S3C80M4/F80M4

38-BIT CMOS
MICROCONTROLLERS
USER'S MANUAL

Revision 1

s Ui g

ELECTRONICS

Important Notice

The information in this publication has been carefully
checked and is believed to be entirely accurate at
the time of publication. Samsung assumes no
responsibility, however, for possible errors or
omissions, or for any consequences resulting from
the use of the information contained herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of
any product or circuit and specifically disclaims any
and all liability, including without limitation any
consequential or incidental damages.

S3C80M4/F80M4 8-Bit CMOS Microcontrollers
User's Manual, Revision 1
Publication Number: 21-S3-C80M4/F80M4-052005

© 2005 Samsung Electronics

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all
claims, costs, damages, expenses, and reasonable
attorney fees arising out of, either directly or
indirectly, any claim of personal injury or death that
may be associated with such unintended or
unauthorized use, even if such claim alleges that
Samsung was negligent regarding the design or
manufacture of said product.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior

written consent of Samsung Electronics.

objectives.

Samsung Electronics' microcontroller business has been awarded full ISO-14001
certification (BSI Certificate No. FM24653). All semiconductor products are
designed and manufactured in accordance with the highest quality standards and

Samsung Electronics Co., Ltd.

San #24 Nongseo-Ri, Giheung- Eup
Yongin-City, Gyeonggi-Do, Korea
C.P.O. Box #37, Suwon 449-900
TEL: (82)-(031)-209-1934

FAX: (82)-(031)-209-1889

Home-Page URL: Http://www.samsungsemi.com
Printed in the Republic of Korea

Preface

The S3C80M4/F80M4 Microcontroller User's Manual is designed for application designers and programmers who
are using the S3C80M4/F80M4 microcontroller for application development. It is organized in two main parts:

Part | Programming Model Part Il Hardware Descriptions

Part | contains software-related information to familiarize you with the microcontroller's architecture, programming
model, instruction set, and interrupt structure. It has six chapters:

Chapter 1 Product Overview Chapter 4 Control Registers
Chapter 2 Address Spaces Chapter 5 Interrupt Structure
Chapter 3 Addressing Modes Chapter 6 Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to S3C80M4/F80M4 with general product descriptions,
as well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register
addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined
stack operations.

Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the
S3C8-series CPU.

Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register
values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read,
alphabetically organized, register descriptions as a quick-reference source when writing programs.

Chapter 5, "Interrupt Structure,” describes the S3C80M4/F80M4 interrupt structure in detail and further prepares
you for additional information presented in the individual hardware module descriptions in Part Il.

Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series
microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of
each instruction are presented in a standard format. Each instruction description includes one or more practical
examples of how to use the instruction when writing an application program.

A basic familiarity with the information in Part | will help you to understand the hardware module descriptions in
Part Il. If you are not yet familiar with the S3C8-series microcontroller family and are reading this manual for the
first time, we recommend that you first read Chapters 1-3 carefully. Then, briefly look over the detailed information
in Chapters 4, 5, and 6. Later, you can reference the information in Part | as necessary.

Part Il "hardware Descriptions," has detailed information about specific hardware components of the
S3C80M4/F80M4 microcontroller. Also included in Part Il are electrical, mechanical, flash, and development tools
data. It has 10 chapters:

Chapter 7 Clock Circuit Chapter 12 8-bit PWM Timer
Chapter 8 RESET and Power-Down Chapter 13 Electrical Data
Chapter 9 I/O Ports Chapter 14 Mechanical Data
Chapter 10 Basic Timer Chapter 15 S3F80M4 Flash MCU
Chapter 11 8-bit Timer O Chapter 16 Development Tools

Two order forms are included at the back of this manual to facilitate customer order for S3C80M4/F80M4
microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these
forms, fill them out, and then forward them to your local Samsung Sales Representative.

S3C80M4/F80M4 MICROCONTROLLER iii

Table of Contents

Part | — Programming Model

Chapter 1 Product Overview

ST 10 = SRR
12 (oTed [T=To = 1o o [P T PR TP PPPTPPRRN
e N E]To T 1 =] o | PP PO P PPPTPPRRN
L D= o g o110 o LSRR UPP PSRN
L O o 1 £ PSR UUPPRPPRRN

Chapter 2 Address Spaces

OVBIVIBWttt ettt ettt ettt oottt o4 ekt e e 4okt e et e+ 4 am bttt e e 4k ke et e e 4 aa b e et e e oAk ket e e e 4R b b et e e embe e e e enbbbe e e e e anbneeeeannbreeeeas
Program MeEMOTY (ROM)ooiiiiiie ittt sttt ettt ettt e ettt e e e s be et e e e bbbt e e e s sbe e e e e anbbbeeessbbeeessanbeeaaennnes
oIS (T g A ol o1 (=T o (1 = PR RPPPPRRN
Register Page POINTEN (PP)uuiiii ittt et e e s s s e e e s ssbb e e e s snbbeeeesbeeeeeanne
Lo 5] (T S Y] A PSPPSR
Lo 5] (T S Y] A2 PSPPSR
PrimeE REQISIEr SPACE......eeeii ittt e et e e e st e e e s s sabb e e e e e aab b e e e e s snbneessnbeeeeeannes
WOTKING REGISIEISiiiee ittt e e ettt e e e e bbbt e e e e bt et e e e aab b e e e e s e bbb e e e eabeeeeeansbbeaeens
USING The REGISIET POINESuviiiiiiiiiie ettt s st e e s st be e e e s sbb e e e e s ssbbaeeesnbeeeeesnen
L ETo 1S (T gAY [0 [=TT [oo [P RPPPPRR
Common Working Register Area (COH—CFH)ccoiiiiiiiiiie et eee e e e a e
4-Bit Working RegiSter AAArESSINGuuieiiuiiieeiiiiiie ettt e s s e ee e e sttae e e s s sree e e e sbbaeaesssaeeesaassreeaesnsaeaens
8-Bit WOrking RegiSter AAArESSINGceeiiiiieieiiiiiie ettt ettt s et e e sabae e e e s sanneeeannes
SYSIEM AN USEE SEACKueiiiiiiiiiie ittt e et e e s bt e e s bbbt e e s s bbbt e e e et b bt e e s sasbee e s anbeeeeesnbbbeeeeas

S3C80M4/F80M4 MICROCONTROLLER

Table of Contents (continued)

Chapter 3 Addressing Modes
L@ V=T Y1 PRSP UURPOPR 3-1
Register ADdressing MOAE (R) ...ccoiiiuiiieiiiiee ettt ettt et e e e s sabb e e e s snbeeesanneneeeenanes 3-2
Indirect Register AAdressing Mode (IR)ooooiiiiiiiiiiie et e 3-3
Indexed AAAreSSING MOOE (X)ueieiieieiiie et e s e s e s snn e e s n e e nbe e e nane e nenee s 3-7
DireCt AAAreSS MOAE (DA)....c.ueeieiieeit it ettt ettt ettt ettt e s s bt e e bb e e e be e e ek be e e abeeeeabe e e asbeeabeeeenbeeennbeeentees 3-10
INAIreCt ADAreSS MOAE (IA)eiei ettt h ettt e eab e b e e st e e aab e e e nn e e s nbe e e naneeenaneeas 3-12
Relative AdAreSS MOOE (RA) ...ttt ettt et et et e e e e e te e e asbe e e sabe e e ameeasaaeeesabeeeaabeesaaeeenbeeesnreeanseas 3-13
IMMEAIALE MOTE (M) ettt ettt et et e e e bt e e s bt e e sa bt e e sas e e e abe e e amb e e e embeesneeaeabeeasnneeesnneann 3-14
Chapter 4 Control Registers
L@ V=T V1= TP PRSP PURP PRI 4-1
Chapter 5 Interrupt Structure
OVEIVIBW ...ttt ettt e ettt e e ekttt e e+ 4kttt e s 42ttt e e 4 4Rttt 4o 4 ea kb e e e o4 4a ke et oo e aa kbt e e e 4 mbe et e e e nbe e e e bt beee e e nnbneeeeanbaeeeean 5-1
L1 CT A (0] o] Y] 0 1= PP P PP PP PRPPPPPPURPON 5-2
S3CBOMA INTEITUPE STTUCTUIE ...ttt e e e e s s e e e e e e e e s s s e e e e e e e e e e s s s anneeeeeeens 5-3
L1 C=T g0 o] AV Z=Tox (o) g Yo [0 | LTS T Y= RSP PPPR 5-4
Enable/Disable Interrupt INStructions (EI, DI)cccociiiieiiiiiiie et ee et e e e e snnnae e e 5-6
System-Level Interrupt CoNtrol REQISIEISciiiiiie ettt e e s s e e e aaeeeans 5-6
Interrupt Processing CoNtrol POINTSoooiiiiiiiiiiie ettt 5-7
Peripheral Interrupt CoNtrol REGISIEIScciiiiiiiiie it 5-8
System MOde REGISIEN (SYM) ..uuiiiiiiiiiiii ittt e et e et e e s sbb e e e e s sabbeee e s sneeenans 5-9
Interrupt Mask REGISLEr (IMR)i.eeiiiiiiiiie ettt ettt e eee e e s et e e e sttt e e e s nnb e e e s snbbaeessnneeeas 5-10
Interrupt Priority REGISIET (IPR)......uiiiiiiiiiie ettt e e e et e e e st e e e s ssbe e e e e sntbeeessnnseeeas 5-11
Interrupt Request REGISEr (IRQ) .. .uuiiiiiiiieeiiiiiie ettt et e e e e e e s et e e e et ae e e s s sabe e e e e snteeeeesnnnaeeas 5-13
Interrupt Pending FUNCLON TYPES....cci ittt ettt ettt e e st e e e s ene e e e s aneee e e s nneeeas 5-14
Interrupt SOUrce POIING SEQUENCEviiiiiiiiie ettt st e s 5-15
INEEITUPL SEIVICE ROULINESviiiiiiiiiiie ettt ettt e e st e e e ebb e e s sbeee s snbaeeas 5-15
Generating INterrupt VECIOr AQAIESSESuvviiiiiiiiee ittt ie sttt stet e st s st e e e s bbe e e s s ssbae e e e ssbaeeesans 5-16
NS oo o) V=Tt (o (= To M [0 1 (=T U] o] £ S PPOPRR 5-16
INSTIUCTION POINLET (IP) ..vtiiieiiiiee ettt e et e e s et e e et e e e s saa e e e e e eatba e e e s sssaeeaeessbeeenntbaeeesnnnneeas 5-16
FaSt INTEITUDPL PrOCESSING ...eeiittttie ettt ettt e bt e et e e e e sab bt e e s sbe e e e s e neb e e e e enbbeeeessanneeeeennees 5-16
Chapter 6 Instruction Set
(@Y= V1= O PRSP O PP UPPUURPPPRPTN 6-1
(D=1 = R Y o[TP P PP UPPPPUPTTRRTN 6-1
REGISIEr AGAIESSING .. .e i iteeie ettt ettt e e e sttt e e et b et e e s aabb et e e s st beee s s anbeessbnneeeennne 6-1
AArESSING MOUES ...t e e ettt e e s s bb et e e e e e bbb e e e s s bbe e e e e anbb e e e enbbeeeesnnneeas 6-1
[F= 1o LR R Lo Y (= (I Y €35) IR PP PP PP 6-6
[E= Lo [BT TS ot] o 1T [PPSR RPPOPPPPPNS 6-7
INSErUCION SOt NOTALION......eiiiiiiiiie ettt st e e be e e s be e e s bbeennneeanreenaes 6-8
(070] Lo 111 o] o I @0 o =T ST RRTP 6-12
[a IS (U Tet ifo] g BT o110 1 SRR 6-13

Vi S3C80M4/F80M4 MICROCONTROLLER

Table of Contents (continued)

Part Il Hardware Descriptions

Chapter 7 Clock Circuit
L@ Y= 1= SRR 7-1
)Y 5] (=] ¢ I Yo S o | PSPPSR 7-1
(01 21U 01 (o Tod g1 VL] 7= L1 [1 1R EPRPRP: 7-1
M@AIN OSCIIALON CIFCUILS ... vveiieiettiee ettt e ettt e e e sttt e e s sstbe e e e s aabbe e e e esbbeeessnbeeeeeanne 7-2
Clock Status During POWEr-DOWN MOOESccuuiiiiiiiiiiie ittt e sbbaee e s snaneeaesnnes 7-3
System Clock Control Register (CLKCON)iuuiiiiiiiiie ettt siree e s stiaee s snineeeeennes 7-4
Clock Output Control RegiSter (CLOCON)ciiiuiiieeiiiieee s citiiteeesiiee e s s st e s s sibree e s s ssneeessssraeesssnsseeeesanes 7-5
Stop Control REGISTEr (STPCON)......uuiiiiiiiiiieeertiei e e sttt e e asitbe e e s sbar e e s assbbeeessrbeeeesanssaeaesssaeeeesassseesanses 7-6
Chapter 8 RESET and Power-Down
Y £ST (= 0 T TS = USRS 8-1
L YT YT S 8-1
NOrmal MOde RESEt OPEIALION......c..vviieiiiiiiie ittt ettt e st e st e e e s ribb e e e e s sabb e e e e s ssbaeeeeannbeeesanen 8-1
HArdware RESEE VAIUES........ccuiiiiiieiiie ettt ettt s e e s e e e b e e e e e e erne e sareeens 8-2
o= B T 1VT] o Yo To L= SRR PP 8-4
oA =T T 1V Yo To =SSR PPSR 8-4
L 0] o JH 1Y (o o - PSPPSR 8-4
o | =Y/ T 1SRRI 8-5
Chapter 9 I/O Ports
OVBIVIBW ...ttt ettt etttk e ettt e ekt e 4Rt e s h e e 1h s a4 eb e e o1 as e e eh et e 4R et e 4R et e e an e e b et e ne et e nnn e e e e e e e e nnns 9-1
POt DAt REQISIEIS ..ceiiiiiiiiie ittt et e et e e e sttt e s e bbbt e e s sttt e e e s eabbbee e s snbeeessnnbeeeeeanees 9-1
0] 4 SO PP PPPPPPPPS 9-2
0] A TP U TP UUUUUPUPPPPPPPPTN 9-5

Chapter 10 Basic Timer

L@ Y= 1= PSR 10-1
L2 Fe R (o T =T o (= 1 1 P PP PP T PPPPPRSPPPRPO: 10-1
Basic Timer Control Register (BTCON)uiiiiiiiiieiiiiiiee ettt e s st e e s s e e e s bbaee s s sssbeeeesnnes 10-1
Basic Timer FUNCLON DESCIIPLIONiiiiiiiie ittt st e s st e e e sbb e e s ssbbbaee e s abeeeeeanens 10-3

S3C80M4/F80M4 MICROCONTROLLER vii

Table of Contents (continued)

Chapter 11 8-bit Timer O

L@ V=T V1= O OO PRSP PP P PP TOVRPUUPPPPRPTN 11-1
Timer O FUNCHON DESCHPLONuuiiei e ettt e et e e e e e e e st e e e e s ttre e e e sanbraeeesssaaeeeannneeeas 11-1
Timer 0 Control RegIStEr (TOCON)uiiiiiiiiiee e ittt e e esrre e e s strr e e e e steee e e s saaeaeeesttaeessansteeeeesseaeeeesseneas 11-2
(= (oTod [DI T=To = 1o ¢ PSP PPUPPPROPPPPPN: 11-3

Chapter 12 8-bit Pulse Width Modulation

L@ V=T V1= PP O PR URPPTRPPPRP 12-1
8-bit Pulse Width Modulation (PWMCON)cccuiiiiiiiiiiiieeiiiee sttt sttt e s sire e e e snnbneee e 12-2
12 [oTed S =T = 1o 1 PRSP ORPPPRNS 12-3

Chapter 13 Electrical Data

OVEBIVIBW ...ttt e ettt e e oo oo oottt e e e e e e e e e e e atttaeaeeeeeeeeeeeaaeatasesseeseeeeeeeeaaaasssaeaeeessaaasnsssseneeeaaaaaaaann 13-1
Chapter 14 Mechanical Data
OVEBIVIEBWttt e e e e e e e e e e e eeeeeee e e e e et e e et e e e e e s e et b e e e saeaeeaaaaaaeaaasseesssasssssssasbesesseesbessbaanna i eeeaens 14-1

Chapter 15 S3F80M Flash MCU

L@ V=T V1= TP PRSP PURP PRI 15-1
Operating Mode CharaCteriSHICSuueieiiiiiiie ettt a b e s bb e e e ssbb e e e e s sbeeeesans 15-5
Chapter 16 Development Tools
L@ V=T V1= OO O PRSP PP PP UPPUUPPPPRPT 16-1
] 11RO 16-1
SAMA ASSEIMDBIET ...ttt h e b e e e st e e eh b e e et e e e eabe e e enbe e e bbe e e e e naeeeeanneeas 16-1
IS NS 11/ 1 PPN 16-1
HEXZROM .ttt ettt b ekt h bt e st e bt e ekt e bt st ekt e Rt bt e b e ne e ehn e nn e re e 16-1
I 10 =] B =70 =T o PSPPI 16-1
IS 10 Y o I T = = To T o PR 16-3
SMDS2+ SeIECHON (SAMB)eiiiiiei it e e st e e e s s st e e e et e e e s s rsbaeeeaassbaeeessssseeeeeansbeeaeearaeeenans 16-5
o] L I PR 16-5
1] (0 oI I I PPN 16-5

viii S3C80M4/F80M4 MICROCONTROLLER

List of Figures

Figure Title Page
Number Number
1-1 2] (oTet Q= Vo [= Vg SRR 1-3
1-2 S3C80M4/F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)......cccccevceeerveeannn. 1-4
1-3 S3C80M4/F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375).......c.cccocvveevveenene. 1-5
1-4 PiN CIrCUIL TYPE A it et e st e e s e b e e e s ebeeee s 1-7
1-5 PiN CIrCUIL TYPE B oottt ettt e e e st e e s s snbb e e e e neeee s 1-7
1-6 Pin Circuit TYPE E-2 (PL.4A—PL.6) ..ecciiiiiiie i sttt saee et e sre e s snnaan e e eaee s 1-7
1-7 Pin Circuit TYPE D=4 (PO).....uiiiiii ittt e et e e e st e e e e nnabe e e e s snneeeas 1-8
1-8 Pin Circuit Type E-4 (PL.0—P1L.3) ..ooiiiiiiiiiieiieee sttt 1-8
2-1 Program Memory AddreSS SPACEcccuvviieiiiiiiee ittt eiaeee s 2-2
2-2 Internal Register File Organization.........c..cccuvieiiiiiieie it 2-4
2-3 Register Page POINIEN (PP) ...ccoiiiiiiei ittt sttt iree et siae e s snaae e e s snineee s 2-5
2-4 Set 1, Set 2, Prime Area RegiSter Mapcvieiiiiiie et e e estee e enne e e e 2-7
2-5 8-Byte Working Register Areas (SIICES)uuiiiiiriiieiiiiiie et 2-8
2-6 Contiguous 16-Byte Working Register BIOCK ... 2-9
2-7 Non-Contiguous 16-Byte Working Register BIOCKcccoccviviiiiiiiiic e, 2-10
2-8 16-Bit REQISIEN Pl .uviiiiei ittt et e et e e e snba e e e e s sntaee e e annees 2-11
2-9 Register File AAAreSSinNguuouiiiiieiiiiiiie it sre e e s snna e e e s snaaeee s 2-12
2-10 Common Working REQISIEN AT a........ccciicuiiieiiiiiie ettt e see et e e e sree e e eees 2-13
2-11 4-Bit Working Register AAAreSSinNgccouureiieiiiiiieeeiiieee e e s sieeeee s 2-15
2-12 4-Bit Working Register Addressing EXample ... 2-15
2-13 8-Bit Working Register AAAreSSINGoooviiiiiiiiiiee et 2-16
2-14 8-Bit Working Register Addressing EXampleccccvviiiiiieeniiiieee i 2-17
2-15 StACK OPEIALIONS ... utviie ittt e e et e e e st e e e e e sab e e e s breeeeesnrbeeaeaan 2-18
3-1 REQIStEr AQUIESSING . uvviiiiiiiiiie et r e e e e e e e e s e st e e e e sstae e e s annsaaeeeansraeeeas 3-2
3-2 Working Register AAAreSSiNgcooiiiiiieiiiiiiee e 3-2
3-3 Indirect Register Addressing to Register File.......cccccooiiiiiiiiiiie e 3-3
3-4 Indirect Register Addressing to Program MemOrYc.ceeeviieeieiiiiieee e 3-4
3-5 Indirect Working Register Addressing to Register Fileccccccovvviiieiiiiiieene e, 3-5
3-6 Indirect Working Register Addressing to Program or Data Memorycc..cccvveenn. 3-6
3-7 Indexed Addressing to RegISter Filecoccviiieiiiiiiie e 3-7
3-8 Indexed Addressing to Program or Data Memory with Short Offset...........c.ccocvveeeen. 3-8
3-9 Indexed Addressing to Program or Data MemOIYc.ueeeeiiiiieeiiiieeee e 3-9
3-10 Direct Addressing for Load INSIIUCLIONSeviiiiiiiiieiniiiee e 3-10
3-11 Direct Addressing for Call and Jump INSrUCIONScvvvveiiiiiiiiiciie e 3-11
3-12 [o [T =Yoo [0 | = ET] [T PP 3-12
3-13 RElatiVE AQArESSING.....ueiieiciiiiie et ecr ettt ee e e e e e e e st e e e s steeeeeanasraeaeenraeeens 3-13
3-14 IMMediate AdAreSSINGuuiiiiiiiiiee et e e e eaeeee s 3-14

S3C80M4/F80M4 MICROCONTROLLER iX

List of Figures (continued)

Figure Title Page
Number Number
4-1 Register DesCription FOMMAL...........uviiiiiiiiieiiiiie e a e sree e 4-3
5-1 S3C8-Series INEITUPL TYPES ...uviiieiiiiiieeeiiiiie ettt et e et e e s saaeeaeenne 5-2
5-2 S3C80MA/FBOMA INtEITUPL SITUCKUIE....ciiiviiieeiiiie ettt a e 5-3
5-3 ROM VECtor AQUIESS Alccoueieiiiieiiie ettt ettt e eenes 5-4
5-4 INterrupt FUNCHON DIAgIamc.ccicveieeiiiiee e ettt eeee et e e et e e e s st ea e e snsnae e e s anenes 5-7
5-5 System Mode REGISIEN (SYM) ..eiiiiiiiiiee i ettt ser et e e st e e e e st e e e s snnaeeaeeenes 5-9
5-6 Interrupt Mask Register (IMR)ooiiiiiiiiee e 5-10
5-7 Interrupt ReqUESE Priority GIrOUPScoiiiiieiiiiiiiee ettt nibee e snees 5-11
5-8 Interrupt Priority RegISter (IPR)uviiiiiieii ettt 5-12
5-9 Interrupt Request Register (IRQ)uuoiiiiiiiiiiiiee ittt ennees 5-13
6-1 System Flags RegIStEr (FLAGS)uuviiiiiiiiiieciiiiie et esivee e sitaee e e esiaaee e snaeeaeennes 6-6
7-1 Crystal/Ceramic OSCIllAtor (FX)iccuireeiiiiee e 7-2
7-2 EXternal OSCIlIAOr (FX).......iuureeeiiiiiee ettt 7-2
7-3 (RO @ Yol 1= (o] (12 T PP OPPPTTI 7-2
7-4 System Clock CirCUit DIBQIaMcocuvieiiiiiiiie et a e 7-3
7-5 System Clock Control Register (CLKCON)uuviiiiiiiiiieiiiiee s siiee e ssinee e 7-4
7-6 Clock Output Control Register (CLOCON)ccuvuieeiiiiirieeeiiree e e siveeeeessiieeee s snnnneee e 7-5
7-7 Clock Output BIOCK Diagram.........cccuveeeeiiiiiieeeiiiiee e sriieee e s sinee e s snveeeeessinaeeessnneeaeannes 7-5
7-8 STOP Control Register (STPCON).....ccuiiiiiiieiiiiiiee ittt sirree e e ae e 7-6
9-1 Port 0 High-Byte Control Register (POCONH)oeiiiiiiiiieiiiiee e 9-3
9-2 Port 0 Low-Byte Control Register (POCONL)covcvvvieeiiiiiiie et 9-3
9-3 Port O Interrupt CoNtrol REGISIENcciiiiiii i 9-4
9-4 Port O Interrupt Pending Register (POPND)........coccuiieiiiiiiiieeiiiie e ssiiiee e eniiiee e 9-4
9-5 Port 1 High-Byte Control Register (PLCONH).......c.ueveeiiiiiiieiciiee e 9-5
9-6 Port 1 Low-Byte Control Register (PLCONL)ccccvvvieeiiiiirieeeiiiee e ssieee e e eniivee e e 9-6
9-7 Port 1 Pull-up Resistor Enable Register (PIPUR).........ccccciiiiiiiiiiiiiiieeiiee e 9-6
10-1 Basic Timer Control Register (BTCON)......cuuiiiiiiiiiiee ittt 10-2
10-2 Basic Timer BIOCK DIAQIamcuuvieiiiiiieeeiiiiiie s siiiee e e ssreeee s ssiiree e s s ssneeasesnssneessssnes 10-4
11-1 Timer 0 Control Register (TOCON)cciiiiuiiieeiiiiee e citieee e s sree e e et ee e s snreeesesnrreaees 11-2
11-2 Timer 0 Functional BIOCK DIagram..........ccouiiiiiieiiiiieee et 11-3
12-1 PWM Control Register (PWMCON)........ccoiiiiiiiiiiiii i 12-2
12-2 PWM CirCUIt DIGGIAM ...eiiiiiiiiiie ittt e st sba e s s nnsbae e e s annes 12-3

X S3C80M4/F80M4 MICROCONTROLLER

Page
Number

13-1
13-2
13-3
13-4
13-5
13-6

14-1
14-2
14-3
14-4

15-1
15-2
15-3

16-1
16-2
16-3
16-4

List of Figures (concluded)

Title Page

Number
Input Timing for EXternal INterrUPLSoiviiiiiiie i 13-5
INPUt TIMING FOr NRESEToiiiiiiiiie s 13-5
Stop Mode Release Timing Initiated by RESET.......c.vuviiiiiiiiieiiiiee i 13-6
Stop Mode Release Timing Initiated by INterrupt........cooevvciiiieiiiiii e 13-7
Clock Timing MeasuremMent at X|pj <. veeveveeeieiiiieiie i 13-9
Operating Voltage RANQEceiiiieiiee e 13-9
20-DIP-300A Package DIMENSIONS.......cccuuiiiieiiiiieeieeesee et 14-1
20-SOP-375 Package DIMENSIONS........cccviiirieiiiieiieee e e 14-2
16-DIP-300A Package DIMENSIONSc.ciiiuiieiiiiaiie sttt aneeas 14-3
16-SOP-375 Package DIMENSIONS.c.ueiiiiiaiiiiariiee ettt 14-4
S3F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)ccccceirieeeneeenieeenieeeneee 15-2
S3F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375)ccooiverieiriirieesiiieeeeeeens 15-3
Operating Voltage RANGEc.vviiiiiiiiiie ettt e snne e e 15-6
SMDS Product Configuration (SMDS2+4)ccoiuiiieeiiiiiieeeiiieee e sssieeeessiieee e sssnenee e e 16-2
TB80M4 Target Board Configurationcccceeiiiveireiiiiiiee s 16-3
20-Pin Connectors (J101) for TBBOMA........ccooiiiiieeiiiieie ettt et 16-7
S3EBOMO Cables for 16/20-DIP PacCkagecueviiiiiiiieiiiiiee e 16-7

Xi

S3C80M4/F80M4 MICROCONTROLLER

List of Tables

Table Title Page
Number Number
1-1 S3C80MA/F80MA PiN DESCIIPLIONS ..vvvieiiiiiiieeiiiiiiee e iiiieee e st e e e sbbee e snaeeeeennes 1-6
2-1 S3C80M4/F80M4 Register TYPE SUMMAIYcuvvieeiiiiieieesiiieeeesnieeeesessrseeessssneeaesnnes 2-3
4-1 Y= A S =T 1) (=] £ USSP EPPUSRR 4-1
4-2 Set 1, BaNK O REQISIEISoiiii e ittt e ettt e e e e e e e s st r e e e e e e e e s s s nnnnnnaneeees 4-2
5-1 INEEITUPE VECTOTS ...ttt e e e e e e s st bbb e e e e e e e e e e annnes 5-5
5-2 Interrupt Control REQISLEr OVEIVIEWciciiiviiieiiiiiieeesiitee e ssitrte e siiree e snnnree e s saeeee s 5-6
5-3 Interrupt Source Control and Data ReQISIEIScvvvviiiiiiiee i 5-8
6-1 INSTIUCLION GrOUP SUMIMAIY....cciiuiiiiiiiiiiiie e ettt ettt et e et e e e sier e e e s snnn e e e e anibeeee s 6-2
6-2 Flag NOtation CONVENTIONSc.vuiiieiiiiiie ettt et e e ire e e s snbreee s 6-8
6-3 INSTrUCEION Set SYMDBDOISuiiiiiiiiie e 6-8
6-4 Instruction Notation CONVENTIONSc.eieiiiiiiiie e 6-9
6-5 Opcode QUICK REFEIEINCEcocuviiiee ittt nsbreeeeanes 6-10
6-6 (070] o [11 0] o [O o [= 13U OPRPTRR 6-12
8-1 S3C80M4/F80M4 Set 1 Register and Values after RESETcevveviiiiieiniiiieeennis 8-2
8-2 S3C80M4/F80M4 Set 1, Bank 0 Register and Values after RESET............cccceveenns 8-3
9-1 S3C80M4/F80M4 Port Configuration OVEIVIEWuevieiiiiiieesiiiieiessiiiieessneeeeeeees 9-1
9-2 Port Data RegiSter SUMMAIY.........ceiiiiiiiiieeiiiieee s eeiiie e eiaee e s st e e e s ee e s snnaaeeaesnaaeees 9-1

S3C80M4/F80M4 MICROCONTROLLER Xiii

List of Tables (continued)

Table Title Page
Number Number
13-1 Absolute Maximum RaINGScvvveieiiiiiiie it s a e seeeee s 13-2
13-2 D.C. Electrical CharaCteriStiCSeciiiieiiieieriiiesiet et 13-2
13-3 A.C. Electrical CharaCteriStiCScciiiiriiiiiiiie e 13-5
13-4 INPUL/OULPUL CAPACITANCEvviiiiiiiiie ettt e e e e e s ebre e e e e e 13-6
13-5 Data Retention Supply Voltage in Stop MOdecccoovieeii i 13-6
13-6 Main OsCillator CharaCteriStCSeiiiiiiiiieiiiiiie e 13-8
13-7 Main Oscillation Stabilization TIMEeuiiiiiiiiiiiii e 13-9
15-1 Descriptions of Pins Used to Read/Write the EPROMcccccieiviiiiiie i, 15-4
15-2 Comparison of S3F80M4 and FB8OM4 FEALUIESueeeeiiviiieeiiiiieeessiieeeessniineeaeeees 15-4
15-3 Operating Mode Selection CrHEEria..........curieeiiiiiiee e e e e saee e 15-5
15-4 D.C. Electrical CharaCteriStiCScouiiuiiiiiiiiiie et 15-5
16-1 Power Selection Settings for TBB8OMA4oocuviiiiiiiiiie et 16-4
16-2 Main-clock Selection Settings for TBBOMAcccuvviieiiiiieneeeriiiee et 16-4
16-3 Device Selection Settings for TBBOMAcuvviiiiiiiiiee it 16-5
16-4 The SMDS2+ T0o0l SEleCtioN SELHNG ...eviiicviiiee i 16-5
16-5 Smart Option Source Selection Settings for TB8OM4cccovviiveeeeviiieeenicieeee e 16-6
16-6 Smart Option Switch Setting for TB8OMA4ooviiiiiiiiieiiiieee e 16-6

Xiv S3C80M4/F80M4 MICROCONTROLLER

List of Programming Tips

Description Page
Number
Chapter 2: Address Spaces
Using the Page Pointer for RAM clear (Page 0, PAgEL)coooiiiiiiiiiiiiiieeeiiiee e 2-5
Setting the REGISIEr POINLEISoiiiiiiiiiee ittt e e st e e s bbe e e e e st b e e e snn b e e e s annneas 2-9
Using the RPs to Calculate the Sum of a Series Of REQISLErS.........ooiviiiiiiiiiiie e 2-10
Addressing the Common WOrking REQISIEr ATa.........cuuuiiiiiiuiiiieiiiieee e iiiiee e sire e siree e e stae e s s snsaenaeennes 2-14
Standard Stack Operations Using PUSH and POP............oooiiiiiiiiiiie it e s rree e 2-19

Chapter 7: Clock Circuit
[[0V (o W YIS (o] o I 51 1 0T 1 o] o USRI 7-6

S3C80M4/F80M4 MICROCONTROLLER XV

List of Register Descriptions

Register Full Register Name Page
Identifier Number
BTCON Basic Timer CONtrol REGISLETccuvuiiiiiiiiie ettt 4-4
CLKCON System Clock CoNtrol REQISTENoc.uuiiiiiiiiiie e 4-5
CLOCON Clock Output CoNtrol REGISTENccuvviiiiiiiiiie ettt 4-6
FLAGS SYSIEM FIAQS REGISTENeiiiiiiiiiiee ettt e rnre e e 4-7
IMR INtEITUPE MASK REQISTEN ...eeiiiiiiiie e ettt e et e e e e e e e s snaeeeeeenes 4-8
IPH Instruction Pointer (HIgh BYLE)uviiiiiiiiiie sttt 4-9
IPL Instruction Pointer (LOW BYIE) ...ccciviieiiiiiiie ettt et e e 4-9
IPR INtErrUPt PriOrity REGISIET ..oiiiiviiie ittt e e 4-10
IRQ INterrupt REQUESE REGISTENuvviiiiiiiie et 4-11
POCONH Port 0 Control Register (High BYLE).......ccccuuiiiiiiiiiee ittt ee e siae e 4-12
POCONL Port 0 Control Register (LOW BYLE)covcuiiiiiiiiiiie e iiiiie et a e 4-13
POINT Port O Interrupt CoNtrol REQISLENcoiiiiiiiiii it 4-14
POPND Port O Interrupt Pending REQISTEN.......cciiiiiiiiiiiiiee e 4-15
P1CONH Port 1 Control Register (High BYLE).......coocuuiiiiiiiiiie et 4-16
P1CONL Port 1 Control Register (LOW BYLE)coccuuiiiiiiiiiie ittt e e 4-17
P1PUR Port 1 Pull-up Resistor Enable RegiSter ... 4-18
PP (Y=o 1S (= gl o= Vo T o]) T PR 4-19
PWMCON Pulse Width Modulation Control REQISIENceeviiiiiee e 4-20
RPO [Ry=To 1S 1 g =101 1= O PP 4-21
RP1 [y=To 1S 1= g =11 1= PP 4-21
SPH Stack PoIinter (HIgh BYLE)oiuuiiiiiiiiiie ittt e et e e e snne e e e e 4-22
SPL Stack POINtEr (LOW BYLE) . .uiiiiiiiiiie ittt ettt et e e e snaae e e e enes 4-22
STPCON StOP CONLIOI REGISTETvviiiee ittt e et e e e st e e e s snbaeeeeenes 4-23
SYM SYStEM MOUE REGISIETeviiiiiiiiiie et sbbe e 4-24
TOCON Timer 0 CONrOl REGISTENuiiiiiiiiee ittt s e e s saaeee s 4-25

S3C80M4/F80M4 MICROCONTROLLER Xvii

List of Instruction Descriptions

Instruction Full Register Name Page
Mnemonic Number
ADC A WItN CBITY .ttt e s e e nene s 6-14
ADD Yo o USRS 6-15
AND LOGICAI AND ...ttt et e e s st e e e e eabb e e et e e e e e s anneeeenne 6-16
BAND 2 1Y N 5 OSSR 6-17
BCP 2 A @0]] o T T USSP PPRRN 6-18
BITC 2] A @o] g o] (=T 4 a1 o | PR 6-19
BITR Bt RESEL ...ttt ettt ettt ettt e e be e be e e bt e e e be e e nnbe e e nneeeenneas 6-20
BITS 21 ST = TP U PP O TP OURPTRPROI 6-21
BOR 271 O = O PP U PP PROPPPTRPPRPPI 6-22
BTJRF Bit Test, Jump Relative 0N FaISEccueiviiiiiiiiciiee e 6-23
BTIRT Bit Test, JUMP REIALIVE ON TIUE......uiiiiiiiiiie ittt 6-24
BXOR Bt XOR ...ttt e 6-25
CALL CAll PrOCEOUIE. ...ttt et nr e sr e e e s ann e snne e 6-26
CCF ComplemMENt CArTY FIAQ .. .eoeiiiiiiieieiie et 6-27
CLR (O T | PP PO PTTPPPRPPRRIN 6-28
COM (0] o] 0] [=100 1T o | T PP SOUPPTOPPPPRN 6-29
CP (0] 001 o= = 2P EPPR 6-30
CPIJE Compare, Increment, and Jump 0N EQUAlccoeiiiiiiiiei e 6-31
CPIINE Compare, Increment, and Jump on NON-EQUAlccceeeiiiiieiiiiiiiiee e 6-32
DA D= Tod 14 g F= LYo | 11 A OSSPSR 6-33
DEC [B]=Tod (=] 4 0[] o | P PP PPPPPN 6-35
DECW DECTEMENT WOKA ...ttt ettt ettt ettt et e st e enbe e e naae e e e 6-36
DI DTISTo o] (=l T | (=T U] o] £SO SUPSPPRN 6-37
DIV Divide (UNSIGNEA)cciiiiiiiei ittt ettt sttt e e st e e s s ibeeeeeanees 6-38
DJINZ Decrement and JUMP if NON-ZEIO.......cooiuiiiiiiiiiiie ittt 6-39
El ENADIE INTEITUPLS ...uviiiii ettt st e et b e e e s snbbe e e e e ees 6-40
ENTER) (= USSR 6-41
EXIT T SR 6-42
IDLE (o] [@] 01T = 1T o F OO PPPPR 6-43
INC [Tl (=10 1T o | PP PPPPPPON 6-44
INCW INCIEMENT WO ..ottt ettt et e bt e et e e snbe e e snaeeeneas 6-45
IRET L1 CT 0T o] B =] (] o o RS RR 6-46
JP N0 1001 o PP PP TPPPPPUPPPPPPTRIN 6-47
JR JUMP REIALIVE.....eeiii it e e st e e e e asbae e e s s nneneas 6-48
LD (o= Vo IO T O PO U PO TP PPRTRPPRPOI 6-49
LDB [IoT=To I =T PO PP PPRR PRSP 6-51

S3C80M4/F80M4 MICROCONTROLLER Xix

List of Instruction Descriptions (continued)

Instruction Full Register Name Page
Mnemonic Number
LDC/LDE o= 1o 1Y/ [T o 1 To] o P PP PR PP PP 6-52
LDCD/LDED Load Memory and DECIEMENTuueiii ettt e e s 6-54
LDCI/LDEI Load Memory and INCrEMENT...........uuiiiiiiee ettt 6-55
LDCPD/LDEPD Load Memory With Pre-DeCremMENt.........c.ueiiiiiiiiiieiieie ettt 6-56
LDCPI/LDEPI Load Memory wWith Pre-INCremMeNtuiiiiiiiiiie et ssee et e e 6-57
LDW (o= Yo BT o] o RSP RRT 6-58
MULT MUILIPLY (UNSIGNEA) ...ttt e e e e s e be e e e e nraee e e ennnes 6-59
NEXT N S T PP PP TR PPPPRPP 6-60
NOP N (o @] 01T =1 o] o [PPSR PS 6-61
OR oo (o= I @ = SO RP TP 6-62
POP POP frOM STACK ... 6-63
POPUD Pop User Stack (DeCrementing)........coouueeieiiiiiieeeiiieee e eieiee e siieee e e siieee s 6-64
POPUI Pop User Stack (INCrementing)oueoiieiieniiiiiee it 6-65
PUSH PUSH T0 SEACK.....cciuttiiiii ettt 6-66
PUSHUD Push User Stack (DeCremMenting)c.cooiueeieeiirrieeniiiieeeestieeessiieee e snreee s eneeas 6-67
PUSHUI Push User Stack (INCrementing)ccoooiueireiiiiiiee st 6-68
RCF Y=Y A O U A o = Vo SRS 6-69
RET RETUIN <.ttt e e et e e s et et e e e bbb e e e e s aanne e e e enneas 6-70
RL Y0 = L(= N 1= 1 SRR 6-71
RLC Rotate Left through Carmycuuii it 6-72
RR 0] 7=\ (3N {0] | S PSRRI 6-73
RRC Rotate Right through Carmy..........occiuiii it 6-74
SBO SEIECT BANK Dttt 6-75
SB1 SEIECT BANK L.....eiiiieieiieie ettt e 6-76
SBC SUDLFACE WIth CarTY ...eeeii i s sbre e 6-77
SCF TS O T Y o - To RO PTPPPPPPRP 6-78
SRA Shift RIght AftRMETIC ... 6-79
SRP/SRP0O/SRP1 Set REGISIEI POINTET....coiiiiiii et 6-80
STOP 100 o J @ o 1=T = 1110] o FHT OO PSP PP PPPPPPPOUPPPPN 6-81
SuB IS0 o] £ = Lod AR 6-82
SWAP SWAP NIBDBIESeiii e 6-83
TCM Test Complement UNAEr MASKcccuuiieeiiiiiee e ee e e e e e e eareee s 6-84
™ TESEUNUEE MASK ...ttt ettt e et et e e sabe e e nnneeen 6-85
WFI AUV = UL (o] g 1 (=] 1 U o S PP URPRP 6-86
XOR LOgiCal EXCIUSIVE OR.....uviiiiiiiiiie ettt e taee e e e e e nnbaee e e e nnnnes 6-87

XX S3C80M4/F80M4 MICROCONTROLLER

S3C80M4/F80M4 PRODUCT OVERVIEW

PRODUCT OVERVIEW

S3C8-SERIES MICROCONTROLLERS

Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range
of integrated peripherals, and various mask-programmable ROM sizes. Among the major CPU features are:

— Efficient register-oriented architecture

— Selectable CPU clock sources

— Idle and Stop power-down mode release by interrupt

— Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more

interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned to
specific interrupt levels.

S3C80M4/F80M4 MICROCONTROLLER

The S3C80M4/F80M4 single-chip CMOS microcontroller is fabricated using the highly advanced CMOS process,
Its design is based on the SAM88RC CPU core. Stop and Idle (Power-down) modes were implemented to reduce
power consumption.

The S3C80M4 is a microcontroller with a 4K-byte mask-programmable ROM embedded.
The S3F80M4 is a microcontroller with a 4K-byte Flash ROM embedded.

Using a proven modular design approach, Samsung engineers have successfully developed the
S3C80M4/F80M4 by integrating the following peripheral modules with the powerful SAM8 core:
— Two programmable I/O ports, including one 8-bit port, one 7-bit port (Total 15 pins).

— Four bit-programmable pins for external interrupts.

— One 8-bit basic timer for oscillation stabilization and watchdog functions (system reset).

— One 8-bit timer/counter.

— 8-bit high-speed PWM.

FLASH

The S3F80M4 microcontroller is available in Flash version. The S3F80M4 microcontroller has an on-chip FLASH
ROM instead of a masked ROM. The S3F80M4 is comparable to the S3C80M4, both in function and in pin
configuration.

ELECTRONICS 1-1

PRODUCT OVERVIEW S3C80M4/F80M4

FEATURES
CPU Two Power-Down Modes
* SAMB88 RC CPU core + Idle: only CPU clock stops
e Stop: selected system clock and CPU clock stop
Memory
* Program Memory (ROM) Power Consumption

- 4K x 8 bits program memory

e Data Memory (RAM)
- 128 x 8 bits data memory

« RUM Mode: 4mA at 10MHz, 5V
e Stop Mode: 100uA at 5V

Instruction Execution Times
e 400nS at 10 MHz fosc(minimum)

Instruction Set

e 78 instructions

» Idle and stop instructions added for power-down

modes Operating Temperature Range

»+ —25°Cto +85°C
15 1/0 Pins
Operating Voltage Range

e 24Vtob55Vat0.4-42MHz
e 27Vto55Vat0.4-10MHz

e 15 normal I/O pins
e Bit programmable ports

Interrupts
] i Package Type
e 6interrupt levels and 6 interrupt sources
* 20-DIP-300A, 20-SOP-375
8-Bit Basic Timer * 16-DIP-300A, 16-SOP-375
» Watchdog timer function Ve

* 4 kinds of clock source]
» Internal Voltage Converter for 5V operation

8-Bit Timer/Counter 0

e Programmable 8-bit internal timer
» External event counter function
8-Bit High-Speed PWM

* 8-bit PWM 1-ch

e 6-bit base +2-bit extension
Oscillation Sources

e Crystal, ceramic, or RC for main clock
e Main clock frequency: 0.4 MHz — 10 MHz

1-2 ELECTRONICS

S3C80M4/F80M4

PRODUCT OVERVIEW

BLOCK DIAGRAM

XIN —Pp|
XOUT 4—

OSsC.

PO.0/INTO <
PO.1/INT1 <P
P0.2/INT2 -
PO.3/INT3 <
PO0.4 <P
PO.5 4
P0.6/PWM <
PO.7 4b

1/0 Port 0

P1.0/TOOUT <4
P1.1/TOCLK <
P12 4>

P1.3 <>

P14 4>

P15 4>
P1.6/CLKOUT «»

1/0 Port 1

nRESET Vss Vop

'

—®

Watchdog
Timer
Basic Timer
Port I/0 and
Interrupt Control
8-Bit Timer/ [TOOUT/P1.0
SAM8BRC CPU Counter0 |(4— TOCLK/P1.1
4-Kbyte 128-byte
ROM Register Fil
cgsiertie PWM | PWMPOG

Figure 1-1. Block Diagram

ELECTRONICS

1-3

PRODUCT OVERVIEW S3C80M4/F80M4

PIN ASSIGNMENT

N
Vss 1 20 3 Vob
Xin 2 19 3 PO0.0/INTO
Xoutr] 3 18 1 PO.1/INT1
nRESET] 4 S3C80M4/F80OM4 17 3 P0.2/INT2
P1.0/TOOUT /5 (20-DIP-300A) 16 3 PO.3/INT3
P1.1/TOCLK =] 6 (20-SOP-375) 15|93 P0.4
P12 37 14 4 PO.5
P13 =8 13 /3 P0.6/PWM
P1.4 39 12 4 PO.7
P15 =10 11 1 P1.6/CLKOUT

Figure 1-2. S3C80M4/F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)

1-4 ELECTRONICS

S3C80M4/F80M4

PRODUCT OVERVIEW

Vss

XIN

Xout

NnRESET

P1.0/TOOUT

P1.1/TOCLK

P1.2

P1.3

I O 1 A

S3C80M4/F80M4

(16-DIP-300A)
(16-SOP-375)

16

15

14

13

12

11

10

U 0 u0uouoifud

Vbb

P0.0/INTO

PO.1/INT1

P0.2/INT2

PO.3/INT3

P0.4

P0.5

P0.6/PWM

Figure 1-3. S3C80M4/F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375)

ELECTRONICS

1-5

PRODUCT OVERVIEW

S3C80M4/F80M4

PIN DESCRIPTIONS

Table 1-1. S3C80M4/F80M4 Pin Descriptions

and Vss.

Pin Pin Pin Description Circuit Pin Share
Names Type Type Numbers (note) Pins
P0.0-P0.7 I/0 | I/O port with bit-programmable pins; D-4 19-13 INTO-INT3

Schmitt trigger input or push-pull output and (15-9)

software assignable pull-ups. Alternately used 12 PWM

for external interrupt input (noise filters,

interrupt enable and pending control).

Port0 pins can also be used as PWM output.
P1.0 1/0 | I/O port with bit-programmable pins; E-4 5-8 TOOUT
P11 Schmitt trigger input or push-pull, open-drain (5-8) TOCLK
P1.2 output and software assignable pull-ups.
P1.3
P14 I/0 | I/O port with bit-programmable pins; E-2 9-11 CLKOUT
P15 Input or push-pull, open-drain output and
P1.6 software assignable pull-ups.
INTO-INT3 1/0 | External interrupts input pins. D-4 19-16 P0.0-P0.3

(15-12)
TOCLK I/0 | Timer 0 external clock input. E-4 6(6) P1.1
TOOUT 1/0 | Timer O clock output. E-4 5(5) P1.0
CLKOUT I/0 | CPU clock output. E-2 11 P1.6
PWM I/0 | 8-Bit high speed PWM output. D-4 15(13) P0.6
NRESET | System reset pin. B 4(4) -
XIN, XouT - Main oscillator pins. - 2,3 -
(2,3)

VDD, Vss - Power input pins. - 1,20 -

A capacitor must be connected between VbbD (1,16)

NOTE: Parentheses indicate pin number for 16-DIP-300A/16-SOP-375 package.

ELECTRONICS

S3C80M4/F80M4 PRODUCT OVERVIEW

PIN CIRCUITS
VDD
—| P-Channel
In o—| >0——»
In 0——¢
—| <4— N-Channel Schmitt Trigger
Figure 1-4. Pin Circuit Type A Figure 1-5. Pin Circuit Type B
VDD
Open drain
Enable Pull-up
VDD Resistor
}_o<’7 Pull-up
O)y Fretie
P-CH
Data /0

Output O—| <4— N-CH

Disable

Figure 1-6. Pin Circuit Type E-2 (P1.4-P1.6)

ELECTRONICS 1-7

PRODUCT OVERVIEW

S3C80M4/F80M4

VDD
VDD Pull-up
Resistor
Pull-up
4{><FDO_< Enable
Data e
Output
Disable
Figure 1-7. Pin Circuit Type D-4 (P0)
VDD
Open drain
Enable Pull-up
VDD Resistor
}_O<’7Resistor
D Enable
Data 1o
Output <4—N-CH
Disable
—
Schmitt Trigger

Figure 1-8. Pin Circuit Type E-4 (P1.0-P1.3)

1-8

ELECTRONICS

S3C80M4/F80M4 ADDRESS SPACES

ADDRESS SPACES

OVERVIEW

The S3C80M4 microcontroller has two types of address space:
— Internal program memory (ROM)

— Internal register file

A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and
data between the CPU and the register file.

The S3C80M4 has an internal 4-Kbyte mask-programmable ROM.

The 256-byte physical register space is expanded into an addressable area of 320 bytes using addressing
modes.

ELECTRONICS 2-1

ADDRESS SPACES S3C80M4/F80M4

PROGRAM MEMORY (ROM)

Program memory (ROM) stores program codes or table data. The S3C80M4/F80M4 has 4K bytes internal mask-
programmable program memory.

The first 256 bytes of the ROM (OH-OFFH) are reserved for interrupt vector addresses. Unused locations in this
address range can be used as normal program memory. If you use the vector address area to store a program
code, be careful not to overwrite the vector addresses stored in these locations.

The ROM address at which a program execution starts after a reset is 0100H in the S3C80M4.

(Decimal) (Hex)
4,095 FFFH
4K-bytes
Internal
Program

Memory Area

255 [-====-=m-mm- - FFH

Interrupt
Vector Area

0 O00H
S3C80M4/F80M4

Figure 2-1. Program Memory Address Space

2-2 ELECTRONICS

S3C80M4/F80M4 ADDRESS SPACES

REGISTER ARCHITECTURE

In the S3C80M4/F80M4 implementation, the upper 64-byte area of register files is expanded two 64-byte areas,
called set 1 and set 2. The upper 32-byte area of set 1 is further expanded two 32-byte register banks (bank 0
and bank 1), and the lower 32-byte area is a single 32-byte common area.

In case of S3C80M4/F80M4 the total number of addressable 8-bit registers is 175. Of these 175 registers, 13
bytes are for CPU and system control registers, 18 bytes are for peripheral control and data registers, 16 bytes
are used as a shared working registers, and 128 registers are for general-purpose use, page 0.

You can always address set 1 register locations, regardless of which of the ten register pages is currently
selected. Set 1 locations, however, can only be addressed using register addressing modes.

The extension of register space into separately addressable areas (sets, banks, and pages) is supported by
various addressing mode restrictions, the select bank instructions, SB0 and SB1.

Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.

Table 2-1. S3C80M4/F80M4 Register Type Summary

Register Type Number of Bytes

General-purpose registers (including the 16-byte 144
common working register area, one 128-byte prime
register area)

CPU and system control registers 13
Mapped clock, peripheral, 1/0 control, and data registers 18
Total Addressable Bytes 175

ELECTRONICS 2-3

ADDRESS SPACES

S3C80M4/F80M4

Bytes

FFH

EOH
DFH

DOH
CFH

COH

Setl

Peripheral Control
Registers
(Register Addressing Mode)

System Control Registers
(Register Addressing Mode)

Working Registers
(Register Addressing Mode)

128
Bytes

7FH

L O0H

Page 0

General Purpose
Register Files
(All Addressing Modes)

Figure 2-2. Internal Register File Organization

2-4

ELECTRONICS

S3C80M4/F80M4 ADDRESS SPACES

REGISTER PAGE POINTER (PP)

The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using
an 8-bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by
the register page pointer (PP, DFH). In the S3C80M4 microcontroller, the register page pointer must be changed
to address other pages.

After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always
"0000", automatically selecting page 0 as the source and destination page for register addressing.

Register Page Pointer (PP)
DFH, Set 1, R/W

MSB|.7|.6|.5|.4|.3|.2|.1|.O|LSB

Destination register page selection bits: Source register page selection bits:

0000
Others

Destination: Page 0 0000
Not used for the S3C80M4 Others

Source: page 0
Not used for the S3C80M4

NOTE: Inthe S3C80M4 microcontroller, the internal register file is configured as eleven pages (Pages 0).
The pages 0 is used for general purpose register file.

Figure 2-3. Register Page Pointer (PP)

&~ PROGRAMMING TIP — Using the Page Pointer for RAM clear (Page 0, Page 1)

LD PP,#00H ; Destination « 0, Source <« 0
SRP #0COH
LD RO,#0FFH ; Page 0 RAM clear starts
RAMCLO CLR @RO
DJINZ RO,RAMCLO
CLR @RO : RO =00H
LD PP,#10H ; Destination <« 1,Source « O
LD RO,#0FFH ; Page 1 RAM clear starts
RAMCL1 CLR @RO
DJINZ RO,RAMCL1
CLR @RO : RO =00H

NOTE: You should refer to page 6-39 and use DINZ instruction properly when DINZ instruction is used in your program.

ELECTRONICS 2-5

ADDRESS SPACES S3C80M4/F80M4

REGISTER SET 1
The term set 1 refers to the upper 64 bytes of the register file, locations COH-FFH.

The upper 32-byte area of this 64-byte space (EOH-FFH) is expanded two 32-byte register banks, bank 0 and
bank 1. The set register bank instructions, SBO or SB1, are used to address one bank or the other. A hardware
reset operation always selects bank 0 addressing.

The upper two 32-byte areas (bank 0 and bank 1) of set 1 (EOH-FFH) contains 68 mapped system and
peripheral control registers. The lower 32-byte area contains 16 system registers (DOH-DFH) and a 16-byte
common working register area (COH—-CFH). You can use the common working register area as a “scratch” area
for data operations being performed in other areas of the register file.

Registers in set 1 locations are directly accessible at all times using Register addressing mode. The 16-byte
working register area can only be accessed using working register addressing (For more information about
working register addressing, please refer to Chapter 3, “Addressing Modes.”)

REGISTER SET 2

The same 64-byte physical space that is used for set 1 locations COH—FFH is logically duplicated to add another
64 bytes of register space. This expanded area of the register file is called set 2. For the S3C80M4,
the set 2 address range (COH—FFH) is not accessible.

The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only
Register addressing mode to access set 1 locations. In order to access registers in set 2, you must use Register
Indirect addressing mode or Indexed addressing mode.

The set 2 register area is commonly used for stack operations.

2-6 ELECTRONICS

S3C80M4/F80M4

ADDRESS SPACES

PRIME REGISTER SPACE

The lower 128 bytes (00H-7FH) of the S3C80M4's one 128-byte register pages is called prime register area.

Prime registers can be accessed using any of the seven addressing modes

(see Chapter 3, "Addressing Modes.")

The prime register area is immediately addressable following a reset.

Set 1l
Bank O Bank 1
FFH

FCH &\\\\\\\\\\\\&

EOH

DOH &\\\\\\\\\\\\&

COH

CPU and system control

I:' LCD data register

FFH

COH

Set 2

(Not used for
the S3C80M4)

7FH

O00H

Page O

Prime
Space

Figure 2-4. Set 1, Set2, Prime Area Register Map

ELECTRONICS

2-7

ADDRESS SPACES S3C80M4/F80M4

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one
that consists of 32 8-byte register groups or "slices." Each slice comprises of eight 8-bit registers.

Using the two 8-bit register pointers, RP1 and RPO, two working register slices can be selected at any one time to
form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block
anywhere in the addressable register file, except the set 2 area.

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected
working register spaces:

— One working register slice is 8 bytes (eight 8-bit working registers, RO—R7 or R8—R15)

— One working register block is 16 bytes (sixteen 8-bit working registers, RO—R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.
The base addresses for the two selected 8-byte register slices are contained in register pointers RP0O and RP1.

After a reset, RP0O and RP1 always point to the 16-byte common area in set 1 (COH—CFH).

. FFH |
/ Slice 32 E8H
. F7H
Slice 31
11111XXKX FOH
Set 1
RP1 (Registers R8-R15) Only
Each register pointer points to CFH
one 8-byte slice of the register COH |
space, selecting a total 16-byte I
working register block. :
~ | ~
|
00000 X XX |
| 10H
RPO (Registers R0O-R7) Slice 2 g:_*'
. H
Slice 1 OH

Figure 2-5. 8-Byte Working Register Areas (Slices)

2-8 ELECTRONICS

S3C80M4/F80M4 ADDRESS SPACES

USING THE REGISTER POINTS

Register pointers RPO and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable
8-byte working register slices in the register file. After a reset, they point to the working register common area:
RPO points to addresses COH—C7H, and RP1 points to addresses C8H—CFH.

To change a register pointer value, you load a new value to RPO and/or RP1 using an SRP or LD instruction.
(see Figures 2-6 and 2-7).

With working register addressing, you can only access those two 8-bit slices of the register file that are currently
pointed to by RPO and RP1. You cannot, however, use the register pointers to select a working register space in
set 2, COH-FFH, because these locations can be accessed only using the Indirect Register or Indexed
addressing modes.

The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general
programming guideline, it is recommended that RPO point to the "lower" slice and RP1 point to the "upper" slice
(see Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-
contiguous) areas of the register file. In Figure 2-7, RPO points to the "upper" slice and RP1 to the "lower" slice.

Because a register pointer can point to either of the two 8-byte slices in the working register block, you can
flexibly define the working register area to support program requirements.

& PROGRAMMING TIP — Setting the Register Pointers

SRP #70H ; RPO « 70H,RP1 <« 78H
SRP1 #48H ; RPO <« nochange, RP1 <« 48H,
SRPO #OAOH ; RPO <« AOH,RP1 <« nochange
CLR RPO ; RPO <« O0O0H,RP1 <« nochange
LD RP1,#0F8H ; RPO <« nochange, RP1 <« OF8H
/\/
Register File
Contains 32
8-Byte Slices
00001XXX EH (R15
\ 8-Byte Slice (R15) 16-Byte
RP1 SH | Contiguous
7H | Working
00000XXX ———m» 8-Byte Slice Register block
OH (RO)
RPO

Figure 2-6. Contiguous 16-Byte Working Register Block

ELECTRONICS 2-9

ADDRESS SPACES S3C80M4/F80M4

F7H (R7)
8-Byte Slice |
FOH (RO)
Register File 16-Byte
Contains 32 Contiguous
11110 XXX 8-Byte Slices working
Register block
RPO
7H (R15)
00000 XXX f———» 8-Byte Slice |
OH (RO) |«
RP1

Figure 2-7. Non-Contiguous 16-Byte Working Register Block

&~ PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of registers 80H—85H using the register pointer. The register addresses from 80H through 85H
contain the values 10H, 11H, 12H, 13H, 14H, and 15H, respectively:

SRPO #80H ; RPO <« 80H

ADD RO,R1 i RO« RO + R1
ADC RO,R2 : RO« RO + R2+C
ADC RO,R3 ; RO « RO + R3+C
ADC RO,R4 i RO « RO + R4+C
ADC RO,R5 i RO « RO + R5+C

The sum of these six registers, 6FH, is located in the register RO (80H). The instruction string used in this
example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to
calculate the sum of these registers, the following instruction sequence would have to be used:

ADD 80H,81H © 80H <« (80H) + (81H)

ADC 80H,82H © 80H <« (80H) + (82H) + C
ADC 80H,83H . 80H <« (80H) + (83H) + C
ADC 80H,84H . 80H <« (80H) + (84H) + C
ADC 80H,85H . 80H <« (80H) + (85H) + C

Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of
instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.

2-10 ELECTRONICS

S3C80M4/F80M4 ADDRESS SPACES

REGISTER ADDRESSING

The S3C8-series register architecture provides an efficient method of working register addressing that takes full
advantage of shorter instruction formats to reduce execution time.

With Register (R) addressing mode, in which the operand value is the content of a specific register or register
pair, you can access any location in the register file except for set 2. With working register addressing, you use a
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that
space.

Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register
pair, the address of the first 8-bit register is always an even number and the address of the next register is always
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and
the least significant byte is always stored in the next (+1) odd-numbered register.

Working register addressing differs from Register addressing as it uses a register pointer to identify a specific
8-byte working register space in the internal register file and a specific 8-bit register within that space.

MSB LSB n = Even address

Rn Rn+1

Figure 2-8. 16-Bit Register Pair

ELECTRONICS 2-11

ADDRESS SPACES

S3C80M4/F80M4

FFH

EOH

DOH

COH
BFH

Bank 1 Bank 0
FFH
(Not used for Control
the S3C80M4) Registers Set 2
® I :yst_e;n (Not used for
/ egisters the S3C80M4)
CPH|]
_____________________________________ COH
rRPL K T
Register [/ |-----=--=-—1
Pointers [|___________]
Each register pointer (RP) can independently point T _F:r;r;;_]
to one of the 24 8-byte "slices" of the register file " Registers |
(other than set 2). After a reset, RPO pointsto ~~ |-=—-——-——-—-
locations COH-C7H and RP1 to locations C8BH-CFH (___________/|
(that is, to the common working register area).
NOTE: Inthe S3C80M4 microcontroller, pages 0 is
implemented. ~~|TTTTTTTTTTTT
Pages O contain all of the addressable |- =======-=---1
registers in the internal register file. | ________]
Page O Page O
Register Addressing Only All Indirect Register,
Addressing Indexed
Modes Addressing
}] Modes

Special-Purpose Registers

General-Purpose Register

Can be Pointed by Register Pointer

Figure 2-9. Register File Addressing

2-12

ELECTRONICS

S3C80M4/F80M4 ADDRESS SPACES

COMMON WORKING REGISTER AREA (COH-CFH)

After a reset, register pointers RPO and RP1 automatically select two 8-byte register slices in set 1, locations
COH-CFH, as the active 16-byte working register block:

RPO — COH-C7H

RP1 — C8H-CFH

This 16-byte address range is called common area. That is, locations in this area can be used as working
registers by operations that address any location on any page in the register file. Typically, these working
registers serve as temporary buffers for data operations between different pages.

Set 1 EEH

FEH Set 2
FCH
EOH (Not used for

the S3C80M4)

COH 7FH

Page 0
Following a hardware reset, register)
pointers RPO and RP1 point to the Prime
common working register area, Space

locations COH-CFH.

RPO=| 1100 [0000 |

RP1=| 1100 [1000 | 00H

Figure 2-10. Common Working Register Area

ELECTRONICS 2-13

ADDRESS SPACES S3C80M4/F80M4

& PROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations COH—CFH,
using working register addressing mode only.

Examples 1.LD 0C2H,40H ; Invalid addressing mode!

Use working register addressing instead:

SRP #0COH
LD R2,40H ; R2 (C2H) —» the value in location 40H

2. ADD OC3H,#45H ; Invalid addressing mode!
Use working register addressing instead:

SRP #0COH
ADD R3,#45H ; R3(C3H) > R3+45H

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in
a register pointer serves as an addressing "window" that makes it possible for instructions to access working
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:

— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RPO, "1" selects RP1).

— The five high-order bits in the register pointer select an 8-byte slice of the register space.

— The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are
concatenated with the three low-order bits from the instruction address to form the complete address. As long as
the address stored in the register pointer remains unchanged, the three bits from the address will always point to
an address in the same 8-byte register slice.

Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction
"INC R6" is "0", which selects RPO. The five high-order bits stored in RP0O (01110B) are concatenated with the
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

2-14 ELECTRONICS

S3C80M4/F80M4

ADDRESS SPACES

Address

RPO
_>
RP1
Selects
RPO or RP1

OPCODE

T

Register pointer
provides five
high-order bits

4-bit address
provides three
low-order bits

Together they create an
8-bit register address

Figure 2-11. 4-Bit Working Register Addressing

RPO

RP1

01110 | 000 |<4—

011111000

Selects RPO

l 1 R6 OPCODE

Register
01110 | 110 [address

Instruction

0110|1110 INC R6'

(76H)

I

Figure 2-12. 4-Bit Working Register Addressing Example

ELECTRONICS

2-15

ADDRESS SPACES S3C80M4/F80M4

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. To
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value
"1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working
register addressing.

As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit
addressing: Bit 3 selects either RPO or RP1, which then supplies the five high-order bits of the final address; the
three low-order bits of the complete address are provided by the original instruction.

Figure 2-14 shows an example of 8-bit working register addressing. The four high-order bits of the instruction
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from
RP1 and the three address bits from the instruction are concatenated to form the complete register address,
OABH (10101011B).

RPO
—»>
RP1
Selects
RPO or RP1
Address
These address ! l
bits indicate 8-bit > 1 110 0 8-bit logical
working register o address
addressing —|—
Register pointer Three low-order bits

provides five
high-order bits

8-bit physical address

Figure 2-13. 8-Bit Working Register Addressing

2-16 ELECTRONICS

S3C80M4/F80M4 ADDRESS SPACES

RPO RP1

000 —»| 10101 000

01100

Selects RP1

J» R11 \ 4 i .
Register

8-bit address
1100(1]|01 1 | forminstruction 10101 011 address
'LD R11, R2' (OABH)

Specifies working
register addressing

Figure 2-14. 8-Bit Working Register Addressing Example

ELECTRONICS 2-17

ADDRESS SPACES S3C80M4/F80M4

SYSTEM AND USER STACK

The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH
and POP instructions are used to control system stack operations. The S3C80M4/F80M4 architecture supports
stack operations in the internal register file.

Stack Operations

Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to
their original locations. The stack address value is always decreased by one before a push operation and
increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top
of the stack, as shown in Figure 2-15.

High Address

A
PCL
PCL
Top of PCH PCH
stack Top of Flags
stack 9
Stack contents Stack contents
after a call after an
instruction interrupt
v

Low Address

Figure 2-15. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,
PUSHUD, POPUI, and POPUD support user-defined stack operations.

Stack Pointers (SPL, SPH)

Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations.
The most significant byte of the SP address, SP15-SP8, is stored in the SPH register (D8H), and the least
significant byte, SP7-SPO0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.

Because only internal memory space is implemented in the S3C84G5, the SPL must be initialized to an 8-bit
value in the range 00H-FFH. The SPH register is not needed and can be used as a general-purpose register, if
necessary.

When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the
register file), you can use the SPH register as a general-purpose data register. However, if an overflow or
underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register
during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register,
overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can
initialize the SPL value to "FFH" instead of "O0OH".

2-18 ELECTRONICS

S3C80M4/F80M4

ADDRESS SPACES

&~ PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and

POP instructions:

LD

PUSH
PUSH
PUSH
PUSH

POP
POP
POP
POP

SPL,#0FFH

PP
RPO
RP1
R3

R3
RP1
RPO
PP

SPL <« FFH

(Normally, the SPL is set to OFFH by the initialization

routine)

Stack address OFEH
Stack address OFDH
Stack address OFCH
Stack address OFBH

T

PP
RPO
RP1
R3

R3 <« Stack address OFBH
RP1 <« Stack address OFCH
RPO <« Stack address OFDH
PP <« Stack address OFEH

ELECTRONICS

2-19

ADDRESS SPACES S3C80M4/F80M4

NOTES

2-20 ELECTRONICS

S3C80M4/F80M4 ADDRESSING MODES

ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to
determine the location of the data operand. The operands specified in SAM88RC instructions may be condition
codes, immediate data, or a location in the register file, program memory, or data memory.

The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are
available for each instruction. The seven addressing modes and their symbols are:

— Register (R)

— Indirect Register (IR)

— Indexed (X)

— Direct Address (DA)

— Indirect Address (IA)

— Relative Address (RA)

— Immediate (IM)

ELECTRONICS 3-1

ADDRESSING MODES

S3C80M4/F80M4

REGISTER ADDRESSING MODE (R)

In Register addressing mode (R), the operand value is the content of a specified register or register pair

(see Figure 3-1).

Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte

working register space in the register file and an 8-bit register within that space (see Figure 3-2).

Program Memory Register File
8-bit Register
File Address N0 st P > OPERAND
Point to One /'
~ OPCODE Register in Register
One-Operand File
Instruction]
(Example) Value used in

Instruction Execution

Sample Instruction:

DEC CNTR i Where CNTR is the label of an 8-bit register address

Figure 3-1. Register Addressing

Register File
MSB Point to
RPO ot RP1
> RPO or RP1 @
Selected
RP points
Program Memory to start
4-bit of working
Working Register N qst J— 3LSBs > L‘Tg'iter
bt . > oc
Point to the
» OPCODE Working Register OPERAND
Two-Operand (1 of 8)
Instruction -
(Example)
Sample Instruction:
ADD R1, R2 ; Where R1 and R2 are registers in the currently
selected working register area.
Figure 3-2. Working Register Addressing
3-2 ELECTRONICS

S3C80M4/F80M4 ADDRESSING MODES

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the
operand. Depending on the instruction used, the actual address may point to a register in the register file, to
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to
indirectly address another memory location. Please note, however, that you cannot access locations COH—FFH in
set 1 using the Indirect Register addressing mode.

Program Memory Register File
8-bit Register
File Address ~SNo dst oo |4 ADDRESS
oint to One
» OPCODE Register in Register /
One-Operand File
Instruction
(Example) Address of Operand

used by Instruction

Value used in _» OPERAND

Instruction Execution

Sample Instruction:

RL @SHIFT ; Where SHIFT is the label of an 8-bit register address

Figure 3-3. Indirect Register Addressing to Register File

ELECTRONICS 3-3

ADDRESSING MODES S3C80M4/F80M4

INDIRECT REGISTER ADDRESSING MODE (Continued)

Register File
Program Memory
Example REGISTER
Instruction dst o S — PAIR .
References —» OPCODE Points to
Program Register Pair 16.Bit
Memory Address
Points to
Program Memory Program
Memory
Sample Instructions: Value used in —> OPERAND <
Instruction
CALL @RR2
JP @RR2

Figure 3-4. Indirect Register Addressing to Program Memory

3-4

ELECTRONICS

S3C80M4/F80M4

ADDRESSING MODES

INDIRECT REGISTER ADDRESSING MODE (Continued)

Program Memory

4-bit
Working
Register > dst src @
Address OPCODE

Sample Instruction:

OR R3, @R6

Register File
MSB Points to
RPO or RP1

oo RPOorRP1 e
I
[}
I
[}
[}
I
[}
I ~
:
I
' 3LSBs
i

Point to the Py
Working Register ADDRESS ¢

(1 0of 8)
Value used in —» OPERAND

Instruction

Selected

RP points

to start fo
working register
block

Figure 3-5. Indirect Working Register Addressing to Register File

ELECTRONICS

3-5

ADDRESSING MODES S3C80M4/F80M4
INDIRECT REGISTER ADDRESSING MODE (Concluded)
Register File
MSB Points to
RPO or RP1
> RPO or RP1 e
Selected
RP points
to start of
Program Memory \rlé%rllstr;?
4_1-bit Working block
Register Address
A gst sic o RK—————— > Register]__
. P, OPCODE Next 2-bit _POIﬂt Pair
Example Instruction to Working <
References either Register Pair 16-Bit
Program Memory or (1 of 4) d;j !
Data Memory adaress
LSB Selects Program Memory points to
> or program
Data Memory memory
or data
memory
Value used in
pu— 4_
Instruction OPERAND
Sample Instructions:
LCD R5,@RR6 ; Program memory access
LDE R3,@RR14 ; External data memory access
LDE @RR4, R8 ; External data memory access

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

3-6

ELECTRONICS

S3C80M4/F80M4 ADDRESSING MODES

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access
locations in the internal register file or in external memory. Please note, however, that you cannot access
locations COH—FFH in set 1 using Indexed addressing mode.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range —128
to +127. This applies to external memory accesses only (see Figure 3-8.)

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained
in a working register. For external memory accesses, the base address is stored in the working register pair
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address
(see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for
external data memory, when implemented.

Register File
mmmmmmmmmm - > RPOorRP1 e
|
I
|
| 1 1
I
! _ Selected RP
! Valluetusetq in points to
nstruction
! OPERAND start _of
: working
' register
! block
I
Program Memory / T T
I
q Base Address E 3 LSBs
TW(I)-OPEFé_In —Ip dst/src X @fF-L-——-=-o----4 | 2 INDEX <+
nstruction OPCODE Point to One of the
Example Woking Register
(1 0f8)
Sample Instruction:
LD RO, #BASE[R1] ; Where BASE is an 8-bit immediate value

Figure 3-7. Indexed Addressing to Register File

ELECTRONICS 3-7

ADDRESSING MODES S3C80M4/F80M4

INDEXED ADDRESSING MODE (Continued)

Register File
MSB Points to
RPO or RP1

Fommmmmoooes > RPOor RP1
' Selected
i RP points
! | to start of
. L + .

Program Memory ' worldng
! register
I block

_) OFFSET] | NEXT 2 Bits
4-bit Working _ly, qsy/src X o > Register
Register Address OPCODE 1 Point to Working Pair 1]
: Register Pair
i (Lof4) <« | 16-Bit
! address
! added to
[» Program Memory offset
LSB Selects or
Data Memory
—> «<

8-Bits 16-Bits

OPERAND <«— Value usedin

16-Bits Instruction
Sample Instructions:
LDC R4, #04H[RR2] ; The values in the program address (RR2 + 04H)
are loaded into register R4.
LDE R4,#04H[RR2] ; ldentical operation to LDC example, except that

external program memory is accessed.

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

3-8 ELECTRONICS

S3C80M4/F80M4 ADDRESSING MODES

INDEXED ADDRESSING MODE (Concluded)

Register File
MSB Points to
RPO or RP1
i > RPOorRP1 e
i Selected
| RP points
I
Program Memory ! 1 L to start of

\ wor_klng

OFFSET i Ltlaglskter

oc
it Work OFFSET] ' NEXT 2 Bits
R _""tb't X\gg Ng —p dst/src | src @fo-L------------ > Register
egister ress 1 Point to Working Pair T
OPCODE | Register Pair
| <! | 16-Bit
' address
! added to
L4 » Program Memory offset
LSB Selects or
Data Memory

' <
8-Bits 16-Bits

OPERAND — Value used in

16-Bits Instruction
Sample Instructions:
LDC R4, #1000H[RR2] ; The values in the program address (RR2 + 1000H)
are loaded into register R4.
LDE R4,#1000H[RR2] ; ldentical operation to LDC example, except that

external program memory is accessed.

Figure 3-9. Indexed Addressing to Program or Data Memory

ELECTRONICS 39

ADDRESSING MODES

S3C80M4/F80M4

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC
whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Program or
Data Memory

Program Memory

Upper Address Byte

Lower Address Byte

dst/src | "0" or "1"

OPCODE

Sample Instructions:

Memory
Address
Used

LSB Selects Program
Memory or Data Memory:
"0" = Program Memory
"1" = Data Memory

LDC R5,1234H ; The values in the program address (1234H)
are loaded into register R5.
LDE R5,1234H ; ldentical operation to LDC example, except that

external program memory is accessed.

Figure 3-10. Direct Addressing for Load Instructions

3-10

ELECTRONICS

S3C80M4/F80M4

ADDRESSING MODES

DIRECT ADDRESS MODE (Continued)

Program Memory

Next OPCODE |+

Memory
Address
Used
Upper Address Byte
Lower Address Byte
OPCODE
Sample Instructions:
JP C,JOoB1 ; Where JOBL1 is a 16-bit immediate address
CALL DISPLAY ;. Where DISPLAY is a 16-bit inmediate address

Figure 3-11. Direct Addressing for Call and Jump Instructions

ELECTRONICS

3-11

ADDRESSING MODES S3C80M4/F80M4

INDIRECT ADDRESS MODE (lA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program
memory. The selected pair of memory locations contains the actual address of the next instruction to be executed.
Only the CALL instruction can use the Indirect Address mode.

Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program
memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are

assumed to be all zeros.

Program Memory

> <«— Next Instruction
LSB Must be Zero
-
c dst g —
urrent
Instruction OPCODE
|_ Lower Address Byte Program Memory

|_ Upper Address Byte | €— Locations 0-255

Sample Instruction:

CALL #40H ; The 16-bit value in program memory addresses 40H
and 41H is the subroutine start address.

Figure 3-12. Indirect Addressing

3-12 ELECTRONICS

S3C80M4/F80M4 ADDRESSING MODES

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a twos-complement signed displacement between — 128 and + 127 is specified
in the instruction. The displacement value is then added to the current PC value. The result is the address of the
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction
immediately following the current instruction.

Several program control instructions use the Relative Address mode to perform conditional jumps. The
instructions that support RA addressing are BTJRF, BTJRT, DIJNZ, CPIJE, CPIJNE, and JR.

Program Memory

Next OPCODE

Program Memory
Address Used

¢ Current
: PC Value
Displacement >

Current Instruction —»__ OPCODE Signed
Displacement Value

Sample Instructions:

JR ULT,$+OFFSET ;. Where OFFSET is a value in the range +127 to -128

Figure 3-13. Relative Addressing

ELECTRONICS 3-13

ADDRESSING MODES S3C80M4/F80M4

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand
field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate
addressing mode is useful for loading constant values into registers.

Program Memory

OPERAND
OPCODE

(The Operand value is in the instruction)

Sample Instruction:

LD RO#0AAH

Figure 3-14. Imnmediate Addressing

3-14 ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER

CONTROL REGISTERS

OVERVIEW

In this chapter, detailed descriptions of the S3C80M4 control registers are presented in an easy-to-read format.
You can use this chapter as a quick-reference source when writing application programs. Figure 4-1 illustrates
the important features of the standard register description format.

Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed
information about control registers is presented in the context of the specific peripheral hardware descriptions in
Part 11 of this manual.

Data and counter registers are not described in detail in this reference chapter. More information about all of the
registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part Il of this
manual.

The locations and read/write characteristics of all mapped registers in the S3C80M4 register file are listed in
Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, "RESET and Power-
Down."

Table 4-1. Set 1 Registers

Register Name Mnemonic Decimal Hex R/W
Locations DO — D2H are not mapped.

Basic Timer Control Register BTCON 211 D3H R/W
System Clock Control Register CLKCON 212 D4H R/W
System Flags Register FLAGS 213 D5H R/W
Register Pointer 0 RPO 214 D6H R/W
Register Pointer 1 RP1 215 D7H R/W
Stack Pointer (High Byte) SPH 216 D8H R/W
Stack Pointer (Low Byte) SPL 217 D9H R/W
Instruction Pointer (High Byte) IPH 218 DAH R/W
Instruction Pointer (Low Byte) IPL 219 DBH R/W
Interrupt Request Register IRQ 220 DCH R
Interrupt Mask Register IMR 221 DDH R/W
System Mode Register SYM 222 DEH R/W
Register Page Pointer PP 223 DFH R/W

ELECTRONICS 4-1

CONTROL REGISTERS S3C80M4/F80M4
Table 4-2. Set 1, Bank 0 Registers
Register Name Mnemonic Decimal Hex R/W
Port 0 Data Register PO 224 EOH R/W
Port 1 Data Register P1 225 E1H R/W
Location E2H is not mapped.
Clock Output Control Register CLOCON 227 E3H R/W
Timer 0 Counter Register TOCNT 228 E4H R
Timer 0 Data Register TODATA 229 E5H R/W
Timer 0 Control Register TOCON 230 E6H R/W
PWM Data Register PWMDATA 231 E7H R/W
PWM Control Register PWMCON 232 E8H R/W
Locations E9 — EEH are not mapped.
Port 1 Control Register(High Byte) P1CONH 240 EFH R/W
Port 1 Control Register(Low Byte) P1CONL 241 FOH R/W
Port 1 Pull-up Resistor Enable Register P1PUR 242 F1H R/W
Port 0 Control Register(High Byte) POCONH 243 F2H R/W
Port 0 Control Register(Low Byte) POCONL 244 F3H R/W
Port O Interrupt Control Register POINT 245 F4H R/W
Port O Interrupt Pending Register POPND 246 F5H R/W
Locations F6 — FAH are not mapped.
STOP Control Register | stpcon | 251 FBH RIW
Location FCH is not mapped.
Basic Timer Counter | BTCNT 253 FDH R
Location FEH is not mapped.
Interrupt Priority Register | IPR 255 FFH R/W

4-2

ELECTRONICS

S3C80M4/F80M4

CONTROL REGISTER

Bit number(s) that is/are appended to
the register name for bit addressing

Name of individual
bit or related bits

Register address

Register location
in the internal

Bit Addressing

Mode
A

v
o

\ 4
o

\ 4
o

Register ID Full Register name (hexadecimal) register file
FLAGS - System Flags Register D5H Set 1

Bit Identifier | 7 | 6 | 5 | & | 3| 2 1 | o |
RESET Value X X X X X X X «—» 0
Read/Write —» R/W R/W R/W R/W R/IW R/IW R/W R/W

Register addressing mode|only

Carry Flag (C) —

0 | Operation does not generate a carry or borrow condition

0 | Operation generates carry-out or borrow into high-order bit 7

Zero Flag (2)

0 Operation result is a non-zero value

0 Operation result is zero

Sign Flag (S)

0 Operation generates positive number (MSB = "0")

0 Operation generates negative number (MSB = "1")

I

Type of addressing
that must be used to
address the bit
(1-bit, 4-bit, or 8-bit)

R = Read-only Description of the
W = Write-only effect of specific
R/W = Read/write bit settings

' = Not used

-' = Not used

'X' = Undetermined value
'0"' = Logic zero

'1' = Logic one

Bit number:
MSB = Bit 7
LSB =Bit0

RESET value notation:

Figure 4-1. Register Description Format

ELECTRONICS

4-3

CONTROL REGISTERS S3C80M4/F80M4

BTCON — Basic Timer Control Register D3H Set 1
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7-4 Watchdog Timer Function Disable Code (for System Reset)

1 | 0 | 1 | 0 | Disable watchdog timer function

Others Enable watchdog timer function

3-2 Basic Timer Input Clock Selection Bits

0 | 0 [fxx/4096

0 | 1 |[fxx/1024

1 0 |fxx/128

1 1 | fxx/16
1 Basic Timer Counter Clear Bit (1)

0 | No effect

1 | Clear the basic timer counter value

.0 Clock Frequency Divider Clear Bit for Basic Timer and Timer/Counters (2
0 | No effect

1 | Clear both clock frequency dividers

NOTES:

1. When you write a “1” to BTCON.1, the basic timer counter value is cleared to "00H". Immediately following the write
operation, the BTCON.1 value is automatically cleared to “0”.

2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to "00H". Immediately following the
write operation, the BTCON.O value is automatically cleared to "0".

4-4 ELECTRONICS

S3C80M4/F80M4

CONTROL REGISTER

CLKCON — System Clock Control Register D4H Set 1
Bit Identifier | 6 | 5 | 4 | 3 | 2 | a 0
RESET Value 0 - - 0 0 - - -
Read/Write R/W - - R/W R/W - - -
Addressing Mode Register addressing mode only
7 Oscillator IRQ Wake-up Function Bit

0 | Enable IRQ for main wake-up in power down mode
1 | Disable IRQ for main wake-up in power down mode
.6—-5 Not used for the S3C80M4
4-3 CPU Clock (System Clock) Selection Bits (note)
0 0 | fxx/16
0 1 |fxx/8
1 0 |fxx/2
1 1 |fxx
.2-.0 Not used for the S3C80M4

NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load
the appropriate values to CLKCON.3 and CLKCON.4.

ELECTRONICS

CONTROL REGISTERS S3C80M4/F80M4

CLOCON — clock Output Control Register E3H Set 1, BankO
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 | 1 | .
RESET Value - - - - - - 0 0
Read/Write - - - - - - R/W R/W
Addressing Mode Register addressing mode only
7-2 Not used for the S3C80M4
.1-.0 Clock Output Frequency Selection Bits

0 0 |fxx/64

0 1 | fxx/16

1 0 |fxx/8

1 1 |fxx/4

4-6 ELECTRONICS

S3C80M4/F80M4

CONTROL REGISTER

FLAGS — System Flags Register D5H Set 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
RESET Value X X X X X X 0 0
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Addressing Mode Register addressing mode only

Carry Flag (C)

0 | Operation does not generate a carry or borrow condition
1 | Operation generates a carry-out or borrow into high-order bit 7
Zero Flag (2)
0 | Operation result is a non-zero value
1 | Operation result is zero
Sign Flag (S)
0 | Operation generates a positive number (MSB = "0")
1 | Operation generates a negative number (MSB ="1")
Overflow Flag (V)
0 |Operationresultis < +127 or > -128
1 |Operationresultis >+127 or < -128
Decimal Adjust Flag (D)
0 | Add operation completed
1 | Subtraction operation completed
Half-Carry Flag (H)
0 | No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction
1 | Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3

Fast Interrupt Status Flag (FIS)

0 | Interrupt return (IRET) in progress (when read)

1 | Fastinterrupt service routine in progress (when read)
Bank Address Selection Flag (BA)

0 |Bank O is selected

1 |Bank1is selected

ELECTRONICS

CONTROL REGISTERS S3C80M4/F80M4

IMR — Interrupt Mask Register DDH Set 1
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 | 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Interrupt Level 7 (IRQ7) Enable Bit; External Interrupts P0.3

0 | Disable (mask)

1 | Enable (unmask)

.6 Interrupt Level 6 (IRQ6) Enable Bit; External Interrupts P0.2

0 | Disable (mask)

1 | Enable (unmask)

5 Interrupt Level 5 (IRQ5) Enable Bit; External Interrupts PO.1

0 | Disable (mask)

1 | Enable (unmask)

4 Interrupt Level 4 (IRQ4) Enable Bit; External Interrupts P0.0

0 | Disable (mask)

1 | Enable (unmask)

3 Reserved

2 Interrupt Level 2 (IRQ2) Enable Bit; PWM
0 | Disable (mask)
1 | Enable (unmask)

1 Reserved

.0 Interrupt Level 0 (IRQO) Enable Bit; Timer 0 Match
0 | Disable (mask)
1 | Enable (unmask)

NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.

4-8 ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER
IPH — Instruction Pointer (High Byte) DAH Set 1
Bit Identifier | 7 | 6 | 5 | a4 | 3 | 2 | 1 | o |
RESET Value X X X X X X X X
Read/Write R/W RIW RIW R/W RIW R/W R/W RIW

Addressing Mode

Register addressing mode only

.7-.0 Instruction Pointer Address (High Byte)
The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction
pointer address (IP15—1P8). The lower byte of the IP address is located in the IPL
register (DBH).

IPL — instruction Pointer (Low Byte) DBH Setl
Bit Identifier | 7 | 6 | 5 | a4 | 3 | 2 | 1 | o |
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

.7-0

Register addressing mode only

Instruction Pointer Address (Low Byte)

The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction
pointer address (IP7-IPQ). The upper byte of the IP address is located in the IPH
register (DAH).

ELECTRONICS

CONTROL REGISTERS S3C80M4/F80M4

IPR — Interrupt Priority Register FFH Set 1,Bank 0
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 | 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7, .4,and .1 Priority Control Bits for Interrupt Groups A, B, and C

0 0 0 | Group priority undefined
ofo0f|1(|B >C > A
O[1[0|A>B >2C
0 1 1|B > A > C
1]10|0]|C>A>08B
1|10|1|C >B > A
1|11|0|A>C >1B
1 1 1 | Group priority undefined
.6 Interrupt Subgroup C Priority Control Bit

0 |IRQ6 > IRQ7
1 |IRQ7 > IRQ6

5 Interrupt Group C Priority Control Bit
0 |IRQ5 > (IRQS6, IRQ7)
1 |(IRQS6, IRQ7) > IRQ5

.3 Interrupt Subgroup B Priority Control Bit
0 |IRQ3 >IRQ4
1 |IRQ4 >IRQ3

2 Interrupt Group B Priority Control Bit
0 |IRQ2 > (IRQ3,IRQ4)
1 |(IRQ3,IRQ4) > IRQ2

.0 Interrupt Group A Priority Control Bit
0 |[IRQO > IRQ1
1 |IRQ1 > IRQO

NOTE: Interrupt group A - IRQO, IRQ1
Interrupt group B -IRQ2, IRQ3, IRQ4
Interrupt group C -IRQ5, IRQ6, IRQ7

4-10 ELECTRONICS

S3C80M4/F80M4

CONTROL REGISTER

|RQ — Interrupt Request Register DCH Setl
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 |

RESET Value 0 0 0 0 0 0

Read/Write R R R R R

Addressing Mode

Register addressing mode only

Level 7 (IRQ7) Request Pending Bit; External Interrupts P0.3

0 | Not pending

1 | Pending

Level 6 (IRQ6) Request Pending Bit; External Interrupts P0.2

0 | Not pending

1 | Pending

Level 5 (IRQ5) Request Pending Bit; ; External Interrupts P0.1

0 | Not pending

1 | Pending

Level 4 (IRQ4) Request Pending Bit; ; External Interrupts P0.0

0 | Not pending

1 | Pending

| Reserved

Level 2 (IRQ2) Request Pending Bit; PWM

0 | Not pending

1 | Pending

| Reserved

Level 0 (IRQO) Request Pending Bit; Timer 0 Match

0 | Not pending

1 | Pending

ELECTRONICS

4-11

CONTROL REGISTERS S3C80M4/F80M4

POCONH — Port 0 control Register (High Byte) F2H Set 1,Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
RESET Value 0 1 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.6 P0.7

0 0 | Schmitt trigger input mode

0 1 | Schmitt trigger input mode with pull-up resistor

1 0 | Not available

1 1 | Output mode, push-pull

5-4 P0.6/PWM
0 0 | Schmitt trigger input mode

0 1 | Schmitt trigger input mode with pull-up resistor
1 0 | Alternative function (PWM)
1 1 | Output mode, push-pull

?
[N
T
o
o

Schmitt trigger input mode

Schmitt trigger input mode with pull-up resistor

Not available

Rl |O|O
R |O|FR|O

Output mode, push-pull

T
o
)
©
~

Schmitt trigger input mode

Schmitt trigger input mode with pull-up resistor

Not available

R, |O|O
R |O|FR|O

Output mode, push-pull

4-12 ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER

POCONL — port 0 control Register (Low Byte) F3H Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write RIW R/W R/IW R/W RIW R/W R/W R/W
Addressing Mode Register addressing mode only

7-6 P0.3/INT3

0 0 | Schmitt trigger input mode

0 1 | Schmitt trigger input mode with pull-up resistor
1 0 | Not available
1 1

Output mode, push-pull

5-4 P0.2/INT2
0 0 | Schmitt trigger input mode

0 1 | Schmitt trigger input mode with pull-up resistor
1 0 | Not available
1 1

Output mode, push-pull

3-2 PO.1/INT1
0 0 | Schmitt trigger input mode

0 1 | Schmitt trigger input mode with pull-up resistor
1 0 | Not available
1 1

Output mode, push-pull

.1-.0 PO.0/INTO
0 0 | Schmitt trigger input mode

Schmitt trigger input mode with pull-up resistor

0 1
1 0 | Not available
1 1 | Output mode, push-pull

ELECTRONICS 4-13

CONTROL REGISTERS S3C80M4/F80M4

POINT —Port 0 Interrupt Control Register F4H Set 1,Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

7—-.6 PO0.3/External interrupt (INT3) Enable Bits

0 0 | Disable interrupt

Enable interrupt by falling edge

0|1
1 0 | Enable interrupt by rising edge
1 1 | Enable interrupt by both falling and rising edge

5-4 P0.2/External interrupt (INT2) Enable Bits
0 0 | Disable interrupt

Enable interrupt by falling edge

0|1
1 0 | Enable interrupt by rising edge
1 1 | Enable interrupt by both falling and rising edge

3-2 PO0.1/External interrupt (INT1) Enable Bits
0 0 | Disable interrupt

Enable interrupt by falling edge

0 1
1 0 | Enable interrupt by rising edge
1 1 | Enable interrupt by both falling and rising edge

1-.0 PO0.0/External interrupt (INTO) Enable Bits
0 0 | Disable interrupt

Enable interrupt by falling edge

0 1
1 0 | Enable interrupt by rising edge
1 1 | Enable interrupt by both falling and rising edge

4-14 ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER

POPND — porto Interrupt Pending Register F5H Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

T-4 Not used for the S3C80M4

3 P0.3/External Interrupt (INT3) Pending Bit

0 | Interrupt request is not pending (When read), Clear pending bit when write O

1 | PO.3/INT3 interrupt request is pending (when read)

2 PO0.2/External Interrupt (INT2) Pending Bit

0 | Interrupt request is not pending (When read), Clear pending bit when write O

1 | PO.2/INT2 interrupt request is pending (when read)

A1 PO0.1/External Interrupt (INT1) Pending Bit
0 | Interrupt request is not pending (When read), Clear pending bit when write O

1 | PO.1/INT1 interrupt request is pending (when read)

.0 P0.0/External Interrupt (INTO) Pending Bit

0 | Interrupt request is not pending (When read), Clear pending bit when write O

1 | PO.O/INTO interrupt request is pending (when read)

ELECTRONICS 4-15

CONTROL REGISTERS S3C80M4/F80M4

P1CONH — Port 1 control Register (High Byte) EFH Set 1,Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
RESET Value - - 0 0 0 0 0 0
Read/Write - - R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7—-.6 Not used for the S3C80M4
5-4 P1.6/CLKOUT

0 0 | Input mode
0 1 | Output mode, N-channel open-drain
1 0 | Alternative function (CLKOUT)
1 1 | Output mode, push-pull
3-2 P1.5
0 0 | Input mode
0 1 | Output mode, N-channel open-drain
1 0 | Not available
1 1 | Output mode, push-pull
1-0 P1.4
0 0 |input mode
0 1 | Output mode, N-channel open-drain
1 0 | Not available
1 1 | Output mode, push-pull

4-16 ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER

P1CONL — port 1 control Register (Low Byte) FOH Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.6 P1.3

0 0 | Schmitt trigger input mode

0 1 | Output mode, N-channel open-drain

1 0 | Not available

1 1 | Output mode, push-pull

{
~
0
=
[N

0 0 | Schmitt trigger input mode
0 1 | Output mode, N-channel open-drain
1 0 | Not available
1 1 | Output mode, push-pull
3-2 P1.1/TOCLK

0 0 | Schmitt trigger input mode (TOCLK)

Output mode, N-channel open-drain

0 1
1 0 | Not available
1 1 | Output mode, push-pull

.1-.0 P1.0/TOOUT
0 0 | Schmitt trigger input mode

0 1 | Output mode, N-channel open-drain
1 0 | Alternative function (TOOUT)
1 1 | Output mode, push-pull

ELECTRONICS 4-17

CONTROL REGISTERS

S3C80M4/F80M4

P1PUR — port 1 Pull-up Resistor Enable Register F1H Set 1,Bank 0
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 |

RESET Value - 0 0 0 0 0 0 0
Read/Write - RIW RIW RIW RIW RIW RIW RIW

Addressing Mode Register addressing mode only

g Not used for the S3C80M4

.6 P1.6 Pull-up Resistor Enable Bit

0 | Pull-up disable

1 | Pull-up enable

5 P1.5 Pull-up Resistor Enable Bit

0 | Pull-up disable

1 | Pull-up enable

4 P1.4 Pull-up Resistor Enable Bit

0 | Pull-up disable

1 | Pull-up enable

3 P1.3 Pull-up Resistor Enable Bit

0 | Pull-up disable

1 | Pull-up enable

2 P1.2 Pull-up Resistor Enable Bit

0 | Pull-up disable

1 | Pull-up enable

A P1.1 Pull-up Resistor Enable Bit

0 | Pull-up disable

1 | Pull-up enable

.0 P1.0 Pull-up Resistor Enable Bit

0 | Pull-up disable

1 | Pull-up enable

NOTE: A pull-up resistor of port 1 is automatically disabled only when the corresponding pin is selected as push-pull output

or alternative function.

4-18

ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER

PP — Register Page Pointer DFH Set 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7-4 Destination Register Page Selection Bits

0 | 0 | 0 | 0 | Destination: page 0

Others Not used for the S3C80M4

3-.0 Source Register Page Selection Bits

0 | 0 | 0 | 0 [Source: page O

Others Not used for the S3C80M4

NOTE: In the S3C80M4 microcontroller, the internal register file is configured as one pages (pages 0).
The page 0 is used for general purpose register file.

ELECTRONICS 4-19

CONTROL REGISTERS S3C80M4/F80M4
PWMCON — pulse width Modulation Control Register E8H Set 1,Bank 0
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W RIW R/W RIW RIW RIW RIW RIW

Addressing Mode

.1—-.6

Register addressing mode only

PWM Input Clock Selection Bits

0 0 |fosc/64
0 1 |fosc/8
1 0 |fosc/2
1 1 |fosc/l

Not used, But you must keep "1"

PWMDATA Reload Interval Selection Bit

0 | Reload from 8-bit up counter overflow

1 | Reload from 6-bit up counter overflow

PWM Counter Clear Bit

0 | No effect

Clear the PWM counter (when write)

PWM Counter Enable Bit

0 | Counter STOP

Counter RUN (Resume countering)

PWM Overflow Interrupt Enable Bit

0 | Disable interrupt

Enable interrupt

PWM Overflow Interrupt Pending Bit

Interrupt is not pending (when read), Clear pending (when write)

Interrupt is pending (when read), No effect (when write)

NOTE: The PWMCON.3 is not automatically cleared to "0". You must pay attention when clear pending bit.

4-20

ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER

RPO — Register Pointer 0 D6H Set 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
RESET Value 1 1 0 0 0 - - -
Read/Write R/W R/W R/W R/W R/W - - -
Addressing Mode Register addressing only
7-3 Register Pointer 0 Address Value

Register pointer 0 can independently point to one of the 256-byte working register
areas in the register file. Using the register pointers RP0O and RP1, you can select
two 8-byte register slices at one time as active working register space. After a reset,
RPO points to address COH in register set 1, selecting the 8-byte working register

slice COH—C7H.
.2-.0 Not used for the S3C80M4
RP1— Register Pointer 1 D7H Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o
RESET Value 1 1 0 0 1 - - -
Read/Write R/W R/W R/W R/W R/W - - -
Addressing Mode Register addressing only
7-.3 Register Pointer 1 Address Value

Register pointer 1 can independently point to one of the 256-byte working register
areas in the register file. Using the register pointers RP0 and RP1, you can select
two 8-byte register slices at one time as active working register space. After a reset,
RP1 points to address C8H in register set 1, selecting the 8-byte working register
slice CBH—CFH.

2-.0 Not used for the S3C80M4

ELECTRONICS 4-21

CONTROL REGISTERS S3C80M4/F80M4

SPH — stack pointer (High Byte) D8H Set 1
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 | 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Stack Pointer Address (High Byte)

The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer
address (SP15-SP8). The lower byte of the stack pointer value is located in register
SPL (D9H). The SP value is undefined following a reset.

SPL — stack Pointer (Low Byte) D9H Set 1
Bit Identifier | 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Stack Pointer Address (Low Byte)

The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer
address (SP7-SP0). The upper byte of the stack pointer value is located in register
SPH (D8H). The SP value is undefined following a reset.

4-22 ELECTRONICS

S3C80M4/F80M4

CONTROL REGISTER

STPCON — Stop Control Register

Bit Identifier
RESET Value
Read/Write
Addressing Mode

.7-.0

FBH Set 1, Bank O
| 7 | 6 | 5 | a 3 2 1 0
0 0 0 0 0 0 0 0
RIW RIW RIW RIW RIW RIW RIW RIW

Register addressing mode only

STOP Control Bits

10100101

Enable stop instruction

Other values

Disable stop instruction

NOTE: Before execute the STOP instruction, You must set this STPCON register as “10100101b”. Otherwise the STOP
instruction will not execute as well as reset will be generated.

ELECTRONICS

4-23

CONTROL REGISTERS S3C80M4/F80M4
SYM — System Mode Register DEH Set 1
Bit Identifier | 7 | e | 5 | 4 | 3 | 2 |
RESET Value 0 - - X X X 0 0
Read/Write R/W - - R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

7 | Not used, But you must keep "0"
6-5 | Not used for the S3C80M4
4-2 Fast Interrupt Level Selection Bits (1)
0| 0] 0 |IRQO
0| 0] 1 |IRQ1
0| 1] 0 [IRQ2
01| 1 |IRQ3
10| 0 |IRQ4
1 0 1 [IRQ5
1|1 0 |IRQ6
1 1 1 [IRQ7
1 Fast Interrupt Enable Bit (2
0 | Disable fast interrupt processing
1 | Enable fast interrupt processing

.0 Global Interrupt Enable Bit 3

0 | Disable all interrupt processing

1 | Enable all interrupt processing

NOTES:
1. You can select only one interrupt level at a time for fast interrupt processing.

2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2-SYM. 4.

3. Following a reset, you must enable global interrupt processing by executing an El instruction
(not by writing a "1" to SYM.0).

4-24

ELECTRONICS

S3C80M4/F80M4 CONTROL REGISTER

TOCON — Timer 0 Control Register E6H Set 1,Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-5 Timer O Input Clock Selection Bits

0| 0| 0 |fxx/1024
0| 0 [1 [fxx/256
0 1 0 |fxx/64
0 1 1 |fxx/8
1 0 0 [fxx/1
1 0 1 | External clock (TOCLK) falling edge
1 1 0 | External clock (TOCLK) rising edge
1 1 1 | Counter stop
4 Not used for the S3C80M4
3 Timer 0 Counter Clear Bit
0 | No effect

1 | Clear the timer O counter (when write)

2 Timer 0 Counter Enable Bit
0 | Disable counting operation

1 | Enable counting operation

A Timer 0 Match Interrupt Enable Bit
0 | Disable interrupt

1 | Enable interrupt

.0 Timer O Interrupt Pending Bit

0 | Interrupt request is not pending (when read),
Pending bit clear when write 0

1 | Interrupt request is pending (when read)

NOTE: The TOCON.3 value is automatically cleared to "0" after being cleared counter.

ELECTRONICS 4-25

CONTROL REGISTERS S3C80M4/F80M4

NOTES

4-26 ELECTRONICS

S3C80M4/F80M4 INTERRUPT STRUCTURE

INTERRUPT STRUCTURE

OVERVIEW

The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU
recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has
more than one vector address, the vector priorities are established in hardware. A vector address can be
assigned to one or more sources.

Levels

Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and 1/0 blocks
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight
possible interrupt levels: IRQO-IRQ7, also called level O-level 7. Each interrupt level directly corresponds to an
interrupt request number (IRQnN). The total number of interrupt levels used in the interrupt structure varies from
device to device. The S3C80M4 interrupt structure recognizes eight interrupt levels.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just
identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is
determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR
settings lets you define more complex priority relationships between different levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The
maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for
S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector
priorities are set in hardware. S3C80M4 uses eight vectors.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow.
Each vector can have several interrupt sources. In the S3C80M4 interrupt structure, there are eight possible
interrupt sources.

When a service routine starts, the respective pending bit should be either cleared automatically by hardware or
cleared "manually” by program software. The characteristics of the source's pending mechanism determine which
method would be used to clear its respective pending bit.

ELECTRONICS 5-1

INTERRUPT STRUCTURE S3C80M4/F80M4

INTERRUPT TYPES

The three components of the S3C8 interrupt structure described before — levels, vectors, and sources — are
combined to determine the interrupt structure of an individual device and to make full use of its available interrupt
logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3.
The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

Type 1: One level (IRQn) + one vector (V4) + one source (S;)
Type 2: One level (IRQn) + one vector (V;) + multiple sources (S; — S,
Type 3: One level (IRQn) + multiple vectors (V; — V,)) + multiple sources (S; - S,,, S;;+1 — Sp+m)

In the S3C80M4 microcontroller, two interrupt types are implemented.

Levels Vectors Sources
Type 1: IRQN Vi S1
S1
Type 2: IRQN Vi S2
S3
-------- Sn
Vi S1
Type 3: IRQN V2 S2
V3 S3
-------- Vn TTTTTTmAmTTe Sn

Po----e- Sn+1

NOTES: b Sn+2

1. The number of Sn and Vn value is expandable. |
2. Inthe S3C80M4 implementation, ettt Sn+m
interrupt types 1 is used.

Figure 5-1. S3C8-Series Interrupt Types

5-2 ELECTRONICS

S3C80M4/F80M4 INTERRUPT STRUCTURE

S3C80M4 INTERRUPT STRUCTURE

The S3C80M4/F80M4 microcontroller supports nineteen interrupt sources. All nineteen of the interrupt sources
have a corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-
specific interrupt structure, as shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt
with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single
level are fixed in hardware).

When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the
service routine is executed.

Levels Vectors Sources Reset/Clear
RESET —— 100H —— — Basic Timer Overflow H/W
IRQQ —— EEH ———— — Timer 0 match SIW
IRQL —— ECH —— Reserved -
IRQ2 — EAH ——— PWMinterrupt SIW
IRQ3 ———— E8H ——— Reserved -
IRQ4 ——— E6H —— — P0.0 External interrupt S/IW
IRQ5 ——— E4H —— P0.1 External interrupt S/IW
IRQ6 ——— E2H —— — P0.2 External interrupt S/IW
IRQ7 —— EOH ———— P0.3 External interrupt S/IW

Figure 5-2. S3C80M4/F80M4 Interrupt Structure

ELECTRONICS 5-3

INTERRUPT STRUCTURE S3C80M4/F80M4

INTERRUPT VECTOR ADDRESSES

All interrupt vector addresses for the S3C80M4/F80M4 interrupt structure are stored in the vector address area of
the internal 4-Kbyte ROM, OH-FFFH (see Figure 5-3).

You can allocate unused locations in the vector address area as normal program memory. If you do so, please be
careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).

The program reset address in the ROM is 0100H.

(Decimal) (Hex)
4,095 FFFH
4K-bytes
Internal
Program

Memory Area

255 [====-==------o FFH

Interrupt
Vector Area

0 O0H
S3C80M4/F80M4

Figure 5-3. ROM Vector Address Area

5-4 ELECTRONICS

S3C80M4/F80M4

INTERRUPT STRUCTURE

Table 5-1. Interrupt Vectors

Vector Address Interrupt Source Request Reset/Clear
Decimal Hex Interrupt H/W SIW
Value Value Level
256 100H Basic timer overflow Reset \/
238 EEH Timer 0 match IRQO \
236 ECH Reserved IRQ1 — -
234 EAH PWM interrupt IRQ2 \
232 E8H Reserved IRQ3 - -
230 E6H P0.0 external interrupt IRQ4 \
228 E4H P0.1 external interrupt IRQ5 \
226 E2H P0.2 external interrupt IRQ6 \
224 EOH P0.3 external interrupt IRQ7 \

ELECTRONICS

5-5

INTERRUPT STRUCTURE

S3C80M4/F80M4

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

Executing the Enable Interrupts (El) instruction globally enables the interrupt structure. All interrupts are then
serviced as they occur according to the established priorities.

NOTE

The system initialization routine executed after a reset must always contain an El instruction to globally
enable the interrupt structure.

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable
interrupt processing. The El and DI instructions change the value of bit 0 in the SYM register.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level registers control interrupt

processing:

— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.

— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.

— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to

each interrupt source).

— The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable
fast interrupts and control the activity of external interface, if implemented).

Table 5-2. Interrupt Control Register Overview

Control Register ID R/W Function Description

Interrupt mask register IMR R/W Bit settings in the IMR register enable or disable interrupt
processing for each of the eight interrupt levels: IRQO-IRQ7.

Interrupt priority register IPR R/W | Controls the relative processing priorities of the interrupt levels.
The seven levels of S3C80M4/F80M4 are organized into three
groups: A, B, and C. Group A is IRQO and IRQ1, group B is
IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.

Interrupt request register IRQ R This register contains a request pending bit for each interrupt
level.

System mode register SYM R/W | This register enables/disables fast interrupt processing,

dynamic global interrupt processing, and external interface
control (An external memory interface is implemented in the
S3C80M4/F80M4 microcontroller).

NOTE: Before IMR register is changed to any value, all interrupts must be disable. Using DI instruction is recommended.

5-6

ELECTRONICS

S3C80M4/F80M4

INTERRUPT STRUCTURE

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The

system-level control points in the interrupt structure are:

— Global interrupt enable and disable (by El and DI instructions or by direct manipulation of SYM.0)

— Interrupt level enable/disable settings (IMR register)

— Interrupt level priority settings (IPR register)

— Interrupt source enable/disable settings in the corresponding peripheral control registers

When writing an application program that handles interrupt processing, be sure to include the necessary

NOTE

register file address (register pointer) information.

El —S Q Interrupt Request Register Polling
(Read-only) Cycle
RESET —R
IRQO-IRQ7,
Interrupts
Interrupt Priority \
Register J D—»

Interrupt Mask
Register

Global Interrupt Control (El,
DI or SYM.0 manipulation)

Vector
Interrupt
Cycle

Figure 5-4. Interrupt Function Diagram

ELECTRONICS

INTERRUPT STRUCTURE

S3C80M4/F80M4

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is one or more corresponding peripheral control registers that let you control the
interrupt generated by the related peripheral (see Table 5-3).

Table 5-3. Interrupt Source Control and Data Registers

Interrupt Source Interrupt Level Register(s) Location(s) in Set 1
Timer 0 match IRQO TOCON E6H, bank 0
TODATA E5H, bank 0
TOCNT E4H, bank 0
Reserved IRQ1 - -
PWM interrupt IRQ2 PWMCON E8H, bank O
PWMDATA E7H, bank 0
Reserved IRQ3 - -
P0.0 external interrupt IRQ4 POCONL F3H, bank 0
POINT F4H, bank 0
POPND F5H, bank 0
P0.1 external interrupt IRQ5 POCONL F3H, bank 0
POINT F4H, bank 0
POPND F5H, bank 0
P0.2 external interrupt IRQ6 POCONL F3H, bank 0
POINT F4H, bank O
POPND F5H, bank 0
P0.3 external interrupt IRQ7 POCONL F3H, bank 0
POINT F4H, bank 0
POPND F5H, bank 0

ELECTRONICS

S3C80M4/F80M4 INTERRUPT STRUCTURE

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to
control fast interrupt processing (see Figure 5-5).

A reset clears SYM.1, and SYM.0 to "0". The 3-bit value for fast interrupt level selection, SYM.4-SYM.2, is
undetermined.

The instructions El and DI enable and disable global interrupt processing, respectively, by modifying the bit 0
value of the SYM register. In order to enable interrupt processing an Enable Interrupt (El) instruction must be
included in the initialization routine, which follows a reset operation. Although you can manipulate SYM.0 directly
to enable and disable interrupts during the normal operation, it is recommended to use the El and DI instructions
for this purpose.

System Mode Register (SYM)
DEH, Set 1, RIW

MSB | .7 .6 5 A4 3 2 A .0 |LSB

Always logic "0" Global interrupt enable bit: (3)
0 = Disable all interrupts processing
1 = Enable all interrupts processing

Not used for the S3C80M4

Fast interrupt level
selection bits: (1)

0 0 0=IRQO Fast interrupt enable bit: (2)

00 1=IRQ1 0 = Disable fast interrupts processing
01 0=IRQ2 1 = Enable fast interrupts processing
011=IRQ3

1 0 0=IRQ4

10 1=IRQ5

11 0=IRQ6

11 1=IRQ7

NOTES:

1. You can select only one interrupt level at a time for fast interrupt processing.

2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt processing for the
interrupt level currently selected by SYM.2-SYM.4.

3. Following a reset, you must enable global interrupt processing by executing El instruction
(not by writing a "1" to SYM.0)

Figure 5-5. System Mode Register (SYM)

ELECTRONICS 5-9

INTERRUPT STRUCTURE S3C80M4/F80M4

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required
settings by the initialization routine.

Each IMR bit corresponds to a specific interrupt level: bit 0 to IRQO, bit 2 to IRQ2, and so on. When the IMR bit of
an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a level's
IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions
using the Register addressing mode.

Interrupt Mask Register (IMR)
DDH, Set 1, RIW

MSB | .7 .6 .5 A4 3 2 1 .0 |LSB

IRQO
IRQ2 Reserved

IRQ4 Reserved
IRQ5
IRQ6
IRQ7 Interrupt level enable bits :
0 = Disable (mask) interrupt level

1 = Enable (un-mask) interrupt level

NOTE: When an interrupt level is masked, any interrupt requests that may be
issued are not recognized by the CPU.

Figure 5-6. Interrupt Mask Register (IMR)

5-10 ELECTRONICS

S3C80M4/F80M4 INTERRUPT STRUCTURE

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in
the microcontroller’s interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be
written to their required settings by the initialization routine.

When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two
sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This
priority is fixed in hardware).

To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register
priority definitions (see Figure 5-7):

Group A IRQO, IRQ1

GroupB IRQ2, IRQ3, IRQ4

Group C IRQ5, IRQ6, IRQ7

IPR IPR IPR
Group A Group B Group C
Al A2 B1 B2 C1 Cc2
B21 B22 c21 Cc22
IRQO IRQ1 IRQ2 IRQ3 IRQ4 IRQ5 IRQ6 IRQ7

Figure 5-7. Interrupt Request Priority Groups

As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.
For example, the setting "001B" for these bits would select the group relationship B > C > A. The setting "101B"
would select the relationship C > B > A.

The functions of the other IPR bit settings are as follows:

— IPR.5 controls the relative priorities of group C interrupts.

— Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5,
6, and 7. IPR.6 defines the subgroup C relationship. IPR.5 controls the interrupt group C.

— IPR.O controls the relative priority setting of IRQO and IRQ1 interrupts.

ELECTRONICS 5-11

INTERRUPT STRUCTURE

S3C80M4/F80M4

Group priority:

P FRPPFPPOOOO
PFRPOORFREFR OO
POPFRPORFR,ORFrO

D7 D4 D1

MSB| 7 .6 .5 A4 3 2 A .0

I

I

—_———_—l e
= Undefined Group B:
=B>C>A
=A>B>C
=B>A>C — Subgroup B:
=C>A>B 0=1RQ3 > IRQ4
=C>B>A 1=1RQ4 > IRQ3
=A>C>B Group C:
= Undefined 0 =IRQ5 > (IRQ6, IRQ7)
1= (IRQ6, IRQ7) > IRQ5

Interrupt Priority Register (IPR)
FFH, Set 1, Bank 0, R/W

— Subgroup C:
0= IRQ6 > IRQ7
1 =1IRQ7 > IRQ6

LSB

|— Group A:

0 = IRQO > IRQ1
1=1RQ1 > IRQO

0 = IRQ2 > (IRQ3, IRQ4)
1 = (IRQ3, IRQ4) > IRQ2

Figure 5-8. Interrupt Priority Register (IPR)

5-12

ELECTRONICS

S3C80M4/F80M4 INTERRUPT STRUCTURE

INTERRUPT REQUEST REGISTER (IRQ)

You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all
levels in the microcontroller’s interrupt structure. Each bit corresponds to the interrupt level of the same number:
bit 0 to IRQO, bit 2 to IRQ2, and so on. A "0" indicates that no interrupt request is currently being issued for that
level. A "1" indicates that an interrupt request has been generated for that level.

IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the
IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific
interrupt levels. After a reset, all IRQ status bits are cleared to “0".

You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events
occurred while the interrupt structure was globally disabled.

Interrupt Request Register (IRQ)
DCH, Set 1, Read-only

MSB | .7 .6 5 A4 3 2 1 .0 [LSB

IRQO
IRQ2 Reserved
Reserved

IRQ4
IRQ5 Q
IRQ6
IRQ7 Interrupt level request pending bits:
0 = Interrupt level is not pending

1 = Interrupt level is pending

Figure 5-9. Interrupt Request Register (IRQ)

ELECTRONICS 5-13

INTERRUPT STRUCTURE S3C80M4/F80M4

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt
service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting
to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine,
and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written
by application software.

In the S3C80M4 interrupt structure, the timer 0 overflow interrupt (IRQO) belongs to this category of interrupts in
which pending condition is cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit is the one that should be cleared by program software. The service routine must
clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be
written to the corresponding pending bit location in the source’s mode or control register.

5-14 ELECTRONICS

S3C80M4/F80M4 INTERRUPT STRUCTURE

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

N o g M w PR

A source generates an interrupt request by setting the interrupt request bit to "1".

The CPU polling procedure identifies a pending condition for that source.

The CPU checks the source's interrupt level.

The CPU generates an interrupt acknowledge signal.

Interrupt logic determines the interrupt's vector address.

The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).

The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:

Interrupt processing must be globally enabled (EI, SYM.0 = "1")
The interrupt level must be enabled (IMR register)
The interrupt level must have the highest priority if more than one levels are currently requesting service

The interrupt must be enabled at the interrupt's source (peripheral control register)

When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.
The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

P wD P

Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
Save the program counter (PC) and status flags to the system stack.
Branch to the interrupt vector to fetch the address of the service routine.

Pass control to the interrupt service routine.

When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores
the PC and status flags, setting SYM.0 to "1". It allows the CPU to process the next interrupt request.

ELECTRONICS 5-15

INTERRUPT STRUCTURE S3C80M4/F80M4

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM (00H—-FFH) contains the addresses of interrupt service routines that
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:
Push the program counter's low-byte value to the stack.

Push the program counter's high-byte value to the stack.

Push the FLAG register values to the stack.

Fetch the service routine's high-byte address from the vector location.

Fetch the service routine's low-byte address from the vector location.

S T o A

Branch to the service routine specified by the concatenated 16-bit vector address.

NOTE

A 16-bit vector address always begins at an even-numbered ROM address within the range of 00OH-FFH.

NESTING OF VECTORED INTERRUPTS

It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,
you must follow these steps:

1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).

2. Load the IMR register with a new mask value that enables only the higher priority interrupt.

3. Execute an El instruction to enable interrupt processing (a higher priority interrupt will be processed if it
occurs).

4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the
previous mask value from the stack (POP IMR).

5. Execute an IRET.

Depending on the application, you may be able to simplify the procedure above to some extent.

INSTRUCTION POINTER (IP)

The instruction pointer (IP) is adopted by all the S3C8-series microcontrollers to control the optional high-speed
interrupt processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The names of IP
registers are IPH (high byte, IP15-IP8) and IPL (low byte, IP7—IPO0).

FAST INTERRUPT PROCESSING

The feature called fast interrupt processing allows an interrupt within a given level to be completed in
approximately 6 clock cycles rather than the usual 16 clock cycles. To select a specific interrupt level for fast
interrupt processing, you write the appropriate 3-bit value to SYM.4—-SYM.2. Then, to enable fast interrupt
processing for the selected level, you set SYM.1 to “1”.

5-16 ELECTRONICS

S3C80M4/F80M4 INTERRUPT STRUCTURE

FAST INTERRUPT PROCESSING (Continued)
Two other system registers support fast interrupt processing:
— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the

program counter values), and

— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated register
called FLAGS' (“FLAGS prime”).

NOTE

For the S3C80M4/F80M4 microcontroller, the service routine for any one of the eight interrupt levels:
IRQO-IRQ7, can be selected for fast interrupt processing.

Procedure for Initiating Fast Interrupts

To initiate fast interrupt processing, follow these steps:

1. Load the start address of the service routine into the instruction pointer (IP).
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4-SYM.2)
3. Write a "1" to the fast interrupt enable bit in the SYM register.

Fast Interrupt Service Routine

When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:

1. The contents of the instruction pointer and the PC are swapped.

2. The FLAG register values are written to the FLAGS' (“FLAGS prime”) register.
3. The fast interrupt status bit in the FLAGS register is set.

4. The interrupt is serviced.
5

Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction
pointer and PC values are swapped back.

The content of FLAGS' (“FLAGS prime”) is copied automatically back to the FLAGS register.

o

7. The fast interrupt status bit in FLAGS is cleared automatically.

Relationship to Interrupt Pending Bit Types

As described previously, there are two types of interrupt pending bits: One type that is automatically cleared by
hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared by the
application program's interrupt service routine. You can select fast interrupt processing for interrupts with either
type of pending condition clear function — by hardware or by software.

Programming Guidelines

Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the
SYM register, SYM.1. Executing an El or DI instruction globally enables or disables all interrupt processing,
including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast
interrupt service routine ends.

ELECTRONICS 5-17

INTERRUPT STRUCTURE S3C80M4/F80M4

NOTES

5-18 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

INSTRUCTION SET

OVERVIEW

The SAMS8 instruction set is specifically designed to support the large register files that are typical of most SAM8
microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the
instruction set include:

— A full complement of 8-bit arithmetic and logic operations, including multiply and divide

— No special I/O instructions (I/O control/data registers are mapped directly into the register file)

— Decimal adjustment included in binary-coded decimal (BCD) operations

— 16-bit (word) data can be incremented and decremented

— Flexible instructions for bit addressing, rotate, and shift operations

DATA TYPES

The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least
significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."

ADDRESSING MODES

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative
(RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to
Section 3, "Addressing Modes."

ELECTRONICS 6-1

INSTRUCTION SET

S3C80M4/F80M4

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear

LD dst,src Load

LDB dst,src Load bit

LDE dst,src Load external data memory

LDC dst,src Load program memory

LDED dst,src Load external data memory and decrement
LDCD dst,src Load program memory and decrement

LDEI dst,src Load external data memory and increment
LDCI dst,src Load program memory and increment

LDEPD dst,src Load external data memory with pre-decrement
LDCPD dst,src Load program memory with pre-decrement
LDEPI dst,src Load external data memory with pre-increment
LDCPI dst,src Load program memory with pre-increment
LDW dst,src Load word

POP dst Pop from stack

POPUD dst,src Pop user stack (decrementing)

POPUI dst,src Pop user stack (incrementing)

PUSH src Push to stack

PUSHUD dst,src Push user stack (decrementing)

PUSHUI dst,src Push user stack (incrementing)

6-2

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction
Arithmetic Instructions
ADC dst,src Add with carry
ADD dst,src Add
CP dst,src Compare
DA dst Decimal adjust
DEC dst Decrement
DECW dst Decrement word
DIV dst,src Divide
INC dst Increment
INCW dst Increment word
MULT dst,src Multiply
SBC dst,src Subtract with carry
SUB dst,src Subtract
Logic Instructions
AND dst,src Logical AND
COM dst Complement
OR dst,src Logical OR
XOR dst,src Logical exclusive OR

ELECTRONICS

6-3

INSTRUCTION SET

S3C80M4/F80M4

Table 6-1. Instruction Group Summary (Continued)

Mnemonic

Operands

Instruction

Program Control Instructions

BTJRF
BTJIRT
CALL
CPUE
CPIINE
DJINZ
ENTER
EXIT
IRET
JP

JP

JR
NEXT
RET
WFI

dst,src
dst,src
dst
dst,src
dst,src
r,dst

cc,dst
dst
cc,dst

Bit Manipulation Instructions

BAND
BCP
BITC
BITR
BITS
BOR
BXOR
TCM
™

dst,src
dst,src
dst
dst
dst
dst,src
dst,src
dst,src
dst,src

Bit test and jump relative on false

Bit test and jump relative on true

Call procedure

Compare, increment and jump on equal
Compare, increment and jump on non-equal
Decrement register and jump on non-zero
Enter

Exit

Interrupt return

Jump on condition code

Jump unconditional

Jump relative on condition code

Next

Return

Wait for interrupt

Bit AND

Bit compare

Bit complement

Bit reset

Bit set

Bit OR

Bit XOR

Test complement under mask
Test under mask

6-4

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

Table 6-1. Instruction Group Summary (Concluded)

Mnemonic

Instruction

Rotate and Shift Instructions

RL dst
RLC dst
RR dst
RRC dst
SRA dst
SWAP dst

CPU Control Instructions

CCF

DI

El

IDLE

NOP

RCF

SBO

SB1

SCF

SRP src
SRPO src
SRP1 src
STOP

Rotate left

Rotate left through carry
Rotate right

Rotate right through carry
Shift right arithmetic
Swap nibbles

Complement carry flag
Disable interrupts
Enable interrupts
Enter Idle mode

No operation

Reset carry flag

Set bank 0

Set bank 1

Set carry flag

Set register pointers
Set register pointer 0
Set register pointer 1
Enter Stop mode

ELECTRONICS

INSTRUCTION SET S3C80M4/F80M4

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these
bits, FLAGS.7-FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and
FLAGS.2 are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank
address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.

Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For
example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will
occur to the Flags register producing an unpredictable result.

System Flags Register (FLAGS)
D5H, Set 1, R/IW

MSB| .7 .6 5 A4 3 2 A .0 [LSB

J |_ Bank address
Carry flag (C) status flag (BA)
First interrupt

Zero flag (2) status flag (FIS)

Sign flag (S) — — Half-carry flag (H)

Overflow (V) Decimal adjust flag (D)

Figure 6-1. System Flags Register (FLAGS)

6-6 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

FLAG DESCRIPTIONS

C

FIS

BA

Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the
specified register. Program instructions can set, clear, or complement the carry flag.

Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is
logic zero.

Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the
result. A logic zero indicates a positive number and a logic one indicates a negative number.

Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than
—128. It is also cleared to "0" following logic operations.

Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by
programmers, and cannot be used as a test condition.

Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a
program.

Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET
instruction is executed.

Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected,
bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SBO instruction and
is set to "1" (select bank 1) when you execute the SBL1 instruction.

ELECTRONICS 6-7

INSTRUCTION SET

S3C80M4/F80M4

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description
C Carry flag
z Zero flag
S Sign flag
Vv Overflow flag
D Decimal-adjust flag
H Half-carry flag
0 Cleared to logic zero
1 Set to logic one
* Set or cleared according to operation
- Value is unaffected
X Value is undefined
Table 6-3. Instruction Set Symbols
Symbol Description
dst Destination operand
src Source operand
@ Indirect register address prefix
PC Program counter
IP Instruction pointer
FLAGS Flags register (D5H)
RP Register pointer
Immediate operand or register address prefix
H Hexadecimal number suffix
D Decimal number suffix
B Binary number suffix
opc Opcode

6-8

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range
cc Condition code See list of condition codes in Table 6-6.
r Working register only Rn (n = 0-15)
rb Bit (b) of working register Rn.b (n =0-15, b = 0-7)
ro Bit O (LSB) of working register Rn (n = 0-15)
rr Working register pair RRp(p=0,2,4,..,14)
R Register or working register reg or Rn (reg = 0-255, n = 0-15)
Rb Bit 'b' of register or working register reg.b (reg = 0-255, b = 0-7)
RR Register pair or working register pair reg or RRp (reg = 0-254, even number only, where
p=0,2,..14)
IA Indirect addressing mode addr (addr = 0—254, even number only)
Ir Indirect working register only @Rn (n = 0-15)
IR Indirect register or indirect working register | @Rn or @reg (reg = 0-255, n = 0-15)
Irr Indirect working register pair only @RRp (p=0,2, ..., 14)
IRR Indirect register pair or indirect working @RRp or @reg (reg = 0-254, even only, where
register pair p=0,2,..14)
X Indexed addressing mode #reg [Rn] (reg = 0-255, n = 0-15)
XS Indexed (short offset) addressing mode #addr [RRp] (addr = range —128 to +127, where
p=0,2,..14)
xl Indexed (long offset) addressing mode #addr [RRp] (addr = range 0-65535, where
p=0,2,..14)
da Direct addressing mode addr (addr = range 0—-65535)
ra Relative addressing mode addr (addr = number in the range +127 to —128 that is
an offset relative to the address of the next instruction)
im Immediate addressing mode #data (data = 0-255)
iml Immediate (long) addressing mode #data (data = range 0—65535)
ELECTRONICS 6-9

INSTRUCTION SET S3C80M4/F80M4

Table 6-5. Opcode Quick Reference

OPCODE MAP
LOWER NIBBLE (HEX)
- 0 1 2 3 4 5 6 7
u 0 DEC DEC ADD ADD ADD ADD ADD BOR
R1 IR1 r1,r2 r1,Ir2 R2,R1 IR2,R1 R1,IM r0-Rb
P 1 RLC RLC ADC ADC ADC ADC ADC BCP
R1 IR1 r1,r2 r1,ir2 R2,R1 IR2,R1 R1,IM rl.b, R2
P 2 INC INC SUB SUB SUB SUB SUB BXOR
R1 IR1 r1,r2 r1,ir2 R2,R1 IR2,R1 R1,IM r0-Rb
E 3 JP SRP/0/1 SBC SBC SBC SBC SBC BTJR
IRR1 IM r1,r2 r1,Ir2 R2,R1 IR2,R1 R1,IM r2.b, RA
R 4 DA DA OR OR OR OR OR LDB
R1 IR1 r1,r2 r1,ir2 R2,R1 IR2,R1 R1,IM r0-Rb
5 POP POP AND AND AND AND AND BITC
R1 IR1 r1,r2 r1,Ir2 R2,R1 IR2,R1 R1,IM rl.b
N 6 COM COM TCM TCM TCM TCM TCM BAND
R1 IR1 r1,r2 r1,Ir2 R2,R1 IR2,R1 R1,IM r0-Rb
7 PUSH PUSH ™ ™ ™ ™ ™ BIT
R2 IR2 r1,r2 r1,ir2 R2,R1 IR2,R1 R1,IM rl.b
B 8 DECW DECW PUSHUD | PUSHUI MULT MULT MULT LD
RR1 IR1 IR1,R2 IR1,R2 R2,RR1 IR2,RR1 IM,RR1 r1, x, r2
B 9 RL RL POPUD POPUI DIV DIV DIV LD
R1 IR1 IR2,R1 IR2,R1 R2,RR1 IR2,RR1 IM,RR1 r2, x, rl
L A INCW INCW CP CP CP CP CP LDC
RR1 IR1 r1,r2 r1,Ir2 R2,R1 IR2,R1 R1,IM r1, Irr2, xL
E B CLR CLR XOR XOR XOR XOR XOR LDC
R1 IR1 r1,r2 r1,Ir2 R2,R1 IR2,R1 R1,IM r2, Irr2, xL
C RRC RRC CPIJE LDC LDW LDW LDW LD
R1 IR1 Ir,r2,RA r1,lrr2 RR2,RR1 | IR2,RR1 | RR1,IML r1, Ir2
H D SRA SRA CPIINE LDC CALL LD LD
R1 IR1 Irr,r2,RA r2,Irrl 1A1 IR1,IM Ir1, r2
E E RR RR LDCD LDCI LD LD LD LDC
R1 IR1 rl,irr2 rl,lrr2 R2,R1 R2,IR1 R1,IM r1, Irr2, xs
X F SWAP SWAP LDCPD LDCPI CALL LD CALL LDC
R1 IR1 r2,Irrl r2,lrrl IRR1 IR2,R1 DAl r2, Irrl, xs

6-10 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP
LOWER NIBBLE (HEX)
- 8 9 A B (3 D E F
U 0 LD LD DJINZ JR LD JP INC NEXT
r1,R2 r2,R1 r1,RA cc,RA r1,IM cc,DA rl

P 1 \L \L \L \L J/ J/ i(ENTER

P 2 EXIT
E 3 WFI
R 4 SBO

5 SB1
N 6 IDLE

’ \ \ s s \ \ \ STOP

B 8 DI
B 9 El
L A RET
E B IRET
C RCF

H| D \ \ s s \ \J \ SCF

E E CCF

X F LD LD DJINZ JR LD JP INC NOP
r1,R2 r2,R1 rl1,RA cc,RA r1,IM cc,DA rl

ELECTRONICS 6-11

INSTRUCTION SET

S3C80M4/F80M4

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal”
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (2), sign (S), and overflow (V) flags are used to control the operation of conditional jump

instructions.

Table 6-6. Condition Codes

Binary Mnemonic Description Flags Set
0000 F Always false -
1000 T Always true -
0111 (note) C Carry c=1
1111 (note) NC No carry C=0
0110 (note) VA Zero Z=1
1110 (note) NZ Not zero Z=0
1101 PL Plus S=0
0101 Ml Minus S=1
0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 (note) EQ Equal z=1
1110 (note) NE Not equal Z=0
1001 GE Greater than or equal (S XOR V)=0
0001 LT Less than (S XOR V)=1
1010 GT Greater than (Z OR(S XOR V))=0
0010 LE Less than or equal (Z OR(S XOR V))=1
1111 (note) UGE Unsigned greater than or equal CcC=0
0111 (note) ULT Unsigned less than c=1
1011 UGT Unsigned greater than (C=0 AND Zz=0)=1
0011 ULE Unsigned less than or equal (COR 2)=1
NOTES:

1. Itindicates condition codes that are related to two different mnemonics but which test the same flag. For
example, Z and EQ are both true if the zero flag (2) is set, but after an ADD instruction, Z would probably be used;
after a CP instruction, however, EQ would probably be used.
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

6-12

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction in the SAM8
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The
following information is included in each instruction description:

— Instruction name (mnemonic)

— Fullinstruction name

— Source/destination format of the instruction operand

— Shorthand notation of the instruction's operation

— Textual description of the instruction's effect

— Specific flag settings affected by the instruction

— Detailed description of the instruction's format, execution time, and addressing mode(s)

— Programming example(s) explaining how to use the instruction

ELECTRONICS 6-13

INSTRUCTION SET S3C80M4/F80M4

ADC — Add with carry

ADC

Operation:

Flags:

Format:

Examples:

dst,src

dst < dst + src + C

The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. Two's-
complement addition is performed. In multiple precision arithmetic, this instruction permits the
carry from the addition of low-order operands to be carried into the addition of high-order
operands.

Set if there is a carry from the most significant bit of the result; cleared otherwise.

Set if the result is "0"; cleared otherwise.

Set if the result is negative; cleared otherwise.

Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result
is of the opposite sign; cleared otherwise.

Always cleared to "0".

Set if there is a carry from the most significant bit of the low-order four bits of the result;
cleared otherwise.

SONO

o

Bytes Cycles Opcode Addr Mode

(Hex) dst src

| opc |dst|src| 2 4 12 r r
6 13 r Ir

| opc | src | dst | 3 6 14 R R
15 R IR

| opc | dst | src | 3 6 16 R IM

Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and
register 03H = OAH:
ADC R1,R2

ADC R1,@R2
ADC 01H,02H
ADC 01H,@02H
ADC 01H,#11H

R1 14H, R2 = 0O3H

R1 1BH, R2 = 03H

Register 01H = 24H, register 02H = 03H
Register 01H = 2BH, register 02H = 03H
Register 01H = 32H

A

In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.

6-14

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

ADD — Add

ADD

Operation:

Flags:

Format:

Examples:

dst,src

dst « dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

Set if the result is "0"; cleared otherwise.
Set if the result is negative; cleared otherwise.

result is of the opposite sign; cleared otherwise.
Always cleared to "0".
Set if a carry from the low-order nibble occurred.

o

Bytes Cycles Opcode

(Hex)
| opc |dst|src| 2 4 02
03
| opc | src | dst | 3 6 04
05
| opc | dst | src | 3 6 06

Given: R1=12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD R1,R2
ADD R1,@R2
ADD 01H,02H
ADD 01H,@02H
ADD 01H,#25H

R1 15H, R2 = 0O3H

R1 = 1CH,R2 = 03H

Register 01H = 24H, register 02H = 03H
Register 01H = 2BH, register 02H = 03H
Register 01H = 46H

A
1

Set if there is a carry from the most significant bit of the result; cleared otherwise.

Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the

Addr Mode
dst src
r r
r Ir
R R
R IR
R IM

In the first example, destination working register R1 contains 12H and the source working register

R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in

register R1.

ELECTRONICS

6-15

INSTRUCTION SET S3C80M4/F80M4

AND — Logical AND
AND dst,src

Operation: dst « dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the
source are unaffected.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 4 52 r r
6 53 r Ir
| opc | src | dst | 3 6 54 R R
55 R IR
| opc | dst | src | 3 6 56 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = OAH:

AND R1,R2 - R1 = 02H, R2 = 03H

AND R1,@R2 - R1 = 02H, R2 = 03H

AND 01H,02H — Register 01H = 01H, register 02H = 03H

AND 01H,@02H - Register 01H = OO0H, register 02H = 03H
-

21H

AND O1H,#25H Register 01H

In the first example, destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.

6-16 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

BAND — Bit AND
BAND dst,src.b
BAND dst.b,src

Operation: dst(0) « dst(0) AND src(b)
or
dst(b) « dst(b) AND src(0)

The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of
the destination (or source). The resultant bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|b|o| src | 3 6 67 ro Rb
| opc |scibji| dst | 3 6 67 Rb 10

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H and register 01H = 05H:

BAND R1,01H.1 - R1 = 06H, register 01H = 05H
BAND O01H.1,R1 - Register 01H = 05H, R1 = 07H

In the first example, source register 01H contains the value 05H (00000101B) and destination
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1
value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the value
06H (00000110B) in register R1.

ELECTRONICS 6-17

INSTRUCTION SET S3C80M4/F80M4

BCP —Bit Compare

BCP dst,src.b

Operation: dst(0) — src(b)

The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both
operands are unaffected by the comparison.

Flags: C: Unaffected.
Z: Setif the two bits are the same; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |astibjo| src | 3 6 17 0 Rb
NOTE: Inthe second byte of the instruction format, the destination address is four bits, the bit address 'b' is
three bits, and the LSB address value is one bit in length.
Example: Given: R1 = 07H and register 01H = O1H:

BCP R1,01H.1 - R1 = O7H, register 01H = 01H

If destination working register R1 contains the value 07H (00000111B) and the source register
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of
the source register (01H) and bit zero of the destination register (R1). Because the bit values are
not identical, the zero flag bit (Z) is cleared in the FLAGS register (OD5H).

6-18 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

BITC — it Complement
BITC dst.b

Operation: dst(b) « NOT dst(b)

This instruction complements the specified bit within the destination without affecting any other
bits in the destination.

Unaffected.

Set if the result is "0"; cleared otherwise.
Cleared to "0".

Undefined.

Unaffected.

Unaffected.

Flags:

TO<ONO

Format:

Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc |dst|b|o| 2 4 57 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 0O7H

BITC R1ll1 - R1 = O5H

If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (OD5H) is
cleared.

ELECTRONICS 6-19

INSTRUCTION SET S3C80M4/F80M4

BITR — Bit Reset

BITR

Operation:

Flags:

Format:

Example:

dst.b

dst(b) < O

The BITR instruction clears the specified bit within the destination without affecting any other bits
in the destination.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc [astibjo| 2 4 77 b

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.
Given: R1 = 0O7H:

BITR R11 - R1 = 0O5H

If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one
of the destination register R1, leaving the value 05H (00000101B).

6-20

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

BITS — Bit Set

BITS dst.b

Operation: dst(b) « 1

The BITS instruction sets the specified bit within the destination without affecting any other bits in
the destination.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc |astib1] 2 4 77 rb

NOTE: Inthe second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = O7H:

BITS R13 - R1 = OFH

If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit
three of the destination register R1 to "1", leaving the value OFH (00001111B).

ELECTRONICS 6-21

INSTRUCTION SET S3C80M4/F80M4

BOR —Bitor

BOR
BOR

Operation:

Flags:

Format:

Examples:

dst,src.b

dst.b,src

dst(0) « dst(0) OR src(b)
or
dst(b) « dst(b) OR src(0)

The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the
destination (or the source). The resulting bit value is stored in the specified bit of the destination.
No other bits of the destination are affected. The source is unaffected.

C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc [dstibjo| s | 3 6 07 0 Rb
| opc |[scibji| dst | 3 6 07 Rb 10

NOTE: Inthe second byte of the 3-byte instruction formats, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit.

Given: R1 = 07H and register 01H = 03H:

BOR R1,01H.1 - R1 = 07H, register 01H = 03H
BOR O01H.2,R1 - Register 01H = 07H, R1 = 07H

In the first example, destination working register R1 contains the value 07H (00000111B) and
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value
(07H) in working register R1.

In the second example, destination register 01H contains the value 03H (00000011B) and the
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H
in register 01H.

6-22

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

BTJRF — Bit Test, Jump Relative on False
BTJRF dst,src.b

Operation: If src(b) is a "0", then PC « PC + dst

The specified bit within the source operand is tested. If it is a "0", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRF instruction is executed.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Note 1) (Hex) dst src
| opc [scibjo| dst | 3 10 37 RA b

NOTE: Inthe second byte of the instruction format, the source address is four bits, the bit address 'b' is
three bits, and the LSB address value is one bit in length.

Example: Given: R1 = O7H:

BTJRF SKIP,R1.3 - PC jumps to SKIP location

If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the
memory location pointed to by the SKIP. (Remember that the memory location must be within the
allowed range of + 127 to —128))

ELECTRONICS 6-23

INSTRUCTION SET S3C80M4/F80M4

BTJRT — Bit Test, Jump Relative on True

BTJRT

Operation:

Flags:

Format:

Example:

dst,src.b

If src(b) is a"1", then PC « PC + dst

The specified bit within the source operand is tested. If it is a "1", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRT instruction is executed.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Note 1) (Hex) dst src

| opc [scibji| dst | 3 10 37 RA b

NOTE: Inthe second byte of the instruction format, the source address is four bits, the bit address 'b' is
three bits, and the LSB address value is one bit in length.

Given: R1 = O7H:
BTJRT SKIP,R1.1

If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"
tests bit one in the source register (R1). Because it is a "1", the relative address is added to the
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the
memory location must be within the allowed range of + 127 to —128.)

6-24

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

BXOR — Bit xoRrR

BXOR dst,src.b
BXOR dst.b,src

Operation: dst(0) « dst(0) XOR src(b)
or
dst(b) « dst(b) XOR src(0)

The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)
of the destination (or source). The result bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc [astibjo| s | 3 6 27 0 Rb
| opc |scibji| dst | 3 6 27 Rb 10

NOTE: Inthe second byte of the 3-byte instruction formats, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):

BXOR R1,01H.1 - R1 = O6H, register 01H = 03H
BXOR 01H.2,R1 - Register 01H = 07H, R1 = 07H

In the first example, destination working register R1 has the value 07H (00000111B) and source
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is
unaffected.

ELECTRONICS 6-25

INSTRUCTION SET S3C80M4/F80M4

CALL — call Procedure

CALL

Operation:

Flags:

Format:

Examples:

dst

SP <« SP-1
@SP « PCL
SP <« SP -1
@SP « PCH
PC “— dst

The current contents of the program counter are pushed onto the top of the stack. The program
counter value used is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the program counter and points to the first
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used
to return to the original program flow. RET pops the top of the stack back into the program
counter.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst
| opc | dst | 3 14 F6 DA
| opc | dst | 2 12 F4 IRR
| opc | dst | 2 14 D4 IA

Given: RO = 35H,R1 =21H, PC = 1A47H, and SP = 0002H:

CALL 3521H — SP = 0000H

(Memory locations 0000H = 1AH, 0001H = 4AH, where
4AH is the address that follows the instruction.)

CALL @RRO — SP = 0000H (0000H = 1AH, 0001H = 49H)
CALL #40H — SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the
value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the
statement "CALL @RRO" produces the same result except that the 49H is stored in stack
location 0001H (because the two-byte instruction format was used). The PC is then loaded with
the value 3521H, the address of the first instruction in the program sequence to be executed.
Assuming that the contents of the program counter and stack pointer are the same as in the first
example, if program address 0040H contains 35H and program address 0041H contains 21H, the
statement "CALL #40H" produces the same result as in the second example.

6-26

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

CCF— Complement Carry Flag

CCF

Operation:

Flags:

Format:

Example:

C « NOT C

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero; if C = "0", the value of the carry flag is changed to logic one.

C: Complemented.
No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 EF

Given: The carry flag = "0":
CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (OD5H),
changing its value from logic zero to logic one.

ELECTRONICS 6-27

INSTRUCTION SET S3C80M4/F80M4

CLR —clear
CLR dst
Operation: dst « "0"

Flags:

Format:

Examples:

The destination location is cleared to "0".

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst
| opc | dst | 2 4 BO R
B1 IR

Given: Register OOH = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR OOH - Register 0OOH = O0H
CLR @O01H — Register 01H 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR OOH" clears the destination register OOH
value to O0H. In the second example, the statement "CLR @O01H" uses Indirect Register (IR)
addressing mode to clear the 02H register value to 00H.

6-28

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

COM — Complement

COM

Operation:

Flags:

Format:

Examples:

dst

dst <« NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are
changed to "0s", and vice-versa.

C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc | dst | 2 4 60 R

4 61 IR

Given: R1 = 07H and register 07H = OF1H:

COM R1 - R1
COM @R1 - R1

OF8H
07H, register 07H = OEH

In the first example, destination working register R1 contains the value 07H (00000111B). The
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,
and vice-versa, leaving the value OF8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value
of destination register 07H (11110001B), leaving the new value OEH (00001110B).

ELECTRONICS 6-29

INSTRUCTION SET S3C80M4/F80M4

CP— Compare

CP

Operation:

Flags:

Format:

Examples:

dst,src

dst — src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected by the
comparison.

C: Setifa"borrow" occurred (src > dst); cleared otherwise.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | dst| src | 2 4 A2 r r
A3 r Ir
| opc | src | dst | 3 6 A4 R R
A5 R IR
| opc | dst | src | 3 6 A6 R IM

1. Given:R1 = 02H and R2 = 03H:

CP R1,R2 — Set the C and S flags

Destination working register R1 contains the value 02H and source register R2 contains the value
03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value
(destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are
npn

2. Given: R1=05H and R2 = 0AH:

CP R1,R2
JP UGE,SKIP
INC R1

SKIP LD R3,R1

In this example, destination working register R1 contains the value 05H which is less than the
contents of the source working register R2 (OAH). The statement "CP R1,R2" generates C = "1"
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"
executes, the value 06H remains in working register R3.

6-30

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

CPIJE — Compare, Increment, and Jump on Equal

CPIE

Operation:

Flags:

Format:

Example:

dst,src,RA

Ifdst—src = "0",PC « PC + RA
Ir < 1Ir + 1

The source operand is compared to (subtracted from) the destination operand. If the result is "0",
the relative address is added to the program counter and control passes to the statement whose
address is now in the program counter. Otherwise, the instruction immediately following the
CPIJE instruction is executed. In either case, the source pointer is incremented by one before the
next instruction is executed.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

| opc |src|dst| RA | 3 12 Cc2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Given: R1 = 02H, R2 = 03H, and register 03H = 02H:

CPIUE R1,@R2,SKIP — R2 = 04H, PC jumps to SKIP location

In this example, working register R1 contains the value 02H, working register R2 the value 03H,
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the
relative address is added to the PC and the PC then jumps to the memory location pointed to by
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that
the memory location must be within the allowed range of + 127 to —128.)

ELECTRONICS 6-31

INSTRUCTION SET S3C80M4/F80M4

CPIINE — Compare, Increment, and Jump on Non-Equal

CPIINE

Operation:

Flags:

Format:

Example:

dst,src,RA

Ifdst—src "0", PC « PC + RA
Ir < 1Ir+1

The source operand is compared to (subtracted from) the destination operand. If the result is not
"0", the relative address is added to the program counter and control passes to the statement
whose address is now in the program counter; otherwise the instruction following the CPIINE
instruction is executed. In either case the source pointer is incremented by one before the next
instruction.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

| opc |src|dst| RA | 3 12 D2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Given: R1 = 02H, R2 = 03H, and register 03H = 04H:

CPIUNER1,@R2,SKIP — R2 = 04H, PC jumps to SKIP location

Working register R1 contains the value 02H, working register R2 (the source pointer) the value
03H, and general register 03 the value 04H. The statement "CPIINE R1,@R2,SKIP" subtracts
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal, the
relative address is added to the PC and the PC then jumps to the memory location pointed to by
SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.
(Remember that the memory location must be within the allowed range of + 127 to —128.)

6-32

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

DA — Decimal Adjust

DA dst
Operation: dst <« DA dst
The destination operand is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table
indicates the operation performed. (The operation is undefined if the destination operand was not
the result of a valid addition or subtraction of BCD digits):
Instruction Carry Bits 4-7 H Flag Bits 0-3 Number Added Carry
Before DA Value (Hex) Before DA Value (Hex) to Byte After DA
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
0 0-9 0 0-9 00 = -00 0
SUB 0 0-8 1 6-F FA = —06 0
SBC 1 7-F 0 0-9 A0 = —60 1
1 6-F 1 6-F 9A = —66 1
Flags: C: Setif there was a carry from the most significant bit; cleared otherwise (see table).
Z: Setifresultis "0"; cleared otherwise.
S: Setif result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 40 R
41 IR

ELECTRONICS

6-33

INSTRUCTION SET S3C80M4/F80M4

DA — Decimal Adjust

DA

Example:

(Continued)

Given: Working register RO contains the value 15 (BCD), working register R1 contains
27 (BCD), and address 27H contains 46 (BCD):

ADD R1,RO ; C «"0", H « "0", Bits 4—7 = 3, bits 0-3 = C, R1 « 3CH
DA R1 ; R1 < 3CH + 06

If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic:

0001 0101 15
+ 0010 0111 27

0011 1100 = 3CH
The DA instruction adjusts this result so that the correct BCD representation is obtained:

0011 1100
+ 0000 0110

0100 0010 = 42

Assuming the same values given above, the statements

SUB 27H,RO; C «"0",H <« "0", Bits 4-7 =3, bits0-3=1
DA @R1 ; @R1 « 31-0

leave the value 31 (BCD) in address 27H (@R1).

6-34

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

DEC — Decrement

DEC dst

Operation: dst « dst—1
The contents of the destination operand are decremented by one.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Setifresult is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 00 R
01 IR

Examples: Given: R1 = 03H and register 03H = 10H:

DEC R1 - R1 = 02H
DEC @R1 — Register 03H = OFH

In the first example, if working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by
one, leaving the value OFH.

ELECTRONICS 6-35

INSTRUCTION SET

S3C80M4/F80M4

DECW — pecrement Word

DECW

Operation:

Flags:

Format:

Examples:

NOTE:

dst

dst « dst—-1

The contents of the destination location (which must be an even address) and the operand
following that location are treated as a single 16-bit value that is decremented by one.

C: Unaffected.

Z: Setif the result is "0"; cleared otherwise.

S: Setif the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred; cleared otherwise.

D: Unaffected.

H: Unaffected.

Bytes Cycles Opcode Addr Mode

(Hex) dst

| opc | dst | 2 8 80 RR
81 IR

Given: RO = 12H, R1 = 34H, R2 = 30H, register 30H = OFH, and register 31H = 21H:

DECW RRO — RO = 12H,R1 = 33H
DECW @R2 — Register 30H = OFH, register 31H = 20H

In the first example, destination register RO contains the value 12H and register R1 the value
34H. The statement "DECW RRO0" addresses RO and the following operand R1 as a 16-bit word
and decrements the value of R1 by one, leaving the value 33H.

A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW
instruction. To avoid this problem, we recommend that you use DECW as shown in the following
example:

LOOP: DECW RRO

LD R2,R1
OR R2,RO
JR NZ,LOOP

6-36

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

DI — pisable Interrupts
DI

Operation: SYM (@) « O

Bit zero of the system mode control register, SYM.O, is cleared to "0", globally disabling all
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,
but the CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 4 8F
Example: Given: SYM = 01H:
DI

If the value of the SYM register is 01H, the statement "DI" leaves the new value O0H in the
register and clears SYM.0 to "0", disabling interrupt processing.

Before changing IMR, interrupt pending and interrupt source control
register, be sure DI state.

ELECTRONICS 6-37

INSTRUCTION SET S3C80M4/F80M4

DIV — pivide (Unsigned)

DIV

Operation:

Flags:

Format:

dst,src

dst + src
dst (UPPER) < REMAINDER
dst (LOWER) « QUOTIENT

The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of
the destination. When the quotient is > 28, the numbers stored in the upper and lower halves of
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned
integers.

C: Setifthe V flag is set and quotient is between 28 and 29 —1; cleared otherwise.
Z:. Setif divisor or quotient = "0"; cleared otherwise.
S: Setif MSB of quotient = "1"; cleared otherwise.
V: Setif quotientis > 28 or if divisor = "0"; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | sc | dst | 3 26/10 94 RR R
26/10 95 RR IR
26/10 96 RR IM

NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.

Examples: Given: RO = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:
DIV RRO,R2 - RO = 03H, R1 = 40H
DIV RRO,@R2 - RO = 03H, R1 = 20H
DIV RRO,#20H - RO = 03H, R1 = 80H
In the first example, destination working register pair RRO contains the values 10H (R0) and 03H
(R1), and register R2 contains the value 40H. The statement "DIV RRO0,R2" divides the 16-bit
RRO value by the 8-bit value of the R2 (source) register. After the DIV instruction, RO contains the
value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the destination
register RRO (R0) and the quotient in the lower half (R1).

6-38 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

DJNZ — becrement and Jump if Non-Zero

DJINZ

Operation:

Flags:

Format:

Example:

r,dst

r<r—-1
If r #0,PC « PC + dst

The working register being used as a counter is decremented. If the contents of the register are
not logic zero after decrementing, the relative address is added to the program counter and
control passes to the statement whose address is now in the PC. The range of the relative
address is +127 to —128, and the original value of the PC is taken to be the address of the
instruction byte following the DINZ statement.

NOTE: In case of using DINZ instruction, the working register being used as a counter should be set at
the one of location 0COH to OCFH with SRP, SRPO, or SRP1 instruction.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst
| r | opc | dst 2 8 (jump taken) rA RA
8 (no jump) r=0toF

Given: R1 = 02H and LOORP is the label of a relative address:

SRP #0COH
DIJNZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the
destination operand instead of a numeric relative address value. In the example, working register
R1 contains the value 02H, and LOOP is the label for a relative address.

The statement "DIJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H.
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative
address specified by the LOOP label.

ELECTRONICS 6-39

INSTRUCTION SET S3C80M4/F80M4

El — Enable Interrupts

El

Operation:

Flags:

Format:

Example:

SYM (0) « 1

An El instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced
when you execute the El instruction.

No flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 9F

Given: SYM = 0O0H:
El

If the SYM register contains the value O0H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.O is the enable bit for
global interrupt processing.)

6-40

ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

ENTER — enter

ENTER
Operation: SP «— SP-2
@SP <« P
IP «— PC
PC «— @IP
IP « IP+2
This instruction is useful when implementing threaded-code languages. The contents of the
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the
instruction pointer. The program memory word that is pointed to by the instruction pointer is
loaded into the PC, and the instruction pointer is incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 14 1F
Example: The diagram below shows one example of how to use an ENTER statement.
Before After
Address Data Address Data
IP| 0050 IP| 0043
Address Data Address Data
PC| 0040 » 40 | Enter 1F pPC| 0110 40 | Enter 1F
41| AddressH |01]_ 41| AddressH |01
42| AddressL |10 42 | AddressL |10
sp| 0022 43| Address H sp| 0020 —» 43 | Address H
|: 20(IPH 00 110 | Routine
21 IPL 50
22 Data Memory 22 Data Memory
Stack Stack

ELECTRONICS 6-41

INSTRUCTION SET

S3C80M4/F80M4

EXIT — Exit

EXIT
Operation: IP <« @SP
SP « SP + 2
PC «— @IP
IP «— P+ 2
This instruction is useful when implementing threaded-code languages. The stack value is
popped and loaded into the instruction pointer. The program memory word that is pointed to by
the instruction pointer is then loaded into the program counter, and the instruction pointer is
incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 14 (internal stack) 2F
16 (internal stack)
Example: The diagram below shows one example of how to use an EXIT statement.
Before After
Address Data Address Data
IP| 0050 | IP| 0052
Address Data Address Data
PC| 0040 pPC| 0060
50| PCL old GO] _\—> 60| Main
51| PCH 00
SP| 0022 SP| 0022
» 140 | Exit 2F
20 IPH 00
21 IPL 50
22| Data Memory 22| Data Memory
Stack Stack
6-42 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

IDLE — 1die Operation

IDLE
Operation:
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle
mode can be released by an interrupt request (IRQ) or an external reset operation.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc 1 4 6F - -
Example: The instruction

IDLE

stops the CPU clock but not the system clock.

ELECTRONICS 6-43

INSTRUCTION SET S3C80M4/F80M4

|NC — Increment
INC dst

Operation: dst « dst + 1

The contents of the destination operand are incremented by one.
Unaffected.
Set if the result is "0"; cleared otherwise.

Set if the result is negative; cleared otherwise.

Flags: C
z
S
V: Setif arithmetic overflow occurred; cleared otherwise.
D
H

Unaffected.
Unaffected.

Format:

Bytes Cycles Opcode Addr Mode

(Hex) dst

dst | opc 1 4 rE r
r=0toF

| opc | dst 2 4 20 R

21 IR

Examples: Given: RO = 1BH, register 00H = OCH, and register 1BH = OFH:

INC RO - RO = 1CH
INC OOH - Register 0OOH = ODH
INC @RO — RO = 1BH, register 01H = 10H

In the first example, if destination working register RO contains the value 1BH, the statement "INC
RO" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on register 0OH, assuming that it
contains the value OCH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the
value of register 1BH from OFH to 10H.

6-44 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

INCW — Increment Word

INCW dst

Operation: dst « dst + 1

The contents of the destination (which must be an even address) and the byte following that
location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 8 AO RR
Al IR

Examples: Given: RO = 1AH, R1 = 02H, register 02H = OFH, and register 03H = OFFH:

INCW RRO — RO = 1AH,R1 =03H
INCW @R1 — Register 02H = 10H, register 03H = 00H

In the first example, the working register pair RRO contains the value 1AH in register RO and 02H
in register R1. The statement "INCW RRO0" increments the 16-bit destination by one, leaving the
value O3H in register R1. In the second example, the statement "INCW @R1" uses Indirect
Register (IR) addressing mode to increment the contents of general register 03H from OFFH to
00H and register 02H from OFH to 10H.

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the
following example:

LOOP: INCW RRO

LD R2,R1
OR R2,RO
JR NZ,LOOP

ELECTRONICS 6-45

INSTRUCTION SET S3C80M4/F80M4

IRET — Interrupt Return

IRET

Operation:

Flags:

Format:

Example:

NOTE:

IRET (Normal IRET (Fast)
FLAGS « @SP PC <& IP

SP « SP + 1 FLAGS « FLAGS'
PC « @SP FIS <« 0

SP « SP + 2

SYM(0) « 1

This instruction is used at the end of an interrupt service routine. It restores the flag register and
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the
fast interrupt status bit (FIS, bit one of the FLAGS register, OD5H) is cleared (= "0"). If a fast
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

All flags are restored to their original settings (that is, the settings before the interrupt occurred).

IRET Bytes Cycles Opcode (Hex)
(Normal)
opc 1 10 (internal stack) BF

12 (internal stack)

IRET Bytes Cycles Opcode (Hex)
(Fast)
opc 1 6 BF

In the figure below, the instruction pointer is initially loaded with 100H in the main program before
interrupts are enabled. When an interrupt occurs, the program counter and instruction pointer are
swapped. This causes the PC to jump to address 100H and the IP to keep the return address.
The last instruction in the service routine normally is a jump to IRET at address FFH. This causes
the instruction pointer to be loaded with 100H "again" and the program counter to jump back to
the main program. Now, the next interrupt can occur and the IP is still correct at 100H.

OH
FFH IRET
100H Interrupt
Service
Routine
JP to FFH

FFFFH

In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay
attention to the order of the last two instructions. The IRET cannot be immediately proceded by a
clearing of the interrupt status (as with a reset of the IPR register).

6-46

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

JP—Jump

JP cc,dst (Conditional)
JP dst (Unconditional)
Operation: If cc istrue, PC « dst

The conditional JUMP instruction transfers program control to the destination address if the
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the

PC.
Flags: No flags are affected.
Format: (1)
Bytes Cycles Opcode Addr Mode
2 (Hex) dst
| cc | opc | dst 3 8 ccD DA
cc=0toF
| opc | st 2 8 30 IRR
NOTES:

1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. Inthe first byte of the three-byte instruction format (conditional jump), the condition code and the
opcode are both four bits.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

P CLABEL W — LABEL_W = 1000H, PC = 1000H
P @O0H - PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair OOH and 01H, leaving the value 0120H.

ELECTRONICS 6-47

INSTRUCTION SET S3C80M4/F80M4

JR — Jump Relative

JR cc,dst

Operation: If cc istrue, PC « PC + dst
If the condition specified by the condition code (cc) is true, the relative address is added to the
program counter and control passes to the statement whose address is now in the program
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition
codes).
The range of the relative address is +127, —128, and the original value of the program counter is
taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode Addr Mode
@ (Hex) dst
| cc | opc | dst 2 6 ccB RA
cc=0toF
NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each
four bits.

Example: Given: The carry flag ="1" and LABEL_X = 1FF7H:
JR C,LABEL X —» PC = 1FF7H
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will
pass control to the statement whose address is now in the PC. Otherwise, the program
instruction following the JR would be executed.

6-48 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

LD — Load

LD dst,src

Operation: dst « src
The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| dst | opc | src | 2 4 rc r IM
ré r R
| src | opc | dst | 2 4 r9 R r
r=0toF
| opc | dst | src | 2 4 Cc7 r Ir
4 D7 Ir r
| opc | src | dst | 3 6 E4 R R
E5 R IR
| opc | dst | src | 3 6 E6 R IM
D6 IR IM
| opc | src | dst | 3 6 F5 IR R
| opc | dst | src | X | 3 6 87 r X [r]
| opc | src | dst | X | 3 6 97 X [r] r

ELECTRONICS 6-49

INSTRUCTION SET

S3C80M4/F80M4

LD — Load
LD
Examples:

(Continued)

Given: RO = 01H, R1 = OAH, register 0OH = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = OFFH:

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

RO,#10H
RO,01H
01H,RO
R1,@R0
@RO,R1
00H,01H
02H,@00H
00H,#0AH
@O0H,#10H
@O0H,02H —
RO,#LOOP[R1] —
#LOOP[RO],R1 —

2 2 A

RO = 10H

RO = 20H, register 01H = 20H

Register 01H = 01H, RO = 01H

R1 20H, RO = O1H

RO = 01H, R1 = OAH, register 0O1H = OAH
Register 00H = 20H, register 01H = 20H
Register 02H = 20H, register OOH = 01H
Register 00H = OAH

Register 00H = 01H, register 01H = 10H
Register 00H = 01H, register 01H = 02, register 02H
RO = OFFH,R1 = OAH

Register 31H = 0AH, RO = 01H, R1 = OAH

= 02H

6-50

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

LDB — Load Bit

LDB dst,src.b
LDB dst.b,src

Operation: dst(0) « src(b)
or
dst(b) « src(0)

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the
source is loaded into the specified bit of the destination. No other bits of the destination are
affected. The source is unaffected.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc [astibjo| s | 3 6 47 0 Rb
| opc | src|b|l | dst | 3 6 47 Rb ro

NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the bit
address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: RO = 06H and general register OOH = O5H:

LDB RO,00H.2 — RO = O07H, register 00H = 05H
LDB OOH.O,RO — RO = 06H, register 00OH = 04H

In the first example, destination working register RO contains the value 06H and the source
general register 00H the value 05H. The statement "LD RO0,00H.2" loads the bit two value of the
OOH register into bit zero of the RO register, leaving the value 07H in register RO.

In the second example, O0H is the destination register. The statement "LD 00H.0,R0" loads bit
zero of register RO to the specified bit (bit zero) of the destination register, leaving 04H in general
register OOH.

ELECTRONICS 6-51

INSTRUCTION SET S3C80M4/F80M4

LDC/LDE — Load Memory

LDC/LDE

Operation:

Flags:

Format:

10.

dst,src

dst « src

This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory. The
assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd number
for data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst src
| opc | dst | src | 2 10 C3 r Irr
| opc | src | dst | 2 10 D3 Irr r
| opc | dst | src | XS | 3 12 E7 r XS [rr]
| opc | src | dst | XS | 3 12 F7 XS [r
| opc | dst | src | XL | XLy | 4 14 A7 r XL [rr]
| opc | src | dst | XL | XLy | 4 14 B7 XL [rr] r
| opc |dstjoooo| DA | DA, | 4 14 A7 ‘ DA
. | opc | src | 0000 | DA | DA | 4 14 B7 DA r
| opc |dstjooor| DA | DA, | 4 14 A7 ‘ DA

| opc | src | 0001 | DA | DA, | 4 14 B7 DA r
NOTES:

1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0—1.

2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one
byte.

3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two
bytes.

4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set
of values, used in formats 9 and 10, are used to address data memory.

6-52

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

LDC/LDE — Load Memory

LDC/LDE (Continued)
Examples: Given: RO = 11H,R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory

locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:

LDC RO,@RR2 ; RO <« contents of program memory location 0104H
; RO = 1AH, R2 = 01H, R3 = 04H

LDE RO,@RR2 ; RO <« contents of external data memory location 0104H
: RO = 2AH, R2 = 01H, R3 = 04H

LDC (note) @RR2,R0 ; 11H (contents of RO) is loaded into program memory
; location 0104H (RR2),
; working registers RO, R2, R3 — no change

LDE @RR2,R0 ; 11H (contents of R0) is loaded into external data memory
; location 0104H (RR2),
; working registers RO, R2, R3 — no change

LDC RO,#01H[RR2] ; RO <« contents of program memory location 0105H
; (01H + RR2),
; RO = 6DH, R2 = 01H,R3 = 04H
LDE RO,#01H[RR2] ; RO <« contents of external data memory location 0105H
; (01H + RR2), RO = 7DH, R2 = 01H, R3 = 04H
LDC (note) #01H[RR2],R0 ; 11H (contents of RO) is loaded into program memory location
; 0105H (01H + 0104H)
LDE #01H[RR2],RO ; 11H (contents of RO) is loaded into external data memory
; location 0105H (01H + 0104H)
LDC RO,#1000H[RR2] ; RO « contents of program memory location 1104H
; (1000H + 0104H), RO = 88H, R2 = 01H, R3 = 04H
LDE RO,#1000H[RR2] ; RO <« contents of external data memory location 1104H
; (1000H + 0104H), RO = 98H, R2 = 01H, R3 = 04H
LDC R0,1104H ; RO <« contents of program memory location 1104H, RO = 88H
LDE R0,1104H ; RO <« contents of external data memory location 1104H,
; RO = 98H
LDC (note) 1105H,RO ; 11H (contents of RO) is loaded into program memory location

. 1105H, (1105H) « 11H

LDE 1105H,RO ;11H (contents of RO) is loaded into external data memory
; location 1105H, (1105H) « 11H

NOTE: These instructions are not supported by masked ROM type devices.

ELECTRONICS 6-53

INSTRUCTION SET S3C80M4/F80M4

LDCD/LDED — Load Memory and Decrement

LDCD/LDED

Operation:

Flags:

Format:

Examples:

dst,src
dst « src
m<«rmr-1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

LDCD references program memory and LDED references external data memory. The assembler
makes 'Irr* an even number for program memory and an odd number for data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

| opc |dst|src| 2 10 E2 r Irr

Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = OCDH, and
external data memory location 1033H = ODDH:
LDCD R8,@RR6 ; OCDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is decremented by one
; R8 = OCDH, R6 = 10H, R7 = 32H (RR6 « RR6-1)

LDED R8,@RR6 ; ODDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is decremented by one (RR6 < RR6 — 1)
; R8 = ODDH, R6 = 10H, R7 = 32H

6-54

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

LDCI/LDEI — Load Memory and Increment

LDCI/LDEI dst,src

Operation: dst « src
me«m+1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler makes
'Irr" even for program memory and odd for data memory.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | dst | src | 2 10 E3 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and
1034H = OCS5H; external data memory locations 1033H = ODDH and 1034H = OD5H:
LDCI R8,@RR6 ; OCDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 < RR6 + 1)
; R8 = OCDH, R6 = 10H, R7 = 34H

LDEI R8,@RR6 ; ODDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 < RR6 + 1)
; R8 = ODDH, R6 = 10H, R7 = 34H

ELECTRONICS 6-55

INSTRUCTION SET S3C80M4/F80M4

LDCPD/LDEPD — Load Memory with Pre-Decrement

LDCPD/
LDEPD

Operation:

Flags:

Format:

Examples:

dst,src

m«m-1
dst « src

These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is first
decremented. The contents of the source location are then loaded into the destination location.
The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler
makes 'Irr* an even number for program memory and an odd number for external data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

| opc | src | dst | 2 14 F2 Irr r

Given: RO = 77H, R6 = 30H, and R7 = 0OH:

LDCPD @RR6,R0O ; (RR6 « RR6-1)
; 77H (contents of RO) is loaded into program memory location
; 2FFFH (3000H — 1H)
; RO = 77H, R6 = 2FH, R7 = OFFH

LDEPD @RR6,R0 ; (RR6 < RR6-1)
; 77H (contents of RO) is loaded into external data memory
; location 2FFFH (3000H — 1H)
; RO = 77H, R6 = 2FH, R7 = OFFH

6-56

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

LDCPI/LDEPI — Load Memory with Pre-Increment

LDCPI/

LDEPI dst,src

Operation: m«m+1
dst « src
These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is first
incremented. The contents of the source location are loaded into the destination location. The
contents of the source are unaffected.
LDCPI refers to program memory and LDEPI refers to external data memory. The assembler
makes 'Irr* an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode Addr Mode
(Hex) dst src

| opc | src | dst | 2 14 F3 Irr r

Examples: Given: RO = 7FH, R6 = 21H, and R7 = OFFH:

LDCPI @RR6,RO . (RR6 « RR6+1)
; 7FH (contents of RO) is loaded into program memory
; location 2200H (21FFH + 1H)
; RO = 7FH,R6 = 22H,R7 = OOH

LDEPI @RR6,R0 ; (RR6 <« RR6 +1)
; 7FH (contents of RO) is loaded into external data memory
; location 2200H (21FFH + 1H)
; RO = 7FH, R6 = 22H, R7 = O0OH

ELECTRONICS 6-57

INSTRUCTION SET

S3C80M4/F80M4

LDW — Load word

LDW

Operation:

Flags:

Format:

Examples:

dst,src

dst « src

The contents of the source (a word) are loaded into the destination. The contents of the source
are unaffected.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst

| opc | src | 3 8 C4 RR
C5 RR

| opc | dst | src | 4 8 C6 RR

Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,
register 01H = 0O2H, register 02H = 03H, and register 03H = OFH:

LDW

LDW

LDW

LDW

LDW

LDW

RR6,RR4

O00H,02H

RR2,@R7
04H,@01H
RR6,#1234H

02H,#0FEDH

A

—
-
-

—

R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH

Register 00H = 03H, register 01H = OFH,
register 02H = O3H, register 03H = OFH

R2 = 03H, R3 = OFH,

Register 04H = 0O3H, register 05H = OFH
R6 = 12H, R7 = 34H
Register 02H = OFH, register 03H = OEDH

src
RR
IR

IML

In the second example, please note that the statement "LDW O00H,02H" loads the contents of the
source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in general
register OOH and the value OFH in register 01H.

The other examples show how to use the LDW instruction with various addressing modes and

formats.

6-58

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

MULT — multiply (Unsigned)

MULT

Operation:

Flags:

Format:

Examples:

dst,src

dst <« dstx src

The 8-bit destination operand (even register of the register pair) is multiplied by the source
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination
address. Both operands are treated as unsigned integers.

C: Setifresultis > 255; cleared otherwise.
Z: Setif the result is "0"; cleared otherwise.
S: Setif MSB of the result is a "1"; cleared otherwise.
V: Cleared.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | sc | dst | 3 22 84 RR R
22 85 RR IR
22 86 RR IM

Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:

MULT 00H, 02H - Register 00H = 01H, register 01H = 20H, register 02H = 09H
MULT OOH, @01H — Register 00H = 0OO0H, register 01H = 0COH
MULT O0H, #30H - Register 00H = 06H, register 01H = O0H

In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in
the register O0H of the register pair 00H, 01H) by the source register 02H operand (09H). The
16-bit product, 0120H, is stored in the register pair 00H, 01H.

ELECTRONICS 6-59

INSTRUCTION SET

S3C80M4/F80M4

NEXT — Next

NEXT
Operation: PC « @IP
IP « IP + 2
The NEXT instruction is useful when implementing threaded-code languages. The program
memory word that is pointed to by the instruction pointer is loaded into the program counter. The
instruction pointer is then incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 10 OF
Example: The following diagram shows one example of how to use the NEXT instruction.
Before After
Address Data Address Data
IP| 0043 IP| 0045
Address Data Address Data
pPC| 0120 —» 43| AddressH |01 :’__,—b pPC| 0130 43 | Address H
44| AddressL |10 44| Address L
45| Address H —» 45| Address H
120 | Next 130 | Routine
Memory Memory
6-60 ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

NOP — No Operation

NOP

Operation:

Flags:

Format:

Example:

No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to effect a timing delay of variable duration.

No flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 FF

When the instruction
NOP

is encountered in a program, no operation occurs. Instead, there is a delay in instruction
execution time.

ELECTRONICS 6-61

INSTRUCTION SET S3C80M4/F80M4

OR — Logical OR

OR

Operation:

Flags:

Format:

Examples:

dst,src

dst < dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the
destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is
stored.

C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 4 42 r r
6 43 r Ir
| opc | src | dst | 3 6 44 R R
45 R IR
| opc | dst | src | 3 6 46 R IM

Given: RO = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and
register 08H = 8AH:

OR RO,R1 - RO = 3FH, R1 = 2AH

OR RO,@R2 - RO = 37H, R2 = 01H, register 01H = 37H
OR OOH,01H - Register 00H = 3FH, register 01H = 37H
OR 01H,@00H — Register 00OH = 08H, register 01H = OBFH
OR OOH,#02H — Register 00H = 0AH

In the first example, if working register RO contains the value 15H and register R1 the value 2AH,
the statement "OR RO,R1" logical-ORs the RO and R1 register contents and stores the result
(3FH) in destination register RO.

The other examples show the use of the logical OR instruction with the various addressing
modes and formats.

6-62

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

POP — Pop From Stack
POP dst

Operation: dst « @SP
SP « SP + 1

The contents of the location addressed by the stack pointer are loaded into the destination. The
stack pointer is then incremented by one.

Flags: No flags affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 8 50 R
51 IR
Examples: Given: Register 0OH = 01H, register 01H = 1BH, SPH (OD8H) = 00H, SPL (OD9H) = OFBH,

and stack register OFBH = 55H:

POP 00H - Register 00H
POP @O00H - Register 00H

55H, SP = O0FCH
01H, register 01H = 55H, SP = O0FCH

In the first example, general register OOH contains the value 01H. The statement "POP 00H"
loads the contents of location OOFBH (55H) into destination register OOH and then increments the
stack pointer by one. Register 00H then contains the value 55H and the SP points to location
00FCH.

ELECTRONICS 6-63

INSTRUCTION SET S3C80M4/F80M4

POPUD — Pop User Stack (Decrementing)

POPUD dst,src
Operation: dst « src
IR « IR-1
This instruction is used for user-defined stacks in the register file. The contents of the register file
location addressed by the user stack pointer are loaded into the destination. The user stack
pointer is then decremented.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | src | dst | 3 8 92 R IR
Example: Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and
register 02H = 70H:
POPUD O02H,@00H — Register 00H = 41H, register 02H = 6FH, register 42H = 6FH
If general register 00H contains the value 42H and register 42H the value 6FH, the statement
"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The
user stack pointer is then decremented by one, leaving the value 41H.
6-64 ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

POPUI — Pop User Stack (Incrementing)

POPUI

Operation:

Flags:

Format:

Example:

dst,src

dst « src
IR« IR+1

The POPUI instruction is used for user-defined stacks in the register file. The contents of the
register file location addressed by the user stack pointer are loaded into the destination. The user
stack pointer is then incremented.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

| opc | src | dst | 3 8 93 R IR

Given: Register 0OOH = 01H and register 01H = 70H:
POPUI 02H,@00H — Register 00H = 02H, register 01H = 70H, register 02H = 70H
If general register 00H contains the value 01H and register 01H the value 70H, the statement

"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.

ELECTRONICS 6-65

INSTRUCTION SET S3C80M4/F80M4

PUSH — push To Stack

PUSH

Operation:

Flags:

Format:

Examples:

Src

SP « SP -1
@SP « src

A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)
into the location addressed by the decremented stack pointer. The operation then adds the new
value to the top of the stack.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | src | 2 8 (internal clock) 70 R

8 (external clock)

8 (internal clock)
8 (external clock) 71 IR

Given: Register 40H = 4FH, register 4FH = O0AAH, SPH = 00H, and SPL = OOH:

PUSH 40H — Register 40H = 4FH, stack register OFFH = 4FH,
SPH = OFFH, SPL = OFFH

PUSH @40H - Register 40H = 4FH, register 4FH = 0AAH, stack register
OFFH = 0AAH, SPH = OFFH, SPL = OFFH

In the first example, if the stack pointer contains the value 0000H, and general register 40H the
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to OFFFFH. It
then loads the contents of register 40H into location OFFFFH and adds this new value to the top
of the stack.

6-66

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

PUSHUD — push User Stack (Decrementing)

PUSHUD dst,src
Operation: IR« IR -1
dst « src

This instruction is used to address user-defined stacks in the register file. PUSHUD decrements
the user stack pointer and loads the contents of the source into the register addressed by the
decremented stack pointer.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | dst | src | 3 8 82 IR R
Example: Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:

PUSHUD @OOH,01H — Register 00H = 02H, register 01H = 05H, register 02H = 05H

If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The
01H register value, 05H, is then loaded into the register addressed by the decremented user
stack pointer.

ELECTRONICS 6-67

INSTRUCTION SET S3C80M4/F80M4

PUSHUI — push user stack (Incrementing)

PUSHUI dst,src
Operation: IR« IR+ 1
dst « src
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user
stack pointer and then loads the contents of the source into the register location addressed by
the incremented user stack pointer.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | dst | src | 3 8 83 IR R
Example: Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:
PUSHUI @OOH,01H — Register 00H = 04H, register 01H = 0O5H, register 04H = O5H
If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H
register value, O5H, is then loaded into the location addressed by the incremented user stack
pointer.
6-68 ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

RCF — Reset Carry Flag

RCF

Operation:

Flags:

Format:

Example:

RCF

C« 0

The carry flag is cleared to logic zero, regardless of its previous value.
C: Cleared to "0".

No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 CF

Given: C="1" or "0":

The instruction RCF clears the carry flag (C) to logic zero.

ELECTRONICS 6-69

INSTRUCTION SET S3C80M4/F80M4

RET — Return

RET

Operation:

Flags:

Format:

Example:

PC « @SP
SP « SP + 2

The RET instruction is normally used to return to the previously executing procedure at the end of
a procedure entered by a CALL instruction. The contents of the location addressed by the stack
pointer are popped into the program counter. The next statement that is executed is the one that
is addressed by the new program counter value.

No flags are affected.

Bytes Cycles Opcode (Hex)
opc 1 8 (internal stack) AF

10 (internal stack)

Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:
RET - PC = 101AH, SP = OOFEH

The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte
of the program counter. The stack pointer then pops the value in location OOFEH (1AH) into the
PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to
memory location OOFEH.

6-70

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

RL — Rotate Left

RL dst
Operation: C « dst(7)

dst (0) « dst (7)

dst(n + 1) « dst(n), n = 0-6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is

moved to the bit zero (LSB) position and also replaces the carry flag.

7 0
C |« +—

Flags: C: Setif the bit rotated from the most significant bit position (bit 7) was "1".

Z: Setif the result is "0"; cleared otherwise.

S: Setif the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred; cleared otherwise.

D: Unaffected.

H: Unaffected.
Format:

Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 90 R
91 IR

Examples: Given: Register 00H = OAAH, register 01H = 02H and register 02H = 17H:

RL OOH - Register OOH = 55H,C = "1"
RL @01H - Register 01H = 02H, register 02H = 2EH, C = "0"
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement

"RL OOH" rotates the OAAH value left one bit position, leaving the new value 55H (01010101B)
and setting the carry and overflow flags.

ELECTRONICS 6-71

INSTRUCTION SET S3C80M4/F80M4

RLC — Rotate Left Through Carry

RLC dst
Operation: dst (0) « C

C « dst(7)

dst(n + 1) « dst(n),n = 0-6

The contents of the destination operand with the carry flag are rotated left one bit position. The

initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

7 0
< C [e4— -

Flags: C: Setif the bit rotated from the most significant bit position (bit 7) was "1".

Z: Setif the result is "0"; cleared otherwise.

S: Setif the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.

D: Unaffected.

H: Unaffected.
Format:

Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 10 R
11 IR

Examples: Given: Register 0OH = 0AAH, register 01H = 02H, and register 02H = 17H,C = "0"

RLC 00H - Register 0OH = 54H,C = "1"
RLC @O01H - Register 01H = 02H, register 02H = 2EH, C ="0"

In the first example, if general register 00H has the value 0AAH (10101010B), the statement
"RLC OO0H" rotates OAAH one bit position to the left. The initial value of bit 7 sets the carry flag
and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.

6-72

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

RR — Rotate Right
RR dst

Operation: C « dst(0)
dst (7) « dst (0)
dst(n) « dst(n + 1),n = 0-6

The contents of the destination operand are rotated right one bit position. The initial value of bit
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

Flags: C: Setif the bit rotated from the least significant bit position (bit zero) was "1".
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 EO R
El IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR OOH — Register 0OOH = 98H, C = "1"
RR @01H - Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if general register 00H contains the value 31H (00110001B), the statement
"RR O0H" rotates this value one bit position to the right. The initial value of bit zero is moved to
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

ELECTRONICS 6-73

INSTRUCTION SET S3C80M4/F80M4

RRC — Rotate Right Through Carry

RRC dst
Operation: dst(7) « C

C « dst(0)

dst(n) < dst(n + 1),n = 0-6

The contents of the destination operand and the carry flag are rotated right one bit position. The

initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7

(MSB).

7 0
»| C >

Flags: C: Setif the bit rotated from the least significant bit position (bit zero) was "1".

Z: Setif the result is "0" cleared otherwise.

S: Setif the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.

D: Unaffected.

H: Unaffected.
Format:

Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 Co R
C1l IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H,and C = "0™:

RRC OOH - Register OOH = 2AH,C = "1"
RRC @01H — Register 01H = 02H, register 02H = 0BH,C = "1"

In the first example, if general register OOH contains the value 55H (01010101B), the statement
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both
cleared to "0".

6-74

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

SBO — select Bank 0

SBO

Operation: BANK « 0

The SBO instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,
selecting bank 0 register addressing in the set 1 area of the register file.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 4 4F
Example: The statement
SBO

clears FLAGS.0 to "0", selecting bank O register addressing.

ELECTRONICS 6-75

INSTRUCTION SET S3C80M4/F80M4

SB1 — select Bank 1

SB1

Operation: BANK « 1

The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not
implemented in some S3C8-series microcontrollers.)

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 4 5F
Example: The statement
SB1

sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.

6-76 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

SBC — subtract with Carry
SBC dst,src

Operation: dst < dst — src — ¢

The source operand, along with the current value of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Set if a borrow occurred (src > dst); cleared otherwise.

Set if the result is "0"; cleared otherwise.

Set if the result is negative; cleared otherwise.

Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign
of the result is the same as the sign of the source; cleared otherwise.

Always set to "1".

Cleared if there is a carry from the most significant bit of the low-order four bits of the result;
set otherwise, indicating a "borrow".

Flags:

o

Format:

Bytes Cycles Opcode Addr Mode

(Hex) dst src

| opc | dst| src | 2 4 32 r r
6 33 r Ir

| opc | src | dst | 3 6 34 R R
35 R IR

| opc | dst | src | 3 6 36 R IM

Examples: Given: R1 = 10H,R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register
03H = OAH:
SBC R1,R2 - R1 = OCH, R2 = 03H
SBC R1,@R2 - R1 = 05H, R2 = 03H, register 03H = 0AH
SBC 01H,02H - Register 01H = 1CH, register 02H = 03H
SBC 01H,@02H — Register 01H = 15H,register 02H = 03H, register 03H = 0AH
SBC O1H#8AH — Register 01H = 95H; C, S,andV = "1"
In the first example, if working register R1 contains the value 10H and register R2 the value 03H,

the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the
destination (10H) and then stores the result (OCH) in register R1.

ELECTRONICS 6-77

INSTRUCTION SET S3C80M4/F80M4

SCF — set Carry Flag

SCF

Operation:

Flags:

Format:

Example:

C«1
The carry flag (C) is set to logic one, regardless of its previous value.

C: Setto"1"

No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 DF

The statement
SCF

sets the carry flag to logic one.

6-78

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

SRA — shift Right Arithmetic

SRA dst

Operation: dst (7) « dst(7)
C « dst(0)
dst(n) < dst(n + 1),n = 0-6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit

position 6.
7 6 0
»| C |:
Flags: C: Setif the bit shifted from the LSB position (bit zero) was "1".
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result is negative; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 DO R
D1 IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = OBCH, and C = "1":

SRA OOH - Register OOH = 0CD, C = "0"
SRA @02H - Register 02H = 03H, register 03H = ODEH, C = "0"

In the first example, if general register 00H contains the value 9AH (10011010B), the statement
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the
value OCDH (11001101B) in destination register O0H.

ELECTRONICS 6-79

INSTRUCTION SET S3C80M4/F80M4

SRP/SRPO/SRP1 — set Register Pointer

SRP

SRPO

SRP1

Operation:

Flags:

Format:

Examples:

src
src
src
Ifsrc (1) = 1andsrc(0) = Othen: RPO(3-7) <« src(3-7)
If src (1) = Oandsrc (0) = 1then: RP1(3-7) <« src(3-7)
If src (1) = Oandsrc (0) = Othen: RPO (4-7) <« src (4-7),
RPO (3) «~ 0
RP1 (4-7) <« src (4-7),

RP1 (3) « 1

The source data bits one and zero (LSB) determine whether to write one or both of the register
pointers, RPO and RP1. Bits 3—7 of the selected register pointer are written unless both register
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) src

| opc | sc | 2 4 31 IM

The statement
SRP #40H

sets register pointer 0 (RPO) at location 0D6H to 40H and register pointer 1 (RP1) at location
OD7H to 48H.

The statement "SRP0O #50H" sets RPO to 50H, and the statement "SRP1 #68H" sets RP1 to
68H.

6-80

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

STOP — Stop Operation

STOP
Operation:
The STOP instruction stops the both the CPU clock and system clock and causes the
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,
peripheral registers, and 1/O port control and data registers are retained. Stop mode can be
released by an external reset operation or by external interrupts. For the reset operation, the
RESET pin must be held to Low level until the required oscillation stabilization interval has
elapsed.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc 1 4 7F - -
Example: The statement
STOP

halts all microcontroller operations.

ELECTRONICS 6-81

INSTRUCTION SET S3C80M4/F80M4

SUB — subtract

SUB dst,src

Operation: dst « dst —src

The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

Flags: C: Setif a"borrow" occurred; cleared otherwise.
Z: Setif the resultis "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the
sign of the result is of the same as the sign of the source operand; cleared otherwise.
D: Always setto "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;
set otherwise indicating a "borrow".
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | dst | src | 2 4 22 r r
6 23 r Ir
| opc | src | dst | 3 6 24 R R
25 R IR
| opc | dst | src | 3 6 26 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = OAH:

SUB R1,R2 - R1 = OFH, R2 = 03H

SUB R1,@R2 - R1 = 08H,R2 = 03H

SUB 01H,02H - Register 01H = 1EH, register 02H = 03H
SUB 01H,@02H — Register 01H = 17H, register 02H = 03H
SUB 01H#90H — Register 01H = 91H;C, S,andV = "1"

SUB O1H#65H — Register 01H

OBCH;Cand S = "1",V = "0"

In the first example, if working register R1 contains the value 12H and if register R2 contains the
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination
value (12H) and stores the result (OFH) in destination register R1.

6-82 ELECTRONICS

S3C80M4/F80M4

INSTRUCTION SET

SWAP — Swap Nibbles

SWAP dst

Operation: dst(0 — 3) <> dst(4 - 7)

The contents of the lower four bits and upper four bits of the destination operand are swapped.

7 i 4 3

1

Flags: C: Undefined.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode
(Hex)
| opc | dst | 2 4 FO
F1

Examples: Given: Register 00H = 3EH, register 02H =

SWAP O00OH - Register 00H
SWAP @02H - Register 02H

03H, and register 03H = 0A4H:

OE3H
= O3H, register 03H = 4AH

Addr Mode
dst

R
IR

In the first example, if general register 00H contains the value 3EH (00111110B), the statement
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the O0H register, leaving the value

OE3H (11100011B).

ELECTRONICS

6-83

INSTRUCTION SET S3C80M4/F80M4

TCM — Test Complement Under Mask

TCM

Operation:

Flags:

Format:

Examples:

dst,src

(NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and
source operands are unaffected.

C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 4 62 r r
6 63 r Ir
| opc | src | dst | 3 6 64 R R
65 R IR
| opc | dst | src | 3 6 66 R IM

Given: RO = 0C7H,R1 = 02H, R2 = 12H, register OOH = 2BH, register 01H = 02H, and
register 02H = 23H:

TCM RO,R1
TCM RO,@R1
TCM 00H,01H
TCM 0OH,@01H

RO = OC7H,R1 = 02H,Z = "1"
RO = OC7H, Rl = 02H, register 02H = 23H,Z = "0"
Register 00H = 2BH, register 01H = 02H,Z = "1"

Register 00H = 2BH, register 01H = 02H,
register 02H = 23H,Z = "1"

TCM 00H#34 > Register 00H = 2BH, Z = "0"

N
5
5
5

In the first example, if working register RO contains the value OC7H (11000111B) and register R1
the value 02H (00000010B), the statement "TCM RO,R1" tests bit one in the destination register
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one
and can be tested to determine the result of the TCM operation.

6-84

ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

TM — Test Under Mask
™ dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 4 72 r r
6 73 r Ir
| opc | src | dst | 3 6 74 R R
75 R IR
| opc | dst | src | 3 6 76 R IM

Examples: Given: RO = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

™ RO,R1 - RO = OC7H,R1 = 02H,Z = "0"
™ RO,@R1I - RO = OC7H, R1 = O2H, register 02H = 23H,Z = "0"
™ 00H,01H - Register 00H = 2BH, register 01H = 02H, Z = "0"
™ OOH,@01H —» Register 00H = 2BH, register 01H = 02H,

register 02H = 23H,Z = "0"
™ O0H,#54H — Register 00OH = 2BH,Z = "1"

In the first example, if working register RO contains the value OC7H (11000111B) and register R1
the value 02H (00000010B), the statement "TM RO,R1" tests bit one in the destination register
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic
zero and can be tested to determine the result of the TM operation.

ELECTRONICS 6-85

INSTRUCTION SET S3C80M4/F80M4

WFI — wait for Interrupt

WFI
Operation:

The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take

place during this wait state. The WFI status can be released by an internal interrupt, including a

fast interrupt .
Flags: No flags are affected.
Format:

Bytes Cycles Opcode
(Hex)
opc 1 4n 3F
(n=123..)

Example: The following sample program structure shows the sequence of operations that follow a "WFI"

statement:

Main program

El (Enable global interrupt)
WFI (Wait for interrupt)
(Next instruction)

Interrupt occurs

Interrupt service routine

Clear interrupt flag
IRET

I: Service routine completed

6-86 ELECTRONICS

S3C80M4/F80M4 INSTRUCTION SET

XOR — Logical Exclusive OR

XOR dst,src

Operation: dst « dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 4 B2 r r
6 B3 r Ir
| opc | src | dst | 3 6 B4 R R
B5 R IR
| opc | dst | src | 3 6 B6 R IM

Examples: Given: RO = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

XOR RO,R1
XOR RO,@R1

RO = OC5H,R1 = 02H

RO = OE4H, R1 = 02H, register 02H = 23H

XOR 00H,01H Register 00H = 29H, register 01H = 02H

XOR OOH,@01H Register 00H = 08H, register 01H = 02H, register 02H = 23H
XOR OOH#54H — Register 00OH = 7FH

5
5
5
5

In the first example, if working register RO contains the value OC7H and if register R1 contains
the value 02H, the statement "XOR RO,R1" logically exclusive-ORs the R1 value with the RO
value and stores the result (0C5H) in the destination register RO.

ELECTRONICS 6-87

INSTRUCTION SET S3C80M4/F80M4

NOTES

6-88 ELECTRONICS

S3C80M4/F80M4 CLOCK CIRCUIT

CLOCK CIRCUIT

OVERVIEW

The clock frequency generated for the S3C80M4/F80M4 by an external crystal can range from 0.4 MHz to 10
MHz. The maximum CPU clock frequency is 10 MHz. The X\ and X1 pins connect the external oscillator or

clock source to the on-chip clock circuit.

SYSTEM CLOCK CIRCUIT
The system clock circuit has the following components:

— External crystal or ceramic resonator oscillation source (or an external clock source)
— Oscillator stop and wake-up functions

— Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)

— System clock control register, CLKCON

— Clock output control register, CLOCON

— STOP control register, STPCON

CPU CLOCK NOTATION
In this document, the following notation is used for descriptions of the CPU clock;

fx: main clock

fxx: selected system clock

ELECTRONICS 7-1

CLOCK CIRCUIT S3C80M4/F80M4

MAIN OSCILLATOR CIRCUITS

—HT XIN
—J
»—HL Xout

Figure 7-1. Crystal/Ceramic Oscillator (fx)

>y X

XouTt

Figure 7-2. External Oscillator (fx)

XIN

Xout

Figure 7-3. RC Oscillator (fx)

7.2 ELECTRONICS

S3C80M4/F80M4 CLOCK CIRCUIT

CLOCK STATUS DURING POWER-DOWN MODES
The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator is started, by a reset
operation or an external interrupt (with RC delay noise filter), and can be released by internal interrupt too
when the sub-system oscillator is running and watch timer is operating with sub-system clock.

— InIdle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/
counters. Idle mode is released by a reset or by an external or internal interrupt.

INT A
CLKCON.7
Stop Release
Main-System x (fxx)
Oscillator
Circuit
A Stop

[’:

I
STOP OSC 1/1-1/4096 ! !
inst. _l_ \ Basic Timer |
Frequency | > !
STPCON |— Diyidiqg ! Timer/Counter 0 !
Circuit 1 1
' PWM !
I I
171 12 18 1/16 | E
b

>
CLKCON.4-.3 4 Selector
Ll
CPU Clock
»
IDLE Instruction

Figure 7-4. System Clock Circuit Diagram

ELECTRONICS 7-3

CLOCK CIRCUIT S3C80M4/F80M4

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in the set 1, address D4H. It is read/write addressable and
has the following functions:

— Oscillator frequency divide-by value

After the main oscillator is activated, and the fxx/16 (the slowest clock speed) is selected as the CPU clock. If
necessary, you can then increase the CPU clock speed fxx/8, fxx/2, or fxx/1.

System Clock Control Register (CLKCON)
D4H, Set 1, R/IW

MSB | .7 .6 5 4 3 2 A .0 | LSB

Not used for the Not used for the
S3C80M4 S3C80M4

Oscillator IRQ wake-up function bit:

. X Divide-by selection bits for
0 = Enable IRQ for main wake-up in

CPU clock frequency:

power down mode 00 = fxx/16
1 = Diable IRQ for main wake-up 01 = fxx/8
in power down mode 10 = fxx/2
11 =fxx/1

NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock.
To select faster speeds, load the appropriate values to CLKCON.3 and CLKCON.4.

Figure 7-5. System Clock Control Register (CLKCON)

7-4 ELECTRONICS

S3C80M4/F80M4

CLOCK CIRCUIT

CLOCK OUTPUT CONTROL REGISTER (CLOCON)

The clock output control register, CLOCON, is located in the bank 0 of setl, address E3H. It is read/write

addressable and has the following functions;

— Clock Output Frequency Selection

After a reset, fxx/64 is select for Clock Output Frequency because the reset value of CLOCON.1-.0 is "0".

Clock Output Control Register (CLOCON)
E3H, Set 1, bank 0, R/W

MSB g

5

4

3 2

A .0 | LSB

Not used for the S3C80M4

Clock Output Frequency Selection Bits:
00 = fxx/64

01 = fxx/16

10 = fxx/8

11 = fxx/4

Figure 7-6. Clock Output Control Register (CLOCON)

fxx/64

fxx/8
fxx/4

CLOCON.1-.0

A AN 4

fxx/16

MUX

P1CONH.5-.4

D—VCLKOUT

Figure 7-7. Clock Output Block Diagram

ELECTRONICS

7-5

CLOCK CIRCUIT

S3C80M4/F80M4

STOP CONTROL REGISTER (STPCON)

The STOP control register, STPCON, is located in the bank O of setl, address FBH. It is read/write addressable

and has the following functions:

— Enable/Disable STOP instruction

After a reset, the STOP instruction is disabled, because the value of STPCON is "other values".

If necessary, you can use the STOP instruction by setting the value of STPCON to "10100101B".

STOP Control Register (STPCON)
FBH, Set 1,bank 0, R/W

MSB | .7 .6 5 A4 3 2 A .0

STOP Control bits:
Other values = Disable STOP instruction
10100101 = Enable STOP instruction

will not be executed and reset will be generated.

LSB

NOTE: Before executing the STOP instruction, set the STPCON
register as "10100101b". Otherwise the STOP instruction

Figure 7-8. STOP Control Register (STPCON)

& PROGRAMMING TIP — How to Use Stop Instruction

This example shows how to go STOP mode when a main clock is selected as the system clock.

LD STOPCON,#1010010B ; Enable STOP instruction
STOP : Enter STOP mode

NOP

NOP

NOP : Release STOP mode

LD STOPCON,#00000000B :; Disable STOP instruction

7-6

ELECTRONICS

S3C80M4/F80M4 RESET and POWER-DOWN

RESET and POWER-DOWN

SYSTEM RESET

OVERVIEW

During a power-on reset, the voltage at V goes to High level and the RESET pin is forced to Low level. The

RESET signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock. This
procedure brings the S3C80M4/F80M4 into a known operating status.

To allow time for internal CPU clock oscillation to stabilize, the RESET pin must be held to Low level for a
minimum time interval after the power supply comes within tolerance. The minimum required time of a reset
operation for oscillation stabilization is 1 millisecond.

Whenever a reset occurs during normal operation (that is, when both Vpp and RESET are High level), the

nNRESET pin is forced Low level and the reset operation starts. All system and peripheral control registers are
then reset to their default hardware values

In summary, the following sequence of events occurs during a reset operation:

— All interrupt is disabled.

— The watchdog function (basic timer) is enabled.

— Ports 0-1 and set to input mode, and all pull-up resistors are disabled for the 1/O port.

— Peripheral control and data register settings are disabled and reset to their default hardware values.
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM
location 0100H (and 0101H) is fetched and executed at normal mode by smart option.

NORMAL MODE RESET OPERATION

A reset enables access to the S3C80M4 (4Kbyte) on-chip ROM. (The external interface is not automatically
configured).

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can
disable it by writing "1010B" to the upper nibble of BTCON.

ELECTRONICS 8-1

RESET and POWER-DOWN

S3C80M4/F80M4

HARDWARE RESET VALUES

Table 8-1, 8-2 list the reset values for CPU and system registers, peripheral control registers, and peripheral data
registers following a reset operation. The following notation is used to represent reset values:

— A"1" or a"0" shows the reset bit value as logic one or logic zero, respectively.

— An "X" means that the bit value is undefined after a reset.

— Adash ("-") means that the bit is either not used or not mapped, but read 0 is the bit value.

Table 8-1. S3C80M4/F80M4 Set 1 Register and Values After RESET

Register Name Mnemonic Address Bit Values After RESET
Dec |Hex [7|65][af3]2]1]o0
Locations DOH-D2H are not mapped.

Basic timer control register BTCON 211 | D3H | O 0 0 0 0 0 0 0
System clock control register CLKCON 212 | D4AH| 0O | - | - | O ol -1-1-
System flags register FLAGS 213 | D5H | x X X X X X 0 0
Register pointer 0 RPO 214 | D6H | 1 1 0 0 ol -1-1-
Register pointer 1 RP1 215 | D7H | 1 1 0 0 1| -1 -1 -
Stack pointer (high byte) SPH 216 D8H X X X X X X X X
Stack pointer (low byte) SPL 217 | D9H | x X X X X X X X
Instruction pointer (high byte) IPH 218 | DAH | Xx X X X X X X X
Instruction pointer (low byte) IPL 219 DBH X X X X X X X X
Interrupt request register IRQ 220 DCH | O 0 0 0 0 0 0 0
Interrupt mask register IMR 221 | DDH | x X X X X X X X
System mode register SYM 222 | DEH | O - | - X X X 0 0
Register page pointer PP 223 | DFH | O 0 0 0 0 0 0 0

8-2

ELECTRONICS

S3C80M4/F80M4

RESET and POWER-DOWN

Table 8-2. S3C80M4/F80M4 Set 1, Bank 0 Register and Values After RESET

Register Name Mnemonic Address Bit Values After RESET

Dec Hex 5 4 3 2
Port 0 Data Register PO 224 EOH 0 0 0 0
Port 1 Data Register P1 225 E1H 0 0 0 0 0

Location E2H is not mapped.
Clock Output Control Register CLOCON 227 ESBH | - |- -] -]1-]1-120 0
Timer 0 Counter Register TOCNT 228 E4H | O 0 0 0 0 0 0 0
Timer 0 Data Register TODATA 229 E5H | 1 1 1 1 1 1 1 1
Timer 0 Control Register TOCNT 230 E6H | O 0 0 0 0 0 0 0
PWM Data Register PWMDATA| 231 | EYTH| O [O | O | O | O | O | O] O
PWM Control Register PWMCON | 232 | EBH | O | O | - | O] O | O] O{|O
Locations E9H-EEH are not mapped.

Port 1 Control Register (High Byte) P1CONH 240 EFH - - 0 0 0 0 0 0
Port 1 Control Register (Low Byte) P1CONL 241 FOH 0 0 0 0 0 0 0 0
Port 1 Pull-up Resistor Enable Register P1PUR 242 F1H - 1 1 1 0 0 0 0
Port 0 Control Register (High Byte) POCONH 243 F2H 0 1 0 0 0 0 0 0
Port 0 Control Register (Low Byte) POCONL 244 F3H 0 0 0 0 0 0 0 0
Port 0 Interrupt Control Register POINT 245 F4H 0 0 0 0 0 0 0 0
Port O Interrupt Pending Register POPND 246 F5H 0 0 0 0 0 0 0 0

Locations F6H-FAH are not mapped.

STOP control register

| stpcon | 251 [FBH [0 [0] 0|0

[ofofo]o

Location FCH is not mapped.

Basic Timer Counter

| BrenT [253 [FOH [0 [0 |0 o000 o0

Location FEH is not mapped.

Interrupt Priority Register

| PR

|255|FFH|x|x|x|x|x|x|x|x

ELECTRONICS

RESET and POWER-DOWN S3C80M4/F80M4

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than

3pA. All system functions stop when the clock “freezes”, but data stored in the internal register file is retained.
Stop mode can be released in one of two ways: by a reset or by interrupts, for more details see Figure 7-4.

NOTE

Do not use stop mode if you are using an external clock source because X input must be restricted
internally to Vg to reduce current leakage.

Using nRESET to Release Stop Mode

Stop mode is released when the nRESET signal is released and returns to high level: all system and peripheral
control registers are reset to their default hardware values and the contents of all data registers are retained. A
reset operation automatically selects a slow clock fxx/16 because CLKCON.3 and CLKCON.4 are cleared to
‘00B’. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization
routine by fetching the program instruction stored in ROM location 0100H (and 0101H)

Using an External Interrupt to Release Stop Mode

External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can
use to release Stop mode in a given situation depends on the microcontroller’'s current internal operating mode.
The external interrupts in the S3C80M4/F80M4 interrupt structure that can be used to release Stop mode are:

— External interrupts P0.0—P0.3 (INTO-INT3)

Please note the following conditions for Stop mode release:

— If you release Stop mode using an external interrupt, the current values in system and peripheral control
registers are unchanged except STPCON register.

— If you use an internal or external interrupt for Stop mode release, you can also program the duration of the
oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before
entering Stop mode.

— When the Stop mode is released by external interrupt, the CLKCON.4 and CLKCON.3 bit-pair setting remains
unchanged and the currently selected clock value is used.

— The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service
routine, the instruction immediately following the one that initiated Stop mode is executed.

Using an Internal Interrupt to Release Stop Mode

Activate any enabled interrupt, causing Stop mode to be released. Other things are same as using external
interrupt.

How to Enter into Stop Mode

Handling STPCON register then writing STOP instruction (keep the order).
LD STPCON,#10100101B
STOP
NOP
NOP
NOP

8-4 ELECTRONICS

S3C80M4/F80M4 RESET and POWER-DOWN

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some
peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all
peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was
entered.

There are two ways to release idle mode:

1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents
of all data registers are retained. The reset automatically selects the slow clock fxx/16 because CLKCON.4
and CLKCON.3 are cleared to ‘00B’. If interrupts are masked, a reset is the only way to release idle mode.

2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle
mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction
immediately following the one that initiated idle mode is executed.

ELECTRONICS 8-5

RESET and POWER-DOWN

S3C80M4/F80M4

NOTES

8-6

ELECTRONICS

S3C80M4/F80M4 /0 PORTS

/O PORTS

OVERVIEW

The S3C80M4/F80M4 microcontroller has two bit-programmable 1/0 ports, PO—P1. The port 0 is a 8-bit port, the
port 1 is a 7-bit port. This gives a total of 15 I/O pins. Each port can be flexibly configured to meet application
design requirements. The CPU accesses ports by directly writing or reading port registers. No special /0
instructions are required.

Table 9-1 gives you a general overview of the S3C80M4/F80M4 I/O port functions.

Table 9-1. S3C80M4/F80M4 Port Configuration Overview

Port Configuration Options

0 1-bit programmable I/O port.

Schmitt trigger input or push-pull output mode selected by software; software assignable pull-ups.
P0.0—-P0.3 can be used as inputs for external interrupts INTO—-INT3

(with interrupt enable and pending control). Alternately P0.6 can be used as PWM.

1 1-bit programmable I/O port.
Input or push-pull, open-drain output mode selected by software; software assignable pull-ups.
Alternately P1.0, P1.0, P1.6 can be used as TOOUT, TOCLK, CLKOUT.

PORT DATA REGISTERS

Table 9-2 gives you an overview of the register locations of all four S3C80M4/F80M4 I/O port data registers. Data
registers for ports 0 and 1 have the general format shown in Figure 9-1.

Table 9-2. Port Data Register Summary

Register Name Mnemonic Decimal Hex Location R/W
Port O data register PO 224 EOH Set 1, Bank O R/W
Port 1 data register P1 225 E1H Set 1, Bank 0 R/W

ELECTRONICS 9-1

/0 PORTS S3C80M4/F80M4

PORT O

Port 0 is an 8-bit 1/0 port with individually configurable pins. Port 0 pins are accessed directly by writing or reading
the port O data register, PO at location EOH in set 1, bank 0. P0.0—P0.7 can serve inputs, as output push pull

or you can configure the following alternative functions:

— Low-byte pins (P0.0—P0.3): INTO-INT3

— High-byte pins (P0.4-P0.7): PWM

Port 0 Control Register (POCONH, POCONL)

Port 0 has two 8-bit control registers: POCONH for P0.4-P0.7 and POCONL for P0.0-P0.3. A reset clears the
POCONH and POCONL registers to "40H" and "00H", configuring all pins to input mode. In input mode, three
different selections are available:

— Schmitt trigger input with interrupt generation on falling signal edges.

— Schmitt trigger input with interrupt generation on rising signal edges.
— Schmitt trigger input with interrupt generation on falling/rising signal edges.

Port O Interrupt Enable and Pending Registers (POINT)

To process external interrupts at the port O pins, the additional control registers are provided: the port O interrupt
enable register POINT (F4H, set 1, bank 0) and the port O interrupt pending register POPND (F5H, set 1, bank 0).

The port 0 interrupt pending register POPND lets you check for interrupt pending conditions and clear the pending
condition when the interrupt service routine has been initiated. The application program detects interrupt requests
by polling the POPND register at regular intervals.

When the interrupt enable bit of any port 0 pin is “1”, a rising or falling signal edge at that pin will generate an
interrupt request. The corresponding POPND bit is then automatically set to “1” and the IRQ level goes low to
signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application
software must the clear the pending condition by writing a “0” to the corresponding POPND bit.

9-2 ELECTRONICS

S3C80M4/F80M4 /0 PORTS

Port 0 Control Register, High Byte (POCONH)
F2H, Set 1, Bank 0, R/W

MSB | .7 .6 5 4 3 2 1 .0 [LSB

PO.7 P0.6 PO.5 PO.4
(PWM)

POCONH bit-pair pin configuration settings:

00 [Schmitt trigger input mode

01 [Schmitt trigger input mode, pull-up

10 | Alternative function (PWM,not used for P0.7/P0.5/P0.4)
11 | Output mode, push-pull

Figure 9-1. Port 0 High-Byte Control Register (POCONH)

Port 0 Control Register, Low Byte (POCONL)
F3H, Set 1, Bank 0, R/'W

MSB | .7 .6 5 A4 3 2 1 .0 [LSB

P0.3 PO.2 PO.1 P0.0
(INT3) (INT2) (INT1) (INTO)

POCONL bit-pair pin configuration settings:

00 | Schmitt trigger input mode

01 Schmitt trigger input mode, pull-up
10 Not available

11 | Output mode, push-pull

Figure 9-2. Port 0 Low-Byte Control Register (POCONL)

ELECTRONICS 9-3

/0 PORTS S3C80M4/F80M4

Port O Interrupt Control Register (POINT)
F4H, Set 1, Bank 0, R/IW

MSB | .7 .6 5 A4 3 2 1 .0 [LSB

INT3 INT2 INT1 INTO

POINT bit configuration settings:

00 Disable interrupt

01 Enable interrupt by falling edge

10 Enable interrupt by rising edge

11 Enable interrupt by both falling and rising edge

Figure 9-3. Port O Interrupt Control Register

Port O Interrupt Pending Register (POPND)
F5H, Set 1, Bank 0, R/W

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

Not used for the S3C80M4 PND3 PND2 PND1 PNDO

POPND bit configuration settings:

0 Interrupt request is not pending,
pending bit clear when write O

1 Interrupt request is pending

Figure 9-4. Port O Interrupt Pending Register (POPND)

9-4 ELECTRONICS

S3C80M4/F80M4 /0 PORTS

PORT 1

Port 1 is an 7-bit /0 port with individually configurable pins. Port 1 pins are accessed directly by writing or reading
the port 1 data register, P1 at location E1H in set 1, bank 0. P1.0-P1.6 can serve inputs, as outputs

(push pull or open-drain) or you can configure the following alternative functions:

— Low-byte pins (P1.0-P1.3): TOOUT, TOCLK

— High-byte pins (P1.4-P1.6): CLKOUT

Port 1 Control Register (PLCONH, PLCONL)

Port 1 has two 8-bit control registers: PLCONH for P1.4—-P1.6 and P1CONL for P1.0-P1.3. A reset clears the
P1CONH and P1CONL registers to “O0H”, configuring all pins to input mode. You use control registers settings to
select input or output mode (push-pull or open drain) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral 1/0 function you configure using the
port 1 control registers must also be enabled in the associated peripheral module.
Port 1 Pull-up Resistor Enable Register (P1PUR)

Using the port 1 pull-up resistor enable register, PLPUR (F1H, set 1, bank 0), you can configure pull-up resistors
to individual port 1 pins.

Port 1 Control Register, High Byte (P1LCONH)
EFH, Set 1, Bank 0, R/'W

MSB | .7 .6 5 4 3 2 1 .0 [LSB

P1.4
P1.5

P1.6/CLKOUT
Not used for the S3C80M4

P1CONH bit-pair pin configuration settings:

00 Input mode
01 | Output mode, N-channel open-drain

10 | Alternative function (CLKOUT, not used for P1.5/P1.4)
11 | Output mode, Push-pull

Figure 9-5. Port 1 High-Byte Control Register (PLCONH)

ELECTRONICS 9-5

/0 PORTS

S3C80M4/F80M4

Port 1 Control Register, Low Byte (PLCONL)
FOH, Set 1, Bank 0, R/'W

MSB

7 .6 .5 4 3 2 1 .0 |LSB

P1.0/TOOUT

P1.1/TOCLK

P1.2
P1.3

P1CONL bit-pair pin configuration settings:

00
01
10
11

Input mode (TOCLK)
Output mode, N-channel open-drain
Alternative function (TOOUT, not used for P1.3/P1.2/P1.1)

Output mode, push-pull

Figure 9-6. Port 1 Low-Byte Control Register (P1CONL)

MSB | .7 .6 5 A4

Port 1 Pull-up Resistor Enable Register (P1PUR)
F1H, Set 1, Bank 0, RIW

3 .2 1 .0 |LSB

Not used for P1.6 P15 P14 P13 P12 P11 P10
the S3C80M4

P1PUR bit configuration settings:

Pull-up Disable
Pull-up Enable

0
1

Figure 9-7. Port 1 Pull-up Resistor Enable Register (P1PUR)

9-6

ELECTRONICS

S3C80M4/F80M4 BASIC TIMER

BASIC TIMER

OVERVIEW

S3C80M4/F80M4 has an 8-bit basic timer .

BASIC TIMER (BT)
You can use the basic timer (BT) in two different ways:

— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction, or

— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:

— Clock frequency divider (fxx divided by 4096, 1024, 128, or 16) with multiplexer
— 8-hit basic timer counter, BTCNT (set 1, Bank 0, FDH, read-only)
— Basic timer control register, BTCON (set 1, D3H, read/write)

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,
address D3H, and is read/write addressable using Register addressing mode.

A reset clears BTCON to "O0H". This enables the watchdog function and selects a basic timer clock frequency of
fxx/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register
control bits BTCON.7-BTCON.4.

The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during the normal
operation by writing a "1" to BTCON.1. To clear the frequency dividers, write a "1" to BTCON.0.

ELECTRONICS 10-1

BASIC TIMER S3C80M4/F80M4

Basic TImer Control Register (BTCON)
D3H, Set 1, RIW

MSB | .7 .6 5 A4 3 2 A .0 |LSB

Watchdog timer enable bits: Divider clear bit:
1010B = Disable watchdog function 0 = No effect
Other value = Enable watchdog function 1= Clear dvider

Basic timer counter clear bit:
0 = No effect
1= Clear BTCNT

Basic timer input clock selection bits:
00 = fxx/4096

01 = fxx/1024

10 = fxx/128

11 = fxx/16

Figure 10-1. Basic Timer Control Register (BTCON)

10-2 ELECTRONICS

S3C80M4/F80M4 BASIC TIMER

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7-BTCON.4 to
any value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to
"00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by
the current CLKCON register setting), divided by 4096, as the BT clock.

The MCU is reset whenever a basic timer counter overflow occurs, During normal operation, the application
program must prevent the overflow, and the accompanying reset operation, from occurring, To do this, the
BTCNT value must be cleared (by writing a “1” to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function
You can also use the basic timer to program a specific oscillation stabilization interval after a reset or when stop

mode has been released by an external interrupt.

In stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts
increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an external interrupt).
When BTCNT.4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate
the clock signal off to the CPU so that it can resume the normal operation.

In summary, the following events occur when stop mode is released:
1. During the stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and

oscillation starts.

2. If a power-on reset occurred, the basic timer counter will increase at the rate of fxx/4096. If an interrupt is
used to release stop mode, the BTCNT value increases at the rate of the preset clock source.

Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.

When a BTCNT.4 overflow occurs, the normal CPU operation resumes.

ELECTRONICS 10-3

BASIC TIMER S3C80M4/F80M4

RESET or STOP

Basic Timer Control Register

' (Write '1010xxxxB' to Disable)
Data Bus
fxx/4096 Clear T
M’ 8-Bit Up Counter
b1 DIV | ¢ 128 MUX = (BTCNT, Read-Only) OVF RESET
R R |—> Start the CPU (NOTE)

NOTE: During a power-on reset operation, the CPU is idle during the required oscillation
stabilization interval (until bit 4 of the basic timer counter overflows).

Figure 10-2. Basic Timer Block Diagram

10-4 ELECTRONICS

S3C80M4/F80M4 8-BIT TIMER O

1 1 8-BIT TIMER O

OVERVIEW

The 8-bit timer 0 is an 8-bit general-purpose timer/counter.
Timer 0 has the following functional components:

— Clock frequency divider (fxx divided by 1024, 256, 64, 8 or 1) with multiplexer

— External clock input pin (TOCLK)

— 8-bit counter (TOCNT), 8-bit comparator, and 8-bit reference data register (TODATA)
— /O pins for match output (TOOUT)

— Timer O interrupt (IRQO, vector EEH) generation

— Timer 0O control register, TOCON (set 1, Bank 0, E6H, read/write)

TIMER O FUNCTION DESCRIPTION

Interval Timer Mode

The timer O can generate an interrupt, the timer O match interrupt (TOINT). TOINT belongs to interrupt level IRQO,
and is assigned the separate vector address, EEH.

The TOINT pending condition should be cleared by software when it has been serviced. Even though TOINT is
disabled, the application’s service routine can detect a pending condition of TOINT by the software and execute its
sub-routine. When this case is used, the TOINT pending bit must be cleared by application sub-routine by writing a
“0” to the TOCON.0 pending bit.

In interval timer mode, a match signal is generated when the counter value is identical to the value written to the
timer O reference data register, TODATA. The match signal generates a timer O match interrupt (TOINT, vector
EEH) and clears the counter.

If, for example, you write the value "10H" to TODATA, the counter will increment until it reaches “10H". At this
point, the timer O interrupt request is generated, the counter value is reset, and counting resumes

ELECTRONICS 11-1

8-BIT TIMER O S3C80M4/F80M4

TIMER 0 CONTROL REGISTER (TOCON)

You use the timer 0 control register, TOCON, to

— Enable the timer 0 operating mode (interval timer)
— Select the timer 0 input clock frequency

— Clear the timer O counter, TOCNT

— Enable the timer O interrupt

— Clear timer 0 interrupt pending condition

TOCON is located in set 1, Bank 0 at address E6H, and is read/write addressable using Register addressing
mode.

A reset clears TOCON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency of
fxx/1024, and disables all timer O interrupts. You can clear the timer O counter at any time during normal operation
by writing a "1" to TOCON.3.

To enable the timer 0 interrupt (IRQO, vector EEH), you must write TOCON.2, and TOCON.1 to "1". To detect an
interrupt pending condition, when TOINT is disabled, the application program polls pending bit, TOCON.0. When
a "1" is detected, a timer O interrupt is pending. When the interrupt request has been serviced, the pending
condition must be cleared by software by writing a "0" to the timer O interrupt pending bit, TOCON.O.

Timer 0 Control Register (TOCON)
E6H, Set 1, Bank 0, R/W

MSB | .7 .6 5 A4 3 2 A .0 |LSB

Timer O input clock selection bits: Timer O interrupt pending bit:
000 = fxx/1024 0 = No interrupt pending

001 = fxx/256 0 = Clear pending bit(when write)
010 = fxx/64 1 = Interrupt is pending

2(1)3 : Kils Timer 0 match interrupt enable bit:

101 = External clock (TOCLK) falling edge (1) f Elsabblle_ulterruqt

110 = External clock (TOCLK) rising edge = Enable interrup

111 = Counter stop Timer O counter enable selection bit:

0 = Disable counting operation
1 = Disable counting operation

Timer O counter clear bit:
0 = No effect
1 = Clear the timer O counter (when write)

Not uesed for the S3C80M4

Figure 11-1. Timer O Control Register (TOCON)

11-2 ELECTRONICS

S3C80M4/F80M4

8-BIT TIMER O

BLOCK DIAGRAM

TOCON.7-.5

xx/1024 ——»
fxx/256 ——
fxx/64 ——p
fxx/lg ~——»
fxx/1 e

TOCLK
O
Counter stop———»

A

v

Data Bus

fy

M—_}

8-bit Up-Counter
(Read Only)

\ 4

8-bit Comparator

A

TOCON.2

Timer O Buffer Register

Match

Timer 0 Data Register

Data Bus

Pending

TOCON.O

—— 1 TOOUT

TOCON.3
TOCON.1

Counter clear signal (TOCON.3)
or Match signal

B
(IRQO)

Figure 11-2. Timer O Functional Block Diagram

ELECTRONICS

11-3

8-BIT TIMER O S3C80M4/F80M4

NOTES

11-4 ELECTRONICS

S3C80M4/F80M4 8-BIT PULSE WIDTH MODULATION

1 2 8-BIT PULSE WIDTH MODULATION

OVERVIEW

The S3C80M4/F80M4 microcontroller has a 8-bit PWM.
The PWM have the following components:

— Clock frequency dividers (fygc divider by 64, 8, 2 and 1)

— 6-bit counter, 6-bit comparators and data registers (PWMDATA)
— 8-bit counter overflow interrupt generations

— Selectors for data reload 6- and 8- bit overflow

— PWAM control register, PWMON (set 1, bank 0, E8H, read/write)

ELECTRONICS 12-1

8-BIT PULSE WIDTH MODULATION S3C80M4/F80M4

8-BIT PULSE WIDTH MODULATION (PWMCON)

The PWM control register, PWMCON is used to select the PWM interrupt to enable or disable the PWM function.
Itis located in set 1, bank 0 at address E8H, and is read/write addressable using register addressing mode.

A reset clears PWMCON to "00H". This disable the PWM interrupt, selects an input clock frequency of fosc/64,
disables all PWM interrupt. So, if you want to use the PWM, you must write PWMCON.5 to “1” and write
POCONH.5-.4 to “10".

To enable the PWM interrupt (IRQ2, vector EAH), you must write PWMCON.2, and PWMCON.1 to “1”. To detect
an interrupt pending condition when PWMINT is disabled, the application program polls pending bit, PWMCON.0.
When a “1” is detected, a PWM interrupt is pending. When PWMINT sub-routine has been serviced, the pending
condition must be cleared by software by writing a “0” to the PWM interrupt pending bit, PWMCON.O0.

PWM Control Register (PWMCON)
E8H, Set 1, Bank 0, R/W

MSB | .7 .6 5 A4 3 2 A .0 |LSB

PWM input clock selection bits: PWM overflow interrupt pending bit:
00 = fosc/64 0 = No interrupt pending (when read)
01 = fosc/8 0 = Clear pending bit (when write)
10 = fosc/2 1 = Interrupt is pending (when read)
11 =fosc/1 1 = No effect (when write)

Not used for the S3C80M4

PWM overflow interrupt enable bit:(8-bit overflow)
(must keep always "1")

0 = Disable interrupt

PWMDATA reload interval Selection bit: 1 = Enable interrupt

g f Ee:oag Irom 22': up coun:er over::ow PWM counter enable bit:
= Reload from 6-bit up counter overflow 0 = Stop counter

PWM counter clear bit: 1 = Start counter (Resume countering)
0 = No effect
1 = Clear the PWM counter (when write)

Figure 12-1. PWM Control Register (PWMCON)

12-2 ELECTRONICS

S3C80M4/F80M4

8-BIT PULSE WIDTH MODULATION

BLOCK DIAGRAM

PWMCON.7-.6

fosc/64

fosc/8
fosc/2

fosc/l

X CcZ

PWMCON.2

)

PWMDATA.7-.2

From 8-Bit Up Counter(5:0)

6-Bit Counter

A 4

"1" When

6-Bit Comparator

REG > Count

]

A

"1" When
REG = Count

6-Bit Data Buffer

» PWM/P0.6

From 8-Bit Up Counter(7:6)

2-Bit Counter

A 4

Extension
Control Logic

A

Extension Data
Buffer

A\

6-Bit Data Register

Data Bus

J/a

PWMDATA.1-.0

PWM Extension
Data Register

Clear

PWMCON.4 || PWMCON.3

Data Bus

Figure 12-2. PWM Circuit Diagram

ELECTRONICS

12-3

8-BIT PULSE WIDTH MODULATION S3C80M4/F80M4

NOTES

12-4 ELECTRONICS

S3C80M4/F80M4 ELECTRICAL DATA

1 3 ELECTRICAL DATA

OVERVIEW

In this chapter, S3C80M4/F80M4 electrical characteristics are presented in tables and graphs. The information is
arranged in the following order:

— Absolute maximum ratings

— D.C. electrical characteristics

— Input/output capacitance

— A.C. electrical characteristics

— Oscillation characteristics

— Oscillation stabilization time

— Data retention supply voltage in stop mode

— Operating voltage range

ELECTRONICS 13-1

ELECTRICAL DATA S3C80M4/F80M4

Tablel3-1. Absolute Maximum Ratings

(TA=25 °C)
Parameter Symbol Conditions Rating Unit
Supply voltage Vbp - —0.3t0 +6.5 \Y
Input voltage Vv Ports 0-1 —-0.3toVpp +0.3
Output voltage Vo - -0.3toVpp+0.3
Output current high loH One 1/O pin active —15 mA
All' /O pins active - 60
Output current low loL One 1/O pin active + 30(Peak value)
Total pin current for ports + 100(Peak value)
Operating temperature N - —25to+85 °C
Storage temperature Tsto - —65to + 150

Table 13-2. D.C. Electrical Characteristics

(TA=-25 °Cto+85 °C, Vpp =2.4 V10 5.5V)

Parameter Symbol Conditions Min Typ Max Unit
Operating voltage Vpp [fx=0.4-4.2 MHz 2.4 - 5.5 \
fx=0.4-10.0 MHz 2.7 - 5.5
Input high voltage Vig1 | Allinput pins except V5, Viya 0.7Vpp - Vbp
Vo | Ports0, Ports1.0 - 1.3, nRESET | 0.8Vpp Voo
Viiz | XiN, Xout Vpp-0.1 Vbp
Input low voltage Vi1 | Allinput pins except V| 5, V| 3 - - 0.3Vpp
Vi Ports0, Ports1.0 - 1.3, nRESET 0.2Vpp
Vis | XN, Xout 0.1

13-2 ELECTRONICS

S3C80M4/F80M4

ELECTRICAL DATA

Table 13-2. D.C. Electrical Characteristics (Continued)

(TA=-25 °Cto+85 °C, Vpp = 2.4V t0 5.5V)

Parameter Symbol Conditions Min Typ Max Unit
Output high Vou |Vpp=4.5Vto5.5V Vpp—1.0 - - \Y;
voltage log =—1 mA

All output pins
Output low Vor1 | Vpbp = 4.5V to 5.5V - - 2.0
voltage I =15 mA
Ports1.0-.3
Voo | Vpp=4.5Vto5.5V - - 2.0
lo. =10 mA
All output ports except Vg, ¢
leakage All input pins except I jH2
current
Iz | Vin = Vob, Xine XouT 20
Input low e |Vin=0V - - -3
leakage All input pins except for NRESET, I,
current
iz [ViIN=0V, Xine Xout -20
Output high llon |Voutr=Vop - - 3
leakage All output pins
current
Output low oo |Vour=0V - - -3
leakage All output pins
current
Oscillator feed Rosc1 Vpp =5V, Ty=25 °C 300 600 1200 kQ
back resistors Xin = Voo Xour =0V
Pull-up resistor R1 V=0V, Ty=25°C Vpp=5V 30 60 120
Port 0-1
V=0V, Tpy=25 °C Vpp=3V 60 110 220
Port 0-1

ELECTRONICS

13-3

ELECTRICAL DATA

S3C80M4/F80M4

(TA=-25°Cto+85 °C,Vpp=2.4V1t055V)

Table 13-2. D.C. Electrical Characteristics (Continued)

Parameter Symbol Conditions Min Typ Max Unit
Supply current Ipp1 | Run mode: 10 MHz - 4.0 8.0 mA
) Crystal oscillator

Cl=C2=22pF 4.0 MHz 2.0 4.0

Vpp = 5.0V £ 10%

Vpp = 3.0V £ 10% 4.0 MHz 1.5 3.0
Ibp2 Idle mode: 10 MHz - 1.2 2.4

Crystal oscillator

4.0 MHz 1.0 2.0

Cl1=C2=22pF

Vpp = 5.0V £ 10%

Vpp = 3.0V + 10% 4.0 MHz - 0.5 1.0

Ipps® | Stop mode: - 100 200 HA
Vpp =5V £ 10%, T, = 25 °C
Vpp =3V £ 10%, T, = 25 °C - 80 160

NOTES:

1. Supply current does not include current drawn through internal pull-up resistors and external output current loads.
2. Ippg is current when main clock oscillation stops.

3. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4-.3) is set to 11B.

13-4

ELECTRONICS

S3C80M4/F80M4 ELECTRICAL DATA

Table 13-3. A.C. Electrical Characteristics

(TA=-25°Cto+85 °C,Vpp=2.4Vt055V)

Parameter Symbol Conditions Min Typ Max Unit
Interrupt input tnTHe tnT | Allinterrupt, Vpp = 3.0V 500 700 - ns
high, low width
NRESET input low trsL Vpp=3.0V 10 - - us
width

tINTL tINTH
External \ 0.8 VDD
Interrupt
N 7 0.2 Vbb

Figure 13-1. Input Timing for External Interrupts

tRSL

nRESET \ /
0.2 VbD

Figure 13-2. Input Timing for nRESET

A
v

ELECTRONICS 13-5

ELECTRICAL DATA S3C80M4/F80M4
Table 13-4. Input/Output Capacitance
(TA=-25°Cto+85 °C,Vpp=2.4Vt055V)

Parameter Symbol Conditions Typ Max Unit
Input Cin f =1 MHz; unmeasured pins - 10 pF
capacitance are returned to Vgg
Output Cout
capacitance
I/O capacitance Cio

Table 13-5. Data Retention Supply Voltage in Stop Mode
(TA=-25°Cto+85 °C,Vpp=24Vto55V)

Parameter Symbol Conditions Typ Max Unit
Data retention VbobpRr - 55 \
supply voltage
Data retention IbDDR VbppR = 2.4V - 1 UA
supply current Stop mode, T, =25 °C

<4—— Stop Mode ———— >

VDD

+

Execution of

)L
1€

VDDDR

<+“—>

|<— Data Retention Mode —>|

Oscillation
Stabilization

Time

+ Normal
>« Operating Mode

STOP Instrction

NRESET

NOTE:

tWAIT is the same as 16 x 1/BT clock.

(— tWAIT

/' 0.8 VD
<+—>

Figure 13-3. Stop Mode Release Timing Initiated by RESET

13-6

ELECTRONICS

ELECTRICAL DATA

S3C80M4/F80M4
Idle Mode
_ (Basic Timer Active)
<4—+— Stop Mode >+
Normal
|<— Data Retention Mode —>| Operating Mode
VDD | 1t

+ VDDDR

Execution of
STOP Instruction

I

NOTE: twAIT is the same as 16 x 1/BT clock.

0.8VDD7
<+—»
tWAIT

Figure 13-4. Stop Mode Release Timing Initiated by Interrupt

ELECTRONICS

13-7

ELECTRICAL DATA S3C80M4/F80M4

Tablel3-6. Main Oscillator Characteristics

(TA=-25 °Cto +85 °C, Vpp = 2.4V to 5.5V)

Oscillator Clock Configuration Parameter Test Condition | Min Typ Max | Units

Crystal c1 — Main oscillation 27V-55V 0.4 - 10 MHz
XIN frequency

24V -55V 0.4 - 4.2

1
Q

|:|I
2
Ceramic c1 — Main oscillation 27V-55V 0.4 - 10
 m—
2

Oscillator fE XIN frequency

24V -55V 0.4 - 4.2
Xout
—_ C L
External XN input frequency 27V-55V 0.4 - 10
Clock XIN
24V -55V 0.4 - 4.2
Xout
RC [Frequency 50V 0.4 - 2 MHz

Oscillator XIN
R
3.0V 0.4 — 1
XouTt

13-8 ELECTRONICS

S3C80M4/F80M4

ELECTRICAL DATA

Table 13-7. Main Oscillation Stabilization Time

(Tpo=-25°Cto+85 °C, Vpp = 2.4V to 5.5V)

Oscillator

Test Condition

Min Typ

Max

Unit

Crystal

Ceramic

fx > 1 MHz

Oscillation stabilization occurs when Vpp is
equal to the minimum oscillator voltage range.

40

ms

10

ms

External clock

XN input high and low width (ty,, ty,)

62.5 -

1250

ns

1/fx

A 4

A

tXL

tXH

—£-0.1v

VoD - 0.1V

— 0.1V

Figure 13-5. Clock Timing Measurement at X

6.25 kHz(Main)

Instruction Clock

fx (Main oscillation frequency)

10 MHz

4.2 MHz

2.5 MHz I
1.05 MHz I

400 kHz(Main)

27

5.5

Supply Voltage (V)

Minimum instruction clock = 1/4n x oscillator frequency (n = 1,2,8,16)

Figure 13-6. Operating Voltage Range

ELECTRONICS

13-9

ELECTRICAL DATA S3C80M4/F80M4

NOTES

13-10 ELECTRONICS

S3C80M4/F80M4 MECHANICAL DATA

MECHANICAL DATA

OVERVIEW

The S3C80M/F80M4 microcontroller is currently available in 20-DIP-300A/20-SOP-375 and 16-DIP-300A/16-
SOP-375 package.

#20 #11 0-15°
[MM [M Mm@ MM y ﬂ
A
]
3 [V}
o 3) (O 20-pIP-300A O g
©
A 4
LT LTI LT LT LT LT 0071 0J A 4
#1 #10
26.80 MAX] é
| . S
h v H =
26.40 +0.20 o ©
| S
®m| 0
A A
e A 4
A A
h 4
|| 0.46 +0.10 Z| 8
I S S
(x.77) 1.52+0.10 2.54 Sl o
—> > > je—— 2| 8
™
NOTE: Dimensions are in millimeters.

Figure 14-1. 20-DIP-300A Package Dimensions

ELECTRONICS

14-1

MECHANICAL DATA

S3C80M4/F80M4

0.66 1.27
g_gqe 44!!!

g

+ ARAARAAAAR A

O 20-SOP-375 .v j
v HboHOBOHEDD =¥

9.53

10.30 +0.30
7.50 +0.20

+0.10 oA
0.203 - 0.05 3
—> +
T}
©
° o
13.14 MAX g é
| o
ld + =
12.74 +0.20 o o
< ™ Lo
- aN|

|
“

S[010wAx]

%/ v
P
14
<
<

»
Lad

W N

0.05 MIN

+0.10
P 0.40 -o0.05

[
Ll B Dl

NOTE: Dimensions are in millimeters.

Figure 14-2. 20-SOP-375 Package Dimensions

14-2

ELECTRONICS

S3C80M4/F80M4

MECHANICAL DATA

#16 #9 %0_15"
i O e e O e O e O e Y s O
7y 4 A
N
e o
21) O 16-01P-300A0) g
<
©
Y N I O A 4 .
. . s
19.80 MAX é
|t »
< =
19.40 +0.20 T} ©
P Y| N o
/ \‘ A A
| A\ Y v
: U : : A A
0 o A 4
1 || [=
0.46 Z @
" 2.54 = 3
(0.81) S|], 150 : P2 =
» hl o)
NOTE: Dimensions are in millimeters.

Figure 14-3. 16-DIP-300A Package Dimensions

ELECTRONICS

14-3

MECHANICAL DATA

S3C80M4/F80M4

g

+ AAARAAAR JL

O 16-SOP-375 .v j
, bHOBOHED =

10.30 +0.30
7.50 +0.20

+0.10 A
0.203 -0.05 J
—— " ple

|A

0.85+0.20

10.50 MAX

| »|

<
10.10 +0.20

>
< >
/ \
T AR S
|
: | A Y
I

2.30+0.10
2.50 MAX

»
»
»
»

<
T

z
(0.66) 1.27 =
— «— 10
+0.10 ©
0.40 -0.05
>

NOTE: Dimensions are in millimeters.

Figure 14-4. 16-SOP-375 Package Dimensions

14-4

ELECTRONICS

S3C80M4/F80M4 S3F80M4 FLASH MCU

S3F80M4 FLASH MCU

OVERVIEW

The S3F80M4 single-chip CMOS microcontroller is the Flash MCU version of the S3C80M4 microcontroller. It has
an on-chip Flash MCU ROM instead of a masked ROM. The Flash ROM is accessed by serial data format.

The S3F80M4 is fully compatible with the S3C80M4, both in function and in pin configuration. Because of its
simple programming requirements, the S3F80M4 is ideal as an evaluation chip for the S3C80M4.

ELECTRONICS 15-1

S3F80M4 FLASH MCU

S3C80M4/F80M4

Vss/Vss
XIN/XIN

Xout
VPP/NRESET
P1.0/TOOUT
P1.1/TOCLK
P1.2

P1.3

P1.4
P1.5

0000000040470

© 00 N o 0o b~ W N

[y
o

S3F80M4

(20-DIP-300A)
(20-SOP-375)

20
19
18
17
16
15
14
13
12
11

I

VDD/VDD
PO.0/INTO/SCLK
PO.1/INT1/SDAT
P0.2/INT2
PO.3/INT3

PO0.4

P0.5

P0.6/PWM

PO.7
P1.6/CLKOUT

Figure 15-1. S3F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)

15-2

ELECTRONICS

S3C80M4/F80M4

S3F80M4 FLASH MCU

Vss/Vss
XIN/XIN

Xout
VPP/INRESET
P1.0/TOOUT
P1.1/TOCLK
P1.2

P1.3

0o nnnnanoda

0 N o o0~ WN P

S3F80M4

(16-DIP-300A)
(16-SOP-375)

16
15
14
13
12
11
10

g ooouououid

VDD/VDD
P0.0/INTO/SCLK
P0.1/INT1/SDAT
P0.2/INT2
PO0.3/INT3

P0.4

P0.5

P0.6/PWM

Figure 15-2. S3F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375)

ELECTRONICS

15-3

S3F80M4 FLASH MCU

S3C80M4/F80M4

Table 15-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip During Programming
Pin Name Pin Name Pin No. I/0 Function
PO.1 SDAT 18(14) 110 Serial data pin. Output port when reading and input port
when writing. Can be assigned as a Input/push-pull output
port.
PO.0 SCLK 19(15) I/O Serial clock pin. Input only pin.

NRESET Vpp 4(4) I Power supply pin for Flash ROM cell writing (indicates that
FLASH MCU enters into the writing mode). When 12.5 V is
applied, FLASH MCU is in writing mode and when 3.3 V is
applied, FLASH MCU is in reading mode. (Option)

Vop Vbp 20(16) - Power supply pin for logic circuit. Vpp should be tied to

Vss Vss 1(2) +3.3V during programming.

Xin XiN 2(2) I This pin should be connected to Vg in the tool program
mode.

NOTE: Parentheses indicate pin number for 16-DIP-300A/16-SOP-375 package.

Table 15-2. Comparison of S3F80M4 and S3C80M4 Features

Characteristic S3F80M4 S3C80M4
Program Memory 4K-byte Flash ROM 4K-byte mask ROM
Operating Voltage (Vpp) 24Vto55V 24Vtob55V

FLASH MCU Programming Mode

Vpp = 3.3V, Vpp (RESET) = 12.5 V

Programmability

User Program multi time

Programmed at the factory

15-4

ELECTRONICS

S3C80M4/F80M4

S3F80M4 FLASH MCU

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the Vpp (NRESET) pin of the S3C80M4, the Flash ROM programming mode is

entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins
listed in Table 15-3 below.

Table 15-3. Operating Mode Selection Criteria

Vop | Vpp(NRESET) | REG/NMEM Address R/W Mode
(A15-A0)
3.3V 3.3V 0 0000H 1 Flash ROM read
125V 0 0000H 0 Flash ROM program
125V 0 0000H 1 Flash ROM verify
125V 1 OE3FH 0 Flash ROM read protection

NOTE: "0" means Low level; "1" means High level.

Table 15-4. D.C. Electrical Characteristics

(To=-25°Ct0o+85°C, Vpp=2.4V1055V)

Parameter Symbol Conditions Min Typ Max Unit
Supply current(1) Ipp1 | Run mode: 10 MHz - 4.0 8.0 mA
Crystal oscillator
4.0 MHz - 2.0 4.0
Cl1l=C2=22pF
Vpp = 5.0V = 10%
Vpp = 3.0V + 10% 4.0 MHz - 15 3.0
Ipp2 | ldle mode: 10 MHz - 1.2 2.4
Crystal oscillator 4.0 MHz _ 1.0 20
Cl1l=C2=22pF ' '
Vpp = 5.0V + 10%
Vpp = 3.0V + 10% 4.0 MHz -~ 0.5 1.0
Ippg® | Stop mode: - 100 200 pA
Vpp = 5V + 10%, T, = 25 °C
Vpp =3V £10%, T, =25 °C - 80 160

NOTES:

1. Supply current does not include current drawn through internal pull-up resistors and external output current loads.
2. Ippg is current when main clock oscillation stops.

3. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4-.3) is set to 11B.

ELECTRONICS

155

S3F80M4 FLASH MCU

S3C80M4/F80M4

Instruction Clock fx (Main oscillation frequency)

2.5 MHz 10 MHz
1.05 MHz : 4.2 MH2

6.25 kHz(Main) 400 kHz(Main)

2.7 55
Supply Voltage (V)

Minimum instruction clock = 1/4n x oscillator frequency (n = 1,2,8,16)

Figure 15-3. Operating Voltage Range

15-6

ELECTRONICS

S3C80M4/F80M4 DEVELOPMENT TOOLS

1 6 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS, Windows 95, and 98 as its operating system can be used. One
type of debugging tool including hardware and software is provided: the sophisticated and powerful in-circuit
emulator, SMDS2+, and OPENice for S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and
improved version of SMDS2. Samsung also offers support software that includes debugger, assembler, and a
program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help.
It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized,
moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and an
auxiliary definition (DEF) file with device specific information.

SASM88

The SASM88 is a relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by
HEX2ROM, the value "FF" is filled into the unused ROM area up to the maximum ROM size of the target device
automatically.

TARGET BOARDS

Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

ELECTRONICS 16-1

DEVELOPMENT TOOLS

S3C80M4/F80M4

IBM-PC AT or Compatible

T RS-232C

POD

\4

Target
Application
System

A

Probe
Adapter

v

SMDS2+
v
<+—> PROM/OTP Writer Unit
<+—> RAM Break/Display Unit
§ <+—> Trace/Timer Unit
<+—> SAMS8 Base Unit <
<+—> Power Supply Unit

TB80OM4
Target
Board

EVA
Chip

Figure 16-1. SMDS Product Configuration (SMDS2+)

16-2

ELECTRONICS

S3C80M4/F80M4

DEVELOPMENT TOOLS

TB80M4 TARGET BOARD

The TB80M4 target board is used for the S3C80M4/F80M4 microcontroller. It is supported with the SMDS2+.

To User_Vcc

TB80OM4

smps2[0 O O] sMps2+

Vcc

ot on de Sop
ORO
+ +
)
RESET 2 |:|
: : o
@ Smart Option Selection JPS
— =/ CieRaaaaaa}” ™[0
L No | Low ON©)
] mbs [O O
25 Smart Option Source Device Selection Xl
5 JPL JP2 J102
5 External S3C80M4
S o1 1 24
(]
Lc) 1 20
a Internal S3C84G5 .
8 g IS
=1 Q 3
c
5 =
1 8 S
— £ 2
i 1k
65 Q !
1092 64 N &
128 QFP
S3E84G0 9 10
EVA Chip S3C84G5/S3C80M4 15 13
20-DIP
39 S3C84G5 24-SDIP

Figure 16-2. TB80M4 Target Board Configuration

ELECTRONICS

16-3

DEVELOPMENT TOOLS S3C80M4/F80M4

Table 16-1. Power Selection Settings for TB80M4

"To User_Vcc" Operating Mode Comments
Settings
To User Ve The SMDS2/SMDS2+
— TesoMa [Taraet supplies V¢ to the target
Off @m On ——Vcc—» 9 board (evaluation chip) and
—> System the target system
r <—Vss—» get sy)
Vlcc
SMDS2/SMDS2+

The SMDS2/SMDS2+
To User_vce TBsom4 [External supplies V¢ only to the target
Off m On Vce —p ;—g?e?; board (evaluation chip).
—> —vss—» The target system must have
r its own power supply.
V|CC
SMDS2/SMDS2+

NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:

Table 16-2. Main-clock Selection Settings for TB80M4

Main Clock Settings Operating Mode Comments
Set the XI switch to “MDS”
XIN EVA Chip when the target board is
MDS S3E84G0 connected to the
T A SMDS2/SMDS2+.
XouTt

XIN L—— No Connection

I— 100 Pin Connector

SMDS2/SMDS2+
Set the Xl switch to “XTAL”"
) when the target board is used

EVA Chip as a standalone unit, and is

S3E84G0
not connected to the

T A SMDS2/SMDS2+.

Xout

XIN | I
XTAL

Target Board

16-4 ELECTRONICS

S3C80M4/F80M4

DEVELOPMENT TOOLS

Table 16-3. Device Selection Settings for TB80M4

"Device Selection” Operating Mode Comments
Settings
Operate with TB84G5
Device Selection
80M4 @m 84G5 TB84G5 Target
System
)) Operate with TB80OM4
Device Selection
80M4 m 84G5 TBSOM4 Target
System

SMDS2+ SELECTION (SAMB8)

In order to write data into program memory that is available in SMDS2+, the target board should be selected to be
for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

Table 16-4. The SMDS2+ Tool Selection Setting

"SMDS2+" Setting

Operating Mode

SMDS2+

RW <«— R/W —p

Target
System

IDLE LED

The Yellow LED is ON when the evaluation chip (S3E84G0) is in idle mode.

STOP LED

The Red LED is ON when the evaluation chip (S3E84GO0) is in stop mode.

ELECTRONICS

16-5

DEVELOPMENT TOOLS

S3C80M4/F80M4

Table 16-5. Smart Option Source Settings for TB80M4

Option Source

"Smart Option Source" Operating Mode Comments
Settings
Select Smart Always must keep the External.

Internal Em External TB8OM4 ;-yasr?e?:]
Select Smart Do not setting on left figure.
Option Source
Target
Internal mg External TB80OM4 System

Table 16-6. Smart Option Switch Setting for TB80M4

"Smart Option" Setting

Comments

ON

Smart Option

Low : "0"

nfafunlulafula| IS

BO B1 B2 B3 B4 B5 B6 B7 B8

Always must keep all High (“1").

16-6

ELECTRONICS

S3C80M4/F80M4

DEVELOPMENT TOOLS

J101
vssO| 1 (2) [Vbb
xined| 2 é 5 P0.0/INTO
Xout | 3 o é B PO.1/INT1
@
NRESET | 4 2 % M PO.2/INT2
W)
PLOTOOUTH|5 T é 1 PO.3/INT3
(@)
PLUTOCLKC]|6 S é = P04
[9°]
PL2d|7 2 411 = P05
P1.3]| 8 ; 1 PO.6PWM
PL4ac]| 9 ; 5 P07
1 1
pP1.5C] 0 1 [P1.6/CLKOUT

S3C80M4 20-DIP

Figure 16-3. 20-Pin Connectors (J101) for TB80M4

Target Board

J101

1 20
1) (16)

10103UU0D d1d d4-02/9T

®)

10 11

Target Cable for 16/20-Pin Connector
Part Name: AS40D-A

Order Code: SM6306

Target System

101989UU0D dIA d-0¢2/9T

J101

1 20
(1) (16)

®

10 11

Figure 16-4. S3E80MO Cables for 16/20-DIP Package

ELECTRONICS

16-7

DEVELOPMENT TOOLS S3C80M4/F80M4

NOTES

16-8 ELECTRONICS

	Table of Contents
	Table of Figures
	Table of Tables
	List of Programming Tips
	List of Register Descriptions
	List of Instruction Descriptions
	1. Product Overview
	2. Address Spaces
	3. Addressing Modes
	4. Control Registers
	5. Interrupt Structure
	6. Instruction Set
	7. Clock Circuit
	8. RESET and Power-Down
	9. I/O Ports
	10. Basic Timer
	11. 8-bit Timer 0
	12. 8-bit Pulse Width Modulation
	13. Electrical Data
	14. Mechanical Data
	15. S3F80M4 Flash MCU
	16. Development Tools

