r, w IX, XI, XIlI
MULU R, r, w"™** MULU immg, r, w'"**
0101 DIVH DIV Xl
DIVHU""* DIvu"™**
0110 CMOV cccc, CMOV ccce, BSW"** Undefined X1, Xl
immb5, r, w R, r,w BSH"*e*®
stNoteS
0111 lllegal Opcode —
to
1111

Notes 1. Refer to (f)
Refer to (g)

3. Referto (h)
4. Ifbit17 =1
5. Referto (i)

(f) Bit manipulation instruction 2 (sub-opcode)

(9) Return instruction (sub-opcode)

Bit 17 0 1 Bit 17 0 1
Bit 18 Bit 18
0 SET1 NOT1 0 RETI Undefined
1 CLR1 TST1 1 CTRET
(h) PSW operation instruction (sub-opcode)
Bits 13 to 11 000 001 010 011 100 101 110 111
Bits 15 and 14
00 DI Undefined
01 Undefined
10 El Undefined
11 Undefined

178 User's Manual U12197EJ6VOUM

APPENDIX C INSTRUCTION OPCODE MAP

(i) Endian conversion instruction (sub-opcode)

Bit 18

Bit 17

0

1

BSW

BSH

HSW

Undefined

User's Manual U12197EJ6VOUM

179

APPENDIX D INSTRUCTIONS ADDED TO V850E

The instruction codes of the V850E CPU are upwardly compatible with the instruction codes of the V850 CPU at
the object code level. In the case of the V850E CPU, instructions that even if executed have no meaning in the case
of the V850 CPU (mainly instructions that write to the r0 register) are extended as additional instructions.

The following table shows the V850 CPU instructions corresponding to the instruction codes added in the V850E
CPU. Refer to this table when switching from products that incorporate the V850 CPU to products that incorporate
the V850E CPU.

Table D-1. Instructions Added to V850E CPU and V850 CPU Instructions with Same Instruction Code (1/2)

Instructions Added in V850E CPU

V850 CPU Instructions with Same Instruction Code as V850E
CPU

CALLT immé

MOV imm5, r0 or SATADD imm5, rO

DISPOSE imm5, list12

MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, rO

DISPOSE immb5, list12 [reg1] MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, rO

MOV imm32, reg1 MOVEA imm186, reg1, r0

SWITCH reg1 DIVH reg1, r0

SXB reg1 SATSUB regt, r0

SXH reg1 MULH regf, r0

ZXB regi SATSUBR regi, r0
ZXH reg1 SATADD regi, r0
(RFU) MULH imm5, r0

(RFU) MULHI imm186, reg1, rO

BSH reg2, reg3 lllegal instruction

BSW reg2, reg3

CMOV cccc, immb5, reg2, reg3

CMOV cccc, regi, reg2, reg3

CTRET

DIV reg1, reg2, reg3

DIVH reg1, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU reg1, reg2, reg3

HSW reg2, reg3

MUL imm9, reg2, reg3

MUL reg1, reg2, reg3

MULU reg1, reg2, reg3

MULU imm9, reg2, reg3

SASF cccc, reg2

User's Manual U12197EJ6VOUM

180

APPENDIX D INSTRUCTIONS ADDED FOR V850E COMPARED WITH V850 CPU

Table D-1. Instructions Added to V850E CPU and V850 CPU Instructions with Same Instruction Code (2/2)

Instructions Added in V850E CPU

V850 CPU Instructions with Same Instruction Code as V850E
CPU

CLR1 reg2, [reg1]

Undefined

LD.BU disp16 [reg1], reg2

LD.HU disp16 [reg1], reg2

NOT1 reg2, [regl]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SET1 reg2, [regl]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

TST1 reg2, [reg1]

User's Manual U12197EJ6VOUM 181

APPENDIX E

[A]

Add (ADD) ..ot 51
Add immediate (ADDI)ccccoeiiieiiienieeee e 52
AdAress SPACEcooccveveirireeeeneee e 31
Addressing Modecoovceeeeiriie e 33
AN (AND) ..ot 48, 53
AND immediate (ANDI)ccooviiiiiiiiieeee e 54
Arithmetic operation instruction 43, 147
arithmetically shift right by ... 48
[B]

Based addressingcccceverreie e 36
BDD e 49
B e 56
BE e 56
BGE ..o 56
BGT i 56
BH e 56
Bit e 29, 30
Bit @ddressingccceveiiiiieeiee e 38
Bit manipulation instructioncccccc.. 46, 151
DIHEB e 47
B e 56
BLE .. e 56
BT e 56
BN e 56
BNC . 56
BNE ... 56
BNH . 56
BNL i 56
BNV e 56
BNZ ..o 56
B e 56
BR e 56
Branch instructionccccccveeeiiiiiiiiiieeeeee, 45, 149
Branch on condition code (Bcond)cc.ceeevueennee 55
B A e 56
BV e 56
BV i 28, 48
Byte swap half-word (BSH)ccccooviniiiiiiinen 57
Byte swap word (BSW)oooeiiiiiiiieeceeee 58
B e 56
[C]

Call with table look up (CALLT)oovcieviiiiiieeieene 59
CALLT base pointer (CTBP)ccceeceeerveennenne 26, 27
CALLT caller status saving register 26, 27
[o o o 47, 49
Clear bit (CLRT) ..ooviiiiiieiiieiiee e 60
Compare (CMP)oocuiiiieiie e 62
Conditional branch instructioncccccevceenen. 149
Conditional move (CMOV)ccccceeviiiinieniieenieee 61
CPU configurationccoceeeiieeniieiieenee e 17

INDEX

CTPC e 26, 27
CTPSW ettt 26, 27
Y e 25
[D]

G e 49
Data alignment ..o 30
Data formatcoceeviieiii e 28
Data representationcccccvieeriniiienieee e, 29
Data type ...ccoeeeieeeeecee e 28
Data type and addressingccccceeeverereieeeeeiineenns 28
DBPC ... 26, 27
DBPSW ..o 26, 27
Disable interrupt (DI)cccovvieiiiiiiierieeeeeee e, 64
DiISPX et 47
Divide half-word (DIVH)ccocoiiiiiiiienieeeeeen, 68
Divide half-word unsigned (DIVHU)ccccce...... 70
Divide instructioncccoeciiiiiee i 148
Divide Word (DIV) ..cooviiiiiiiiieieeieee e 67
Divide word unsigned (DIVU)cccooeeniiiniennnen. 71
[E]

ECR 24,27
EICC e 24
EIPC o 23, 27
EIPSW ..o 23, 27
Enable interrupt (EI)occoooiiiiniiiieeee, 72
EP 25
1= o SRR 47
Exception cause register (ECR)cccceeneee. 24,27
Exception processingccccocveeeeiiieeeininenennnnee 137
EXcCeption trapccoovvivieieieee e 138
Exclusive OR (XOR)cceeeieiiiieinieeiieeniees 48,124
Exclusive OR immediate (XORI)cccovvrvuernne 125
[F]

FECC e s 24
FEPC e 24,27
FEPSW .o 24,27
Format | ..o 39
Format Il ... 39
Format I ..o 39
Format IV ... 40
Format IX ... 41
Format V ... 40
Format VI ... 40
Format VIl ... 40
Format VIII ... 41
Format X ... 41
Format X1 ... 41
Format XIIooeiieeee e 41
Format XIHIoooeeee e 42
Function dispose (DISPOSE)ccccceviveviennnnen. 65

182 User's Manual U12197EJ6VOUM

APPENDIX E INDEX

Function prepare (PREPARE)ccccccccveiivecinnnennn. 93
[G]

General-purpose registeroccccevvvieeeeeiiieeenneen, 20
GR[T oot s 48
[H]

Half-Wwordeoeeiiiiieee e 28, 48
Half-word swap word (HSW)cccccvvvveeeieiiiee, 74
Halt (HALT) e 73
[

| ettt e 49
ID s 25
ILGOP caller status saving registercccocuueee.. 26
IMIMX e e 47
Immediate addressingccccccoeviiiiiiieeeee e 36
INIIANIZING oo 140
Instruction added for V850Eccceeeviiieinnnen. 180
Instruction addresscccccvviieeiiiiiie e 33
Instruction formatccoocveiiiiii e 39
Instruction listcoooiiiiiiiii e, 171
Instruction MNEMONICccevvviiiiiiiiieeee e, 158
Instruction opcode Mapccccceeeveeiciiieiieee s 175
Instruction Setoocoeeiiiiiiiii e 47
INEEGET i 29
Interrupt and exceptioncccccoevcciiiiieeii e, 133
Interrupt ServiCingcoooviieeiiiiee e 134
Interrupt status saving registercccccceeviniieeenn. 23
Interrupt/exception codecccoeveciviiiieieeeiieiinis 134
INtrOdUCHION ...oiiiiiiee e 14
[J]

Jump and register link (JARL)cccoeviiieiiiiiieens 75
Jump register (JMP)ovieiiiiiiieeeeee 76
Jump relative (JR) ..ccvveeeeieii e 77
Jump with table look up (SWITCH)ccccueeee... 118
[L]

L e e 49
BISEX et s 47
Load (LD) oot 78
Load inStructionsccoeveieiiiiiee e 146
Load to system register (LDSR)ccoevvvveeiiiinennnne 80
Load/store instructionsccccceeeiiiiiiiiieeiiieeen, 43
Load-memory (8, b)ooovriieiiiiiee e 48
Load-memory-bit (a, b) ..cccceviiiiiii e 48
Logical operation instructionccccccoueeee. 44,148
logically shift left bycoooviiiii e, 48
logically shift right by ..o, 48
M]

Maskable interruptccccoviieeeiiiiiiee s 134
MEMOIY MAP .oeoiiieieiiiee e 32
MOVE (MOV) ..ot 81
Move effective address (MOVEA)cccoecvvvneennn. 82

Move high half-word (MOVHI)ccocevviieiiiiiennn. 83
Multiply half-word (MULH)ccccooiiiiiiiiiiiennee 85
Multiply half-word immediate (MULHI) 86
Multiply inStructioncccccvvieeinniineenece e, 147
Multiply word (MUL)cccoviiiiiiiiiiie e 84
Multiply word unsigned (MULU)coccceveiineenn. 87
[N]

NMI status saving registerscccoccevvieeeiiiiiennnne 24
No operation (NOP)ccvvvieeiiiiieee e, 88
Non-blocking load/store...........ccccceviiieiiniieeennnnen. 142
Non-maskable interruptccccccoeviciiieenieeiicinns 136
NOt (NOT) et 89
Not bit (NOTT) v 90
NP 25
Number of instruction execution clock cycles 128
[O]

Operand addresscooovcvvieieeeeeeiecciieee e 36
OR (OR) ettt 48, 91
OR immediate (ORI)oooviiiiiiiiieeeeee e, 92
Outline of iNStructionccccovviiieiiiie e, 43
OV e s 25
[P]

PC relativec.eoeviiiiiiiiee e 33
PIpelingeeeeiieeee e 141
Pipeline operation with branch instruction............ 143
Product developmentccccoooviiiiiiiiieiinieeees 16
Program counter (PC)cccoovereiiiieiiiiee e 22
Program registercocociiiiiiiiiiiieee e 20
Program register setccccovriiiiiiiiiieee 20
Program status word (PSW)cccociiiieiiiiiinnns 24
[R]

R e 49
N 49
FO O BT oo 22
FegT 47
FEU2 i 47
FEUS i 47
FEGID e 47
Register addressingccccccvevveeniiencieennennn 35, 36
Register indirect branch instruction 150
Relative addressingcccovveevceiniieicieseceeeee 33
RESEL oo 140
Restoring from interrupt/exceptioncccce.... 139
RESUIL . 48
Return from CALLT (CTRET) ...oevviiiiiiieeeeiieeees 63
Return from trap or interrupt (RETI)cccceeviierenns 95
[S]

S e 25
SAT s 25
Saturated (N) oo 48
Saturation add (SATADD)oovviieieiiiieeeieee e 99

User's Manual U12197EJ6VOUM 183

APPENDIX E INDEX

Saturated operation instruction 44,48
Saturated subtract (SATSUB)cccccceeeeevcivvieennnn. 100
Saturated subtract immediate (SATSUBI) 101
Saturated subtract reverse (SATSUBR) 102
Setbit (SETT) oo 105
Set flag condition (SETF)cccoevieiiiiiinieeeiieen, 103
Shift and set flag condition (SASF)ccccovcieennne 98
Shift arithmetic right (SAR) ...ccooviiiiiiiieeee 97
Shift logical left (SHL)cccooviieiiiiiiiiieee e, 106
Shift logical right (SHR) ..., 107
Short 10ad (SLD) ..ooveeviiiieiieee e 108
Sign extend byte (SXB)cooviiieiiiiiieeiiee e, 119
Sign extend half-word (SXH)cccccooeiriiiiiininenn. 120
Sign-extend (N) ..oocovceeriiiiiee e 48
Software exceptionccccceeviieiiiiiiiieee e, 137
Software trap (TRAP) ... 121
Special instructionccccceeiiiiiiii 46, 152
SR [T c oot 48
STArtiNG UP .eeeeeeiieeeeiee e 140
StOre (SST) oo 111
SEOre (ST) toovieceeiee e e 113
Store contents of system register (STSR) 115
Store iNStruCtionoooviiiiiiie e 146
Store-memory (8, b, C) ..ooveeeiiiiii e 48
Store-memory-bit (2, b, €) .eoovciieiii 48
Subtract (SUB)cooeviiiiiiieee e 116
Subtract reverse (SUBR)ccccccvvvieeeieiiciiiieeen. 117
System registerccocviiiiiiiii e 23
System register nUMberccccoviiiiiiniiiieee 27
[Tl

Table indirect branch instructionccceeneee. 150
Table indirect call instructioncccccoeviievennee. 150
TESE (TST) e 122
Test bit (TSTT) coveeeee e 123
[v]

Unconditional branch instructionc.c.ccccee.. 149
UnSigned iNtegercovvieiiiiiiie e 30
vl

VECION ..ttt 47
(W]

W s 49
Word (WORD)evvieiiieee et 29, 48
[Z]

Z e e 25
Zero extend byte (ZXB)cccceevvivieiiiiieeeeeeee e 126
zero-extend half-word (ZXH)........ccccoveveeiiiiininneen. 127
Zero-extend (N)eeeeeeveiiciiiieee e 48

184 User's Manual U12197EJ6VOUM

APPENDIX F REVISION HISTORY

The history of revisions up to this edition is shown below. “Applied to:” indicates the chapters to which the revision

was applied.
Edition Contents Applied to:
5th edition | Addition of V850E/MS2 (uPD703130) Throughout
Modification of description in 1.3 Product Development CHAPTER 1 INTRODUCTION

Modification of description in Figure 1-1 V850 Family Lineup

Addition of description in 1.4 CPU Configuration

Addition of description of HALT instruction in 5.3 Instruction Set CHAPTER 5 INSTRUCTIONS

Addition of description of LD instruction in 5.3 Instruction Set

Addition of description of SLD instruction in 5.3 Instruction Set

Addition of 8.4 Pipeline Disorder CHAPTER 8 PIPELINE
Modification of description in APPENDIX C INSTRUCTION OPCODE MAP APPENDIX C INSTRUCTION
Addition of description in APPENDIX C (h) PSW operation instruction (sub- OPCODE MAP
opcode)

6th edition | Modification of description of CLR1 instruction in 5.3 Instruction Set CHAPTER 5 INSTRUCTIONS

Modification of description of NOT1 instruction in 5.3 Instruction Set

Modification of description of SET1 instruction in 5.3 Instruction Set

Modification of description of SLD1 instruction in 5.3 Instruction Set

Addition of description of SST instruction in 5.3 Instruction Set

Addition of APPENDIX F REVISION HISTORY APPENDIX F REVISION
HISTORY

User's Manual U12197EJ6VOUM 185

	COVER
	Major Revisions in This Edition
	PREFACE
	CHAPTER 1 INTRODUCTION
	1.1 General
	1.2 Features
	1.3 Product Development
	1.4 CPU Configuration
	1.5 Differences with Architecture of V850 CPU

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.1.1 Program register set

	2.2 System Registers
	2.2.1 Interrupt status saving registers
	2.2.2 NMI status saving registers
	2.2.3 Exception cause register
	2.2.4 Program status word
	2.2.5 CALLT caller status saving registers
	2.2.6 ILGOP caller status saving registers
	2.2.7 CALLT base pointer
	2.2.8 System register number

	CHAPTER 3 DATA TYPES
	3.1 Data Format
	3.1.1 Data type and addressing

	3.2 Data Representation
	3.2.1 Integer
	3.2.2 Unsigned integer
	3.2.3 Bit

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Mode
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Instruction Format
	5.2 Outline of Instructions
	5.3 Instruction Set
	5.4 Number of Instruction Execution Clock Cycles

	CHAPTER 6 INTERRUPTS AND EXCEPTIONS
	6.1 Interrupt Servicing
	6.1.1 Maskable interrupt
	6.1.2 Non-maskable interrupt

	6.2 Exception Processing
	6.2.1 Software exception
	6.2.2 Exception trap

	6.3 Restoring from Interrupt/Exception

	CHAPTER 7 RESET
	7.1 Initialization
	7.2 Starting Up

	CHAPTER 8 PIPELINE
	8.1 Features
	8.2 Outline of Operation
	8.3 Pipeline Flow During Execution of Instructions
	8.3.1 Load instructions
	8.3.2 Store instructions
	8.3.3 Arithmetic operation instructions (excluding multiply and divide instructions)
	8.3.4 Multiply instructions
	8.3.5 Divide instructions
	8.3.6 Logical operation instructions
	8.3.7 Saturation operation instructions
	8.3.8 Branch instructions
	8.3.9 Bit manipulation instructions
	8.3.10 Special instructions

	8.4 Pipeline Disorder
	8.4.1 Alignment hazard
	8.4.2 Referencing execution result of load instruction
	8.4.3 Referencing execution result of multiply instruction
	8.4.4 Referencing execution result of LDSR instruction for EIPC and FEPC
	8.4.5 Cautions when creating programs

	APPENDIX A INSTRUCTION MNEMONICS (IN ALPHABETICAL ORDER)
	APPENDIX B INSTRUCTION LIST
	APPENDIX C INSTRUCTION OPCODE MAP
	APPENDIX D INSTRUCTIONS ADDED TO V850E
	APPENDIX E INDEX
	APPENDIX F REVISION HISTORY

