

S3C80M4/F80M4

8-BIT CMOS
MICROCONTROLLERS

USER'S MANUAL

Revision 1

Important Notice

The information in this publication has been carefully
checked and is believed to be entirely accurate at
the time of publication. Samsung assumes no
responsibility, however, for possible errors or
omissions, or for any consequences resulting from
the use of the information contained herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of
any product or circuit and specifically disclaims any
and all liability, including without limitation any
consequential or incidental damages.

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all
claims, costs, damages, expenses, and reasonable
attorney fees arising out of, either directly or
indirectly, any claim of personal injury or death that
may be associated with such unintended or
unauthorized use, even if such claim alleges that
Samsung was negligent regarding the design or
manufacture of said product.

S3C80M4/F80M4 8-Bit CMOS Microcontrollers
User's Manual, Revision 1
Publication Number: 21-S3-C80M4/F80M4-052005
© 2005 Samsung Electronics
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior
written consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001
certification (BSI Certificate No. FM24653). All semiconductor products are
designed and manufactured in accordance with the highest quality standards and
objectives.

Samsung Electronics Co., Ltd.
San #24 Nongseo-Ri, Giheung- Eup
Yongin-City, Gyeonggi-Do, Korea
C.P.O. Box #37, Suwon 449-900
TEL: (82)-(031)-209-1934
FAX: (82)-(031)-209-1889

Home-Page URL: Http://www.samsungsemi.com
Printed in the Republic of Korea

S3C80M4/F80M4 MICROCONTROLLER iii

Preface
The S3C80M4/F80M4 Microcontroller User's Manual is designed for application designers and programmers who
are using the S3C80M4/F80M4 microcontroller for application development. It is organized in two main parts:
Part I Programming Model Part II Hardware Descriptions
Part I contains software-related information to familiarize you with the microcontroller's architecture, programming
model, instruction set, and interrupt structure. It has six chapters:
Chapter 1 Product Overview
Chapter 2 Address Spaces
Chapter 3 Addressing Modes

Chapter 4 Control Registers
Chapter 5 Interrupt Structure
Chapter 6 Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to S3C80M4/F80M4 with general product descriptions,
as well as detailed information about individual pin characteristics and pin circuit types.
Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register
addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined
stack operations.
Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the
S3C8-series CPU.
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register
values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read,
alphabetically organized, register descriptions as a quick-reference source when writing programs.
Chapter 5, "Interrupt Structure," describes the S3C80M4/F80M4 interrupt structure in detail and further prepares
you for additional information presented in the individual hardware module descriptions in Part II.
Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series
microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of
each instruction are presented in a standard format. Each instruction description includes one or more practical
examples of how to use the instruction when writing an application program.
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in
Part II. If you are not yet familiar with the S3C8-series microcontroller family and are reading this manual for the
first time, we recommend that you first read Chapters 1-3 carefully. Then, briefly look over the detailed information
in Chapters 4, 5, and 6. Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the
S3C80M4/F80M4 microcontroller. Also included in Part II are electrical, mechanical, flash, and development tools
data. It has 10 chapters:

Chapter 7 Clock Circuit
Chapter 8 RESET and Power-Down
Chapter 9 I/O Ports
Chapter 10 Basic Timer
Chapter 11 8-bit Timer 0

Chapter 12 8-bit PWM Timer
Chapter 13 Electrical Data
Chapter 14 Mechanical Data
Chapter 15 S3F80M4 Flash MCU
Chapter 16 Development Tools

Two order forms are included at the back of this manual to facilitate customer order for S3C80M4/F80M4
microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these
forms, fill them out, and then forward them to your local Samsung Sales Representative.

S3C80M4/F80M4 MICROCONTROLLER v

Table of Contents

Part I — Programming Model

Chapter 1 Product Overview

S3C8-Series Microcontrollers ...1-1
S3C80M4/F80M4 Microcontroller ...1-1
Flash..1-1
Features ..1-2
Block Diagram ...1-3
Pin Assignment ...1-4
Pin Descriptions ..1-6
Pin Circuits ..1-7

Chapter 2 Address Spaces
Overview..2-1
Program Memory (ROM)...2-2
Register Architecture...2-3

Register Page Pointer (PP) ..2-5
Register Set 1 ...2-6
Register Set 2 ...2-6
Prime Register Space...2-7
Working Registers ..2-8
Using The Register Points..2-9

Register Addressing ..2-11
Common Working Register Area (C0H–CFH) ...2-13
4-Bit Working Register Addressing ..2-14
8-Bit Working Register Addressing ..2-16

System and User Stack...2-18

vi S3C80M4/F80M4 MICROCONTROLLER

Table of Contents (Continued)

Chapter 3 Addressing Modes
Overview... 3-1
Register Addressing Mode (R) ... 3-2
Indirect Register Addressing Mode (IR) ... 3-3
Indexed Addressing Mode (X) .. 3-7
Direct Address Mode (DA).. 3-10
Indirect Address Mode (IA)... 3-12
Relative Address Mode (RA) .. 3-13
Immediate Mode (IM).. 3-14

Chapter 4 Control Registers
Overview... 4-1

Chapter 5 Interrupt Structure
Overview... 5-1

Interrupt Types... 5-2
S3C80M4 Interrupt Structure ... 5-3
Interrupt Vector Addresses .. 5-4
Enable/Disable Interrupt Instructions (EI, DI) .. 5-6
System-Level Interrupt Control Registers.. 5-6
Interrupt Processing Control Points ... 5-7
Peripheral Interrupt Control Registers ... 5-8
System Mode Register (SYM) ... 5-9
Interrupt Mask Register (IMR) ... 5-10
Interrupt Priority Register (IPR).. 5-11
Interrupt Request Register (IRQ)... 5-13
Interrupt Pending Function Types.. 5-14
Interrupt Source Polling Sequence .. 5-15
Interrupt Service Routines ... 5-15
Generating Interrupt Vector Addresses ... 5-16
Nesting of Vectored Interrupts ... 5-16
Instruction Pointer (IP) ... 5-16
Fast Interrupt Processing... 5-16

Chapter 6 Instruction Set
Overview... 6-1

Data Types... 6-1
Register Addressing... 6-1
Addressing Modes ... 6-1
Flags Register (FLAGS)... 6-6
Flag Descriptions ... 6-7
Instruction Set Notation.. 6-8
Condition Codes .. 6-12
Instruction Descriptions.. 6-13

S3C80M4/F80M4 MICROCONTROLLER vii

Table of Contents (Continued)

Part II Hardware Descriptions

Chapter 7 Clock Circuit

Overview..7-1
System Clock Circuit ..7-1
CPU Clock Notation..7-1
Main Oscillator Circuits...7-2
Clock Status During Power-Down Modes ..7-3
System Clock Control Register (CLKCON) ..7-4
Clock Output Control Register (CLOCON)...7-5
Stop Control Register (STPCON)...7-6

Chapter 8 RESET and Power-Down
System Reset ..8-1

Overview...8-1
Normal Mode Reset Operation...8-1
Hardware Reset Values..8-2

Power-Down Modes ..8-4
Power-Down Modes ..8-4

Stop Mode ..8-4
Idle Mode ..8-5

Chapter 9 I/O Ports
Overview..9-1

Port Data Registers ..9-1
Port 0 ..9-2
Port 1 ..9-5

Chapter 10 Basic Timer
Overview..10-1

Basic Timer (BT)...10-1
Basic Timer Control Register (BTCON) ...10-1
Basic Timer Function Description...10-3

viii S3C80M4/F80M4 MICROCONTROLLER

Table of Contents (Continued)

Chapter 11 8-bit Timer 0
Overview... 11-1

Timer 0 Function Description... 11-1
Timer 0 Control Register (T0CON) .. 11-2
Block Diagram.. 11-3

Chapter 12 8-bit Pulse Width Modulation
Overview... 12-1

8-bit Pulse Width Modulation (PWMCON)... 12-2
Block Diagram.. 12-3

Chapter 13 Electrical Data
Overview... 13-1

Chapter 14 Mechanical Data
Overview... 14-1

Chapter 15 S3F80M Flash MCU
Overview... 15-1

Operating Mode Characteristics .. 15-5

Chapter 16 Development Tools
Overview... 16-1

SHINE .. 16-1
SAMA Assembler ... 16-1
SASM88 ... 16-1
HEX2ROM ... 16-1
Target Boards .. 16-1
TB80M4 Target Board ... 16-3
SMDS2+ Selection (SAM8) ... 16-5
Idle LED ... 16-5
Stop LED.. 16-5

S3C80M4/F80M4 MICROCONTROLLER ix

List of Figures

Figure Title Page
Number Number

1-1 Block Diagram ..1-3
1-2 S3C80M4/F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375).............................1-4
1-3 S3C80M4/F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375).............................1-5
1-4 Pin Circuit Type A...1-7
1-5 Pin Circuit Type B...1-7
1-6 Pin Circuit Type E-2 (P1.4–P1.6) ...1-7
1-7 Pin Circuit Type D-4 (P0)..1-8
1-8 Pin Circuit Type E-4 (P1.0–P1.3) ...1-8

2-1 Program Memory Address Space ..2-2
2-2 Internal Register File Organization...2-4
2-3 Register Page Pointer (PP) ..2-5
2-4 Set 1, Set 2, Prime Area Register Map ..2-7
2-5 8-Byte Working Register Areas (Slices) ...2-8
2-6 Contiguous 16-Byte Working Register Block ...2-9
2-7 Non-Contiguous 16-Byte Working Register Block ...2-10
2-8 16-Bit Register Pair ..2-11
2-9 Register File Addressing ..2-12
2-10 Common Working Register Area..2-13
2-11 4-Bit Working Register Addressing ..2-15
2-12 4-Bit Working Register Addressing Example ...2-15
2-13 8-Bit Working Register Addressing ..2-16
2-14 8-Bit Working Register Addressing Example ...2-17
2-15 Stack Operations ..2-18

3-1 Register Addressing ...3-2
3-2 Working Register Addressing...3-2
3-3 Indirect Register Addressing to Register File...3-3
3-4 Indirect Register Addressing to Program Memory ...3-4
3-5 Indirect Working Register Addressing to Register File ..3-5
3-6 Indirect Working Register Addressing to Program or Data Memory..........................3-6
3-7 Indexed Addressing to Register File ..3-7
3-8 Indexed Addressing to Program or Data Memory with Short Offset3-8
3-9 Indexed Addressing to Program or Data Memory..3-9
3-10 Direct Addressing for Load Instructions ...3-10
3-11 Direct Addressing for Call and Jump Instructions ..3-11
3-12 Indirect Addressing...3-12
3-13 Relative Addressing..3-13
3-14 Immediate Addressing..3-14

x S3C80M4/F80M4 MICROCONTROLLER

List of Figures (Continued)

Figure Title Page
Number Number

4-1 Register Description Format .. 4-3

5-1 S3C8-Series Interrupt Types ... 5-2
5-2 S3C80M4/F80M4 Interrupt Structure... 5-3
5-3 ROM Vector Address Area .. 5-4
5-4 Interrupt Function Diagram .. 5-7
5-5 System Mode Register (SYM) ... 5-9
5-6 Interrupt Mask Register (IMR) ... 5-10
5-7 Interrupt Request Priority Groups .. 5-11
5-8 Interrupt Priority Register (IPR) ... 5-12
5-9 Interrupt Request Register (IRQ)... 5-13

6-1 System Flags Register (FLAGS) ... 6-6

7-1 Crystal/Ceramic Oscillator (fx) ... 7-2
7-2 External Oscillator (fx).. 7-2
7-3 RC Oscillator (fx).. 7-2
7-4 System Clock Circuit Diagram... 7-3
7-5 System Clock Control Register (CLKCON) ... 7-4
7-6 Clock Output Control Register (CLOCON) .. 7-5
7-7 Clock Output Block Diagram.. 7-5
7-8 STOP Control Register (STPCON).. 7-6

9-1 Port 0 High-Byte Control Register (P0CONH)... 9-3
9-2 Port 0 Low-Byte Control Register (P0CONL) .. 9-3
9-3 Port 0 Interrupt Control Register.. 9-4
9-4 Port 0 Interrupt Pending Register (P0PND)... 9-4
9-5 Port 1 High-Byte Control Register (P1CONH)... 9-5
9-6 Port 1 Low-Byte Control Register (P1CONL) .. 9-6
9-7 Port 1 Pull-up Resistor Enable Register (P1PUR)... 9-6

10-1 Basic Timer Control Register (BTCON)... 10-2
10-2 Basic Timer Block Diagram ... 10-4

11-1 Timer 0 Control Register (T0CON).. 11-2
11-2 Timer 0 Functional Block Diagram... 11-3

12-1 PWM Control Register (PWMCON)... 12-2
12-2 PWM Circuit Diagram .. 12-3

S3C80M4/F80M4 MICROCONTROLLER xi

List of Figures (Concluded)

 Page Title Page
Number Number

13-1 Input Timing for External Interrupts ..13-5
13-2 Input Timing for nRESET..13-5
13-3 Stop Mode Release Timing Initiated by RESET...13-6
13-4 Stop Mode Release Timing Initiated by Interrupt ...13-7
13-5 Clock Timing Measurement at XIN ...13-9
13-6 Operating Voltage Range...13-9

14-1 20-DIP-300A Package Dimensions..14-1
14-2 20-SOP-375 Package Dimensions...14-2
14-3 16-DIP-300A Package Dimensions..14-3
14-4 16-SOP-375 Package Dimensions...14-4

15-1 S3F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375) ...15-2
15-2 S3F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375) ...15-3
15-3 Operating Voltage Range...15-6

16-1 SMDS Product Configuration (SMDS2+) ...16-2
16-2 TB80M4 Target Board Configuration ...16-3
16-3 20-Pin Connectors (J101) for TB80M4...16-7
16-4 S3E80M0 Cables for 16/20-DIP Package..16-7

S3C80M4/F80M4 MICROCONTROLLER xiii

List of Tables

Table Title Page
Number Number

1-1 S3C80M4/F80M4 Pin Descriptions ..1-6

2-1 S3C80M4/F80M4 Register Type Summary ...2-3

4-1 Set 1 Registers ...4-1
4-2 Set 1, Bank 0 Registers..4-2

5-1 Interrupt Vectors ...5-5
5-2 Interrupt Control Register Overview ...5-6
5-3 Interrupt Source Control and Data Registers ...5-8

6-1 Instruction Group Summary..6-2
6-2 Flag Notation Conventions ...6-8
6-3 Instruction Set Symbols..6-8
6-4 Instruction Notation Conventions ...6-9
6-5 Opcode Quick Reference ...6-10
6-6 Condition Codes ...6-12

8-1 S3C80M4/F80M4 Set 1 Register and Values after RESET.......................................8-2
8-2 S3C80M4/F80M4 Set 1, Bank 0 Register and Values after RESET..........................8-3

9-1 S3C80M4/F80M4 Port Configuration Overview ...9-1
9-2 Port Data Register Summary..9-1

xiv S3C80M4/F80M4 MICROCONTROLLER

List of Tables (Continued)

Table Title Page
Number Number

13-1 Absolute Maximum Ratings ... 13-2
13-2 D.C. Electrical Characteristics ... 13-2
13-3 A.C. Electrical Characteristics ... 13-5
13-4 Input/Output Capacitance .. 13-6
13-5 Data Retention Supply Voltage in Stop Mode ... 13-6
13-6 Main Oscillator Characteristics .. 13-8
13-7 Main Oscillation Stabilization Time .. 13-9

15-1 Descriptions of Pins Used to Read/Write the EPROM .. 15-4
15-2 Comparison of S3F80M4 and F80M4 Features .. 15-4
15-3 Operating Mode Selection Criteria... 15-5
15-4 D.C. Electrical Characteristics ... 15-5

16-1 Power Selection Settings for TB80M4... 16-4
16-2 Main-clock Selection Settings for TB80M4.. 16-4
16-3 Device Selection Settings for TB80M4 .. 16-5
16-4 The SMDS2+ Tool Selection Setting ... 16-5
16-5 Smart Option Source Selection Settings for TB80M4 ... 16-6
16-6 Smart Option Switch Setting for TB80M4.. 16-6

S3C80M4/F80M4 MICROCONTROLLER xv

List of Programming Tips

Description Page
 Number
Chapter 2: Address Spaces

Using the Page Pointer for RAM clear (Page 0, Page1) ..2-5
Setting the Register Pointers ..2-9
Using the RPs to Calculate the Sum of a Series of Registers..2-10
Addressing the Common Working Register Area...2-14
Standard Stack Operations Using PUSH and POP..2-19

Chapter 7: Clock Circuit

How to Use Stop Instruction ...7-6

S3C80M4/F80M4 MICROCONTROLLER xvii

List of Register Descriptions

Register Full Register Name Page
Identifier Number

BTCON Basic Timer Control Register ... 4-4
CLKCON System Clock Control Register .. 4-5
CLOCON Clock Output Control Register ... 4-6
FLAGS System Flags Register ... 4-7
IMR Interrupt Mask Register .. 4-8
IPH Instruction Pointer (High Byte) ... 4-9
IPL Instruction Pointer (Low Byte) .. 4-9
IPR Interrupt Priority Register ... 4-10
IRQ Interrupt Request Register ... 4-11
P0CONH Port 0 Control Register (High Byte).. 4-12
P0CONL Port 0 Control Register (Low Byte) .. 4-13
P0INT Port 0 Interrupt Control Register .. 4-14
P0PND Port 0 Interrupt Pending Register... 4-15
P1CONH Port 1 Control Register (High Byte).. 4-16
P1CONL Port 1 Control Register (Low Byte) .. 4-17
P1PUR Port 1 Pull-up Resistor Enable Register .. 4-18
PP Register Page Pointer .. 4-19
PWMCON Pulse Width Modulation Control Register .. 4-20
RP0 Register Pointer 0... 4-21
RP1 Register Pointer 1... 4-21
SPH Stack Pointer (High Byte) ... 4-22
SPL Stack Pointer (Low Byte).. 4-22
STPCON Stop Control Register ... 4-23
SYM System Mode Register ... 4-24
T0CON Timer 0 Control Register .. 4-25

S3C80M4/F80M4 MICROCONTROLLER xix

List of Instruction Descriptions

Instruction Full Register Name Page
Mnemonic Number

ADC Add with Carry.. 6-14
ADD Add ... 6-15
AND Logical AND ...6-16
BAND Bit AND... 6-17
BCP Bit Compare ...6-18
BITC Bit Complement.. 6-19
BITR Bit Reset ... 6-20
BITS Bit Set ... 6-21
BOR Bit OR... 6-22
BTJRF Bit Test, Jump Relative on False ... 6-23
BTJRT Bit Test, Jump Relative on True... 6-24
BXOR Bit XOR... 6-25
CALL Call Procedure.. 6-26
CCF Complement Carry Flag ... 6-27
CLR Clear ... 6-28
COM Complement ... 6-29
CP Compare... 6-30
CPIJE Compare, Increment, and Jump on Equal ... 6-31
CPIJNE Compare, Increment, and Jump on Non-Equal ... 6-32
DA Decimal Adjust ...6-33
DEC Decrement.. 6-35
DECW Decrement Word .. 6-36
DI Disable Interrupts ... 6-37
DIV Divide (Unsigned)... 6-38
DJNZ Decrement and Jump if Non-Zero.. 6-39
EI Enable Interrupts .. 6-40
ENTER Enter ... 6-41
EXIT Exit.. 6-42
IDLE Idle Operation... 6-43
INC Increment ... 6-44
INCW Increment Word.. 6-45
IRET Interrupt Return ..6-46
JP Jump... 6-47
JR Jump Relative... 6-48
LD Load.. 6-49
LDB Load Bit ..6-51

xx S3C80M4/F80M4 MICROCONTROLLER

List of Instruction Descriptions (Continued)

Instruction Full Register Name Page
Mnemonic Number

LDC/LDE Load Memory..6-52
LDCD/LDED Load Memory and Decrement ..6-54
LDCI/LDEI Load Memory and Increment..6-55
LDCPD/LDEPD Load Memory with Pre-Decrement...6-56
LDCPI/LDEPI Load Memory with Pre-Increment ..6-57
LDW Load Word ..6-58
MULT Multiply (Unsigned) ...6-59
NEXT Next...6-60
NOP No Operation ..6-61
OR Logical OR ..6-62
POP Pop from Stack ...6-63
POPUD Pop User Stack (Decrementing)...6-64
POPUI Pop User Stack (Incrementing) ..6-65
PUSH Push to Stack..6-66
PUSHUD Push User Stack (Decrementing)...6-67
PUSHUI Push User Stack (Incrementing) ..6-68
RCF Reset Carry Flag...6-69
RET Return ...6-70
RL Rotate Left ..6-71
RLC Rotate Left through Carry ...6-72
RR Rotate Right..6-73
RRC Rotate Right through Carry...6-74
SB0 Select Bank 0..6-75
SB1 Select Bank 1..6-76
SBC Subtract with Carry ...6-77
SCF Set Carry Flag...6-78
SRA Shift Right Arithmetic ..6-79
SRP/SRP0/SRP1 Set Register Pointer..6-80
STOP Stop Operation..6-81
SUB Subtract ..6-82
SWAP Swap Nibbles..6-83
TCM Test Complement under Mask ...6-84
TM Test under Mask...6-85
WFI Wait for Interrupt ...6-86
XOR Logical Exclusive OR..6-87

S3C80M4/F80M4 PRODUCT OVERVIEW

 1-1

1 PRODUCT OVERVIEW

S3C8-SERIES MICROCONTROLLERS

Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range
of integrated peripherals, and various mask-programmable ROM sizes. Among the major CPU features are:

— Efficient register-oriented architecture
— Selectable CPU clock sources
— Idle and Stop power-down mode release by interrupt
— Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more
interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned to
specific interrupt levels.

S3C80M4/F80M4 MICROCONTROLLER

The S3C80M4/F80M4 single-chip CMOS microcontroller is fabricated using the highly advanced CMOS process,
Its design is based on the SAM88RC CPU core. Stop and Idle (Power-down) modes were implemented to reduce
power consumption.

The S3C80M4 is a microcontroller with a 4K-byte mask-programmable ROM embedded.
The S3F80M4 is a microcontroller with a 4K-byte Flash ROM embedded.

Using a proven modular design approach, Samsung engineers have successfully developed the
S3C80M4/F80M4 by integrating the following peripheral modules with the powerful SAM8 core:

— Two programmable I/O ports, including one 8-bit port, one 7-bit port (Total 15 pins).
— Four bit-programmable pins for external interrupts.
— One 8-bit basic timer for oscillation stabilization and watchdog functions (system reset).
— One 8-bit timer/counter.
— 8-bit high-speed PWM.

FLASH

The S3F80M4 microcontroller is available in Flash version. The S3F80M4 microcontroller has an on-chip FLASH
ROM instead of a masked ROM. The S3F80M4 is comparable to the S3C80M4, both in function and in pin
configuration.

PRODUCT OVERVIEW S3C80M4/F80M4

1-2

FEATURES

CPU
• SAM88 RC CPU core

Memory
• Program Memory (ROM)

- 4K × 8 bits program memory
• Data Memory (RAM)

- 128 × 8 bits data memory

Instruction Set
• 78 instructions
• Idle and stop instructions added for power-down

modes

15 I/O Pins

• 15 normal I/O pins
• Bit programmable ports

Interrupts
• 6 interrupt levels and 6 interrupt sources

8-Bit Basic Timer

• Watchdog timer function
• 4 kinds of clock source

8-Bit Timer/Counter 0

• Programmable 8-bit internal timer
• External event counter function

8-Bit High-Speed PWM

• 8-bit PWM 1-ch
• 6-bit base +2-bit extension

Oscillation Sources

• Crystal, ceramic, or RC for main clock
• Main clock frequency: 0.4 MHz – 10 MHz

Two Power-Down Modes

• Idle: only CPU clock stops
• Stop: selected system clock and CPU clock stop

Power Consumption

• RUM Mode: 4mA at 10MHz, 5V
• Stop Mode: 100uA at 5V

Instruction Execution Times
• 400nS at 10 MHz fosc(minimum)

Operating Temperature Range
• –25°C to +85°C

Operating Voltage Range
• 2.4 V to 5.5 V at 0.4 – 4.2MHz
• 2.7 V to 5.5 V at 0.4 – 10MHz

Package Type

• 20-DIP-300A, 20-SOP-375
• 16-DIP-300A, 16-SOP-375

IVC
• Internal Voltage Converter for 5V operation

S3C80M4/F80M4 PRODUCT OVERVIEW

 1-3

BLOCK DIAGRAM

nRESET Vss

Port I/O and
 Interrupt Control

SAM88RC CPU

4-Kbyte
ROM

128-byte
Register File

VDD

8-Bit Timer/
Counter 0

T0OUT/P1.0
T0CLK/P1.1

I/O Port 0

I/O Port 1

P0.0/INT0
P0.1/INT1
P0.2/INT2
P0.3/INT3

P0.4
P0.5

P0.6/PWM
P0.7

PWM

Watchdog
Timer

Basic Timer

XIN
XOUT

PWM/P0.6

OSC.

P1.0/T0OUT
P1.1/T0CLK

P1.2
P1.3
P1.4
P1.5

P1.6/CLKOUT

Figure 1-1. Block Diagram

PRODUCT OVERVIEW S3C80M4/F80M4

1-4

PIN ASSIGNMENT

VSS

XIN

XOUT

nRESET

P1.0/T0OUT

P1.1/T0CLK

P1.2

P1.3

P1.4

P1.5

S3C80M4/F80M4
(20-DIP-300A)
(20-SOP-375)

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

VDD

P0.0/INT0

P0.1/INT1

P0.2/INT2

P0.3/INT3

P0.4

P0.5

P0.6/PWM

P0.7

P1.6/CLKOUT

Figure 1-2. S3C80M4/F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)

S3C80M4/F80M4 PRODUCT OVERVIEW

 1-5

S3C80M4/F80M4
(16-DIP-300A)
(16-SOP-375)

VSS

XIN

XOUT

nRESET

P1.0/T0OUT

P1.1/T0CLK

P1.2

P1.3

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VDD

P0.0/INT0

P0.1/INT1

P0.2/INT2

P0.3/INT3

P0.4

P0.5

P0.6/PWM

Figure 1-3. S3C80M4/F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375)

PRODUCT OVERVIEW S3C80M4/F80M4

1-6

PIN DESCRIPTIONS

Table 1-1. S3C80M4/F80M4 Pin Descriptions

Pin
Names

Pin
Type

Pin Description Circuit
Type

Pin
Numbers (note)

Share
Pins

P0.0–P0.7 I/O I/O port with bit-programmable pins;
Schmitt trigger input or push-pull output and
software assignable pull-ups. Alternately used
for external interrupt input (noise filters,
interrupt enable and pending control).
Port0 pins can also be used as PWM output.

D-4 19–13
(15–9)

12

INT0–INT3

PWM

P1.0
P1.1
P1.2
P1.3

I/O I/O port with bit-programmable pins;
Schmitt trigger input or push-pull, open-drain
output and software assignable pull-ups.

E-4 5–8
(5–8)

T0OUT
T0CLK

P1.4
P1.5
P1.6

I/O I/O port with bit-programmable pins;
Input or push-pull, open-drain output and
software assignable pull-ups.

E-2 9–11 CLKOUT

INT0–INT3 I/O External interrupts input pins. D-4 19–16
(15–12)

P0.0–P0.3

T0CLK I/O Timer 0 external clock input. E-4 6(6) P1.1
T0OUT I/O Timer 0 clock output. E-4 5(5) P1.0
CLKOUT I/O CPU clock output. E–2 11 P1.6
PWM I/O 8-Bit high speed PWM output. D-4 15(13) P0.6
nRESET I System reset pin. B 4(4) –
XIN, XOUT – Main oscillator pins. – 2,3

(2,3)
–

VDD, VSS – Power input pins.
A capacitor must be connected between VDD
and VSS.

– 1,20
(1,16)

–

NOTE: Parentheses indicate pin number for 16-DIP-300A/16-SOP-375 package.

S3C80M4/F80M4 PRODUCT OVERVIEW

 1-7

PIN CIRCUITS

P-Channel

N-Channel

In

VDD

Figure 1-4. Pin Circuit Type A

In

Schmitt Trigger

Figure 1-5. Pin Circuit Type B

VDD

Output
Disable

Data

Pull-up
 Resistor

VDD

I/O

P-CH

N-CH

Open drain
Enable

Pull-up
Enable

Figure 1-6. Pin Circuit Type E-2 (P1.4–P1.6)

PRODUCT OVERVIEW S3C80M4/F80M4

1-8

VDD

Output
Disable

Data

Pull-up
 Resistor

VDD

I/O

P-CH

N-CH

Pull-up
Enable

IN

Figure 1-7. Pin Circuit Type D-4 (P0)

VDD

Output
Disable

Data

Pull-up
 Resistor

VDD

I/O

P-CH

N-CH

Schmitt Trigger

Open drain
Enable

Resistor
Enable

Figure 1-8. Pin Circuit Type E-4 (P1.0-P1.3)

S3C80M4/F80M4 ADDRESS SPACES

 2-1

2 ADDRESS SPACES

OVERVIEW

The S3C80M4 microcontroller has two types of address space:

— Internal program memory (ROM)
— Internal register file

A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and
data between the CPU and the register file.

The S3C80M4 has an internal 4-Kbyte mask-programmable ROM.

The 256-byte physical register space is expanded into an addressable area of 320 bytes using addressing
modes.

ADDRESS SPACES S3C80M4/F80M4

2-2

PROGRAM MEMORY (ROM)

Program memory (ROM) stores program codes or table data. The S3C80M4/F80M4 has 4K bytes internal mask-
programmable program memory.

The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses. Unused locations in this
address range can be used as normal program memory. If you use the vector address area to store a program
code, be careful not to overwrite the vector addresses stored in these locations.

The ROM address at which a program execution starts after a reset is 0100H in the S3C80M4.

S3C80M4/F80M4

(Decimal)
4,095

255

(Hex)
FFFH

00H0

4K-bytes
Internal
Program

Memory Area

Interrupt
Vector Area

FFH

Figure 2-1. Program Memory Address Space

S3C80M4/F80M4 ADDRESS SPACES

 2-3

REGISTER ARCHITECTURE

In the S3C80M4/F80M4 implementation, the upper 64-byte area of register files is expanded two 64-byte areas,
called set 1 and set 2. The upper 32-byte area of set 1 is further expanded two 32-byte register banks (bank 0
and bank 1), and the lower 32-byte area is a single 32-byte common area.

In case of S3C80M4/F80M4 the total number of addressable 8-bit registers is 175. Of these 175 registers, 13
bytes are for CPU and system control registers, 18 bytes are for peripheral control and data registers, 16 bytes
are used as a shared working registers, and 128 registers are for general-purpose use, page 0.

You can always address set 1 register locations, regardless of which of the ten register pages is currently
selected. Set 1 locations, however, can only be addressed using register addressing modes.

The extension of register space into separately addressable areas (sets, banks, and pages) is supported by
various addressing mode restrictions, the select bank instructions, SB0 and SB1.

Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.

Table 2-1. S3C80M4/F80M4 Register Type Summary

Register Type Number of Bytes

General-purpose registers (including the 16-byte
common working register area, one 128-byte prime
register area)
CPU and system control registers
Mapped clock, peripheral, I/O control, and data registers

144

13
18

Total Addressable Bytes 175

ADDRESS SPACES S3C80M4/F80M4

2-4

~
~

7FH

00H

128
Bytes

Page 0

General Purpose
Register Files

(All Addressing Modes)

FFH

E0H
DFH

D0H
CFH

C0H

System Control Registers
(Register Addressing Mode)

Working Registers
(Register Addressing Mode)

Peripheral Control
Registers

(Register Addressing Mode)

Set1

64
Bytes

Figure 2-2. Internal Register File Organization

S3C80M4/F80M4 ADDRESS SPACES

 2-5

REGISTER PAGE POINTER (PP)

The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using
an 8-bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by
the register page pointer (PP, DFH). In the S3C80M4 microcontroller, the register page pointer must be changed
to address other pages.

After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always
"0000", automatically selecting page 0 as the source and destination page for register addressing.

Register Page Pointer (PP)
DFH, Set 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Destination register page selection bits:

0000 Destination: Page 0
Others Not used for the S3C80M4

Source register page selection bits:

0000 Source: page 0
Others Not used for the S3C80M4

NOTE: In the S3C80M4 microcontroller, the internal register file is configured as eleven pages (Pages 0).
 The pages 0 is used for general purpose register file.

Figure 2-3. Register Page Pointer (PP)

 PROGRAMMING TIP — Using the Page Pointer for RAM clear (Page 0, Page 1)

 LD PP,#00H ; Destination ← 0, Source ← 0
 SRP #0C0H
 LD R0,#0FFH ; Page 0 RAM clear starts
RAMCL0 CLR @R0
 DJNZ R0,RAMCL0
 CLR @R0 ; R0 = 00H

 LD PP,#10H ; Destination ← 1, Source ← 0
 LD R0,#0FFH ; Page 1 RAM clear starts
RAMCL1 CLR @R0
 DJNZ R0,RAMCL1
 CLR @R0 ; R0 = 00H

NOTE: You should refer to page 6-39 and use DJNZ instruction properly when DJNZ instruction is used in your program.

ADDRESS SPACES S3C80M4/F80M4

2-6

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH.

The upper 32-byte area of this 64-byte space (E0H–FFH) is expanded two 32-byte register banks, bank 0 and
bank 1. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware
reset operation always selects bank 0 addressing.

The upper two 32-byte areas (bank 0 and bank 1) of set 1 (E0H–FFH) contains 68 mapped system and
peripheral control registers. The lower 32-byte area contains 16 system registers (D0H–DFH) and a 16-byte
common working register area (C0H–CFH). You can use the common working register area as a “scratch” area
for data operations being performed in other areas of the register file.

Registers in set 1 locations are directly accessible at all times using Register addressing mode. The 16-byte
working register area can only be accessed using working register addressing (For more information about
working register addressing, please refer to Chapter 3, “Addressing Modes.”)

REGISTER SET 2

The same 64-byte physical space that is used for set 1 locations C0H–FFH is logically duplicated to add another
64 bytes of register space. This expanded area of the register file is called set 2. For the S3C80M4,
the set 2 address range (C0H–FFH) is not accessible.

The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only
Register addressing mode to access set 1 locations. In order to access registers in set 2, you must use Register
Indirect addressing mode or Indexed addressing mode.

The set 2 register area is commonly used for stack operations.

S3C80M4/F80M4 ADDRESS SPACES

 2-7

PRIME REGISTER SPACE

The lower 128 bytes (00H–7FH) of the S3C80M4's one 128-byte register pages is called prime register area.
Prime registers can be accessed using any of the seven addressing modes
(see Chapter 3, "Addressing Modes.")

The prime register area is immediately addressable following a reset.

FFH
FCH

E0H

D0H

C0H

Set 1
Bank 0

Peripheral and I/O

General-purpose

CPU and system control

LCD data register

FFH

C0H

00H

7FH

Set 2

(Not used for
the S3C80M4)

Page 0

Prime
Space

Bank 1

(Not used for
the S3C80M4)

Figure 2-4. Set 1, Set2, Prime Area Register Map

ADDRESS SPACES S3C80M4/F80M4

2-8

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one
that consists of 32 8-byte register groups or "slices." Each slice comprises of eight 8-bit registers.

Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to
form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block
anywhere in the addressable register file, except the set 2 area.

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected
working register spaces:

— One working register slice is 8 bytes (eight 8-bit working registers, R0–R7 or R8–R15)
— One working register block is 16 bytes (sixteen 8-bit working registers, R0–R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.
The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.

After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).

Each register pointer points to
one 8-byte slice of the register
space, selecting a total 16-byte
working register block.

1 1 1 1 1 X X X

RP1 (Registers R8-R15)

RP0 (Registers R0-R7)

Slice 32

Slice 31

~ ~

CFH
C0H

FFH
F8H
F7H
F0H

FH
8H
7H
0H

Slice 2

Slice 1

10H

Set 1
Only

0 0 0 0 0 X X X

Figure 2-5. 8-Byte Working Register Areas (Slices)

S3C80M4/F80M4 ADDRESS SPACES

 2-9

USING THE REGISTER POINTS

Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable
8-byte working register slices in the register file. After a reset, they point to the working register common area:
RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.

To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction.
(see Figures 2-6 and 2-7).

With working register addressing, you can only access those two 8-bit slices of the register file that are currently
pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in
set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed
addressing modes.

The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general
programming guideline, it is recommended that RP0 point to the "lower" slice and RP1 point to the "upper" slice
(see Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-
contiguous) areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.

Because a register pointer can point to either of the two 8-byte slices in the working register block, you can
flexibly define the working register area to support program requirements.

 PROGRAMMING TIP — Setting the Register Pointers

 SRP #70H ; RP0 ← 70H, RP1 ← 78H
 SRP1 #48H ; RP0 ← no change, RP1 ← 48H,
 SRP0 #0A0H ; RP0 ← A0H, RP1 ← no change
 CLR RP0 ; RP0 ← 00H, RP1 ← no change
 LD RP1,#0F8H ; RP0 ← no change, RP1 ← 0F8H

FH (R15)

0H (R0)

16-Byte
Contiguous
Working
Register block

Register File
Contains 32
8-Byte Slices

RP0

RP1 8H
7H

0 0 0 0 1 X X X

0 0 0 0 0 X X X

8-Byte Slice

8-Byte Slice

Figure 2-6. Contiguous 16-Byte Working Register Block

ADDRESS SPACES S3C80M4/F80M4

2-10

16-Byte
Contiguous
working
Register block

Register File
Contains 32
8-Byte Slices

0 0 0 0 0 X X X

RP1

1 1 1 1 0 X X X

RP0

0H (R0)

7H (R15)

F0H (R0)

F7H (R7)

8-Byte Slice

8-Byte Slice

Figure 2-7. Non-Contiguous 16-Byte Working Register Block

 PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of registers 80H–85H using the register pointer. The register addresses from 80H through 85H
contain the values 10H, 11H, 12H, 13H, 14H, and 15H, respectively:

 SRP0 #80H ; RP0 ← 80H
 ADD R0,R1 ; R0 ← R0 + R1
 ADC R0,R2 ; R0 ← R0 + R2 + C
 ADC R0,R3 ; R0 ← R0 + R3 + C
 ADC R0,R4 ; R0 ← R0 + R4 + C
 ADC R0,R5 ; R0 ← R0 + R5 + C

The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this
example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to
calculate the sum of these registers, the following instruction sequence would have to be used:

 ADD 80H,81H ; 80H ← (80H) + (81H)
 ADC 80H,82H ; 80H ← (80H) + (82H) + C
 ADC 80H,83H ; 80H ← (80H) + (83H) + C
 ADC 80H,84H ; 80H ← (80H) + (84H) + C
 ADC 80H,85H ; 80H ← (80H) + (85H) + C

Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of
instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.

S3C80M4/F80M4 ADDRESS SPACES

 2-11

REGISTER ADDRESSING

The S3C8-series register architecture provides an efficient method of working register addressing that takes full
advantage of shorter instruction formats to reduce execution time.

With Register (R) addressing mode, in which the operand value is the content of a specific register or register
pair, you can access any location in the register file except for set 2. With working register addressing, you use a
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that
space.

Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register
pair, the address of the first 8-bit register is always an even number and the address of the next register is always
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and
the least significant byte is always stored in the next (+1) odd-numbered register.

Working register addressing differs from Register addressing as it uses a register pointer to identify a specific
8-byte working register space in the internal register file and a specific 8-bit register within that space.

MSB

Rn

LSB

Rn+1

n = Even address

Figure 2-8. 16-Bit Register Pair

ADDRESS SPACES S3C80M4/F80M4

2-12

RP1

RP0

Register
Pointers

00H

All
Addressing

Modes

Page 0

Indirect Register,
Indexed

Addressing
Modes

Page 0

Register Addressing Only

Can be Pointed by Register Pointer

FFH

E0H

BFH

Control
Registers

System
Registers

Special-Purpose Registers

(Not used for
the S3C80M4)

D0H

C0H

Bank 1 Bank 0

NOTE: In the S3C80M4 microcontroller, pages 0 is
implemented.
Pages 0 contain all of the addressable
registers in the internal register file.

Each register pointer (RP) can independently point
to one of the 24 8-byte "slices" of the register file
(other than set 2). After a reset, RP0 points to
locations C0H-C7H and RP1 to locations C8H-CFH
(that is, to the common working register area).

FFH

C0H

Set 2

(Not used for
the S3C80M4)

Prime
Registers

CFH

General-Purpose Register

Figure 2-9. Register File Addressing

S3C80M4/F80M4 ADDRESS SPACES

 2-13

COMMON WORKING REGISTER AREA (C0H–CFH)

After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations
C0H–CFH, as the active 16-byte working register block:

 RP0 → C0H–C7H

 RP1 → C8H–CFH

This 16-byte address range is called common area. That is, locations in this area can be used as working
registers by operations that address any location on any page in the register file. Typically, these working
registers serve as temporary buffers for data operations between different pages.

FFH

FCH

E0H

D0H

C0H

Set 1

Following a hardware reset, register
pointers RP0 and RP1 point to the
common working register area,
locations C0H-CFH.

RP0 =

RP1 =

1 1 0 0 0 0 0 0

1 1 0 0 1 0 0 0

C0H

00H

FFH Set 2

(Not used for
the S3C80M4)

7FH Page 0

Prime
Space

Figure 2-10. Common Working Register Area

ADDRESS SPACES S3C80M4/F80M4

2-14

 PROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations C0H–CFH,
using working register addressing mode only.

Examples 1. LD 0C2H,40H ; Invalid addressing mode!
 Use working register addressing instead:
 SRP #0C0H
 LD R2,40H ; R2 (C2H) → the value in location 40H

 2. ADD 0C3H,#45H ; Invalid addressing mode!
 Use working register addressing instead:
 SRP #0C0H
 ADD R3,#45H ; R3 (C3H) → R3 + 45H

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in
a register pointer serves as an addressing "window" that makes it possible for instructions to access working
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:

— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0, "1" selects RP1).
— The five high-order bits in the register pointer select an 8-byte slice of the register space.
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are
concatenated with the three low-order bits from the instruction address to form the complete address. As long as
the address stored in the register pointer remains unchanged, the three bits from the address will always point to
an address in the same 8-byte register slice.

Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction
"INC R6" is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

S3C80M4/F80M4 ADDRESS SPACES

 2-15

Together they create an
8-bit register address

Register pointer
provides five
high-order bits

Address OPCODE

Selects
RP0 or RP1

RP1

RP0

4-bit address
provides three
low-order bits

Figure 2-11. 4-Bit Working Register Addressing

Register
address
(76H)

RP0

0 1 1 1 0 0 0 0

0 1 1 1 0 1 1 0

R6

0 1 1 0 1 1 1 0

Selects RP0

Instruction
'INC R6'

OPCODE

RP1

0 1 1 1 1 0 0 0

Figure 2-12. 4-Bit Working Register Addressing Example

ADDRESS SPACES S3C80M4/F80M4

2-16

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. To
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value
"1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working
register addressing.

As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit
addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address; the
three low-order bits of the complete address are provided by the original instruction.

Figure 2-14 shows an example of 8-bit working register addressing. The four high-order bits of the instruction
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from
RP1 and the three address bits from the instruction are concatenated to form the complete register address,
0ABH (10101011B).

8-bit logical
address

8-bit physical address

Register pointer
provides five
high-order bits

Address

Selects
RP0 or RP1

RP1

RP0

Three low-order bits

These address
bits indicate 8-bit
working register
addressing

1 1 0 0

Figure 2-13. 8-Bit Working Register Addressing

S3C80M4/F80M4 ADDRESS SPACES

 2-17

8-bit address
form instruction
'LD R11, R2'

RP0

0 1 1 0 0 0 0 0

1 1 0 0 1 0 1 1

Selects RP1

R11
Register
address
(0ABH)

RP1

1 0 1 0 1 0 0 0

1 0 1 0 1 0 1 1

Specifies working
register addressing

Figure 2-14. 8-Bit Working Register Addressing Example

ADDRESS SPACES S3C80M4/F80M4

2-18

SYSTEM AND USER STACK

The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH
and POP instructions are used to control system stack operations. The S3C80M4/F80M4 architecture supports
stack operations in the internal register file.

Stack Operations
Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to
their original locations. The stack address value is always decreased by one before a push operation and
increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top
of the stack, as shown in Figure 2-15.

Stack contents
after a call
instruction

Stack contents
after an
interrupt

Top of
stack Flags

PCH

PCL
PCL

PCHTop of
stack

Low Address

High Address

Figure 2-15. Stack Operations

User-Defined Stacks
You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,
PUSHUD, POPUI, and POPUD support user-defined stack operations.

Stack Pointers (SPL, SPH)
Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations.
The most significant byte of the SP address, SP15–SP8, is stored in the SPH register (D8H), and the least
significant byte, SP7–SP0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.

Because only internal memory space is implemented in the S3C84G5, the SPL must be initialized to an 8-bit
value in the range 00H–FFH. The SPH register is not needed and can be used as a general-purpose register, if
necessary.

When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the
register file), you can use the SPH register as a general-purpose data register. However, if an overflow or
underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register
during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register,
overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can
initialize the SPL value to "FFH" instead of "00H".

S3C80M4/F80M4 ADDRESS SPACES

 2-19

 PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and
POP instructions:

 LD SPL,#0FFH ; SPL ← FFH
 ; (Normally, the SPL is set to 0FFH by the initialization
 ; routine)
 •
 •
 •
 PUSH PP ; Stack address 0FEH ← PP
 PUSH RP0 ; Stack address 0FDH ← RP0
 PUSH RP1 ; Stack address 0FCH ← RP1
 PUSH R3 ; Stack address 0FBH ← R3
 •
 •
 •
 POP R3 ; R3 ← Stack address 0FBH
 POP RP1 ; RP1 ← Stack address 0FCH
 POP RP0 ; RP0 ← Stack address 0FDH
 POP PP ; PP ← Stack address 0FEH

ADDRESS SPACES S3C80M4/F80M4

2-20

NOTES

S3C80M4/F80M4 ADDRESSING MODES

 3-1

3 ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to
determine the location of the data operand. The operands specified in SAM88RC instructions may be condition
codes, immediate data, or a location in the register file, program memory, or data memory.

The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are
available for each instruction. The seven addressing modes and their symbols are:

— Register (R)
— Indirect Register (IR)
— Indexed (X)
— Direct Address (DA)
— Indirect Address (IA)
— Relative Address (RA)
— Immediate (IM)

ADDRESSING MODES S3C80M4/F80M4

3-2

REGISTER ADDRESSING MODE (R)

In Register addressing mode (R), the operand value is the content of a specified register or register pair
(see Figure 3-1).

Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte
working register space in the register file and an 8-bit register within that space (see Figure 3-2).

dst

Value used in
Instruction Execution

OPCODE
OPERAND

8-bit Register
File Address

Point to One
Register in Register

FileOne-Operand
Instruction
(Example)

Sample Instruction:

DEC CNTR ; Where CNTR is the label of an 8-bit register address

Program Memory Register File

Figure 3-1. Register Addressing

dst
OPCODE

4-bit
Working Register

Point to the
Working Register

(1 of 8)Two-Operand
Instruction
(Example)

Sample Instruction:

ADD R1, R2 ; Where R1 and R2 are registers in the currently
 selected working register area.

Program Memory

Register File

src 3 LSBs

RP0 or RP1

Selected
RP points
to start
of working
register
block

OPERAND

MSB Point to
RP0 ot RP1

Figure 3-2. Working Register Addressing

S3C80M4/F80M4 ADDRESSING MODES

 3-3

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the
operand. Depending on the instruction used, the actual address may point to a register in the register file, to
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to
indirectly address another memory location. Please note, however, that you cannot access locations C0H–FFH in
set 1 using the Indirect Register addressing mode.

dst

Address of Operand
used by Instruction

OPCODE
ADDRESS

8-bit Register
File Address

Point to One
Register in Register

FileOne-Operand
Instruction
(Example)

Sample Instruction:

RL @SHIFT ; Where SHIFT is the label of an 8-bit register address

Program Memory Register File

Value used in
Instruction Execution

OPERAND

Figure 3-3. Indirect Register Addressing to Register File

ADDRESSING MODES S3C80M4/F80M4

3-4

INDIRECT REGISTER ADDRESSING MODE (Continued)

dst
OPCODE

PAIR
Points to

Register Pair

Example
Instruction

References
Program
Memory

Sample Instructions:

CALL @RR2
JP @RR2

Program Memory

Register File

Value used in
Instruction

OPERAND

REGISTER

Program Memory

16-Bit
Address
Points to
Program
Memory

Figure 3-4. Indirect Register Addressing to Program Memory

S3C80M4/F80M4 ADDRESSING MODES

 3-5

INDIRECT REGISTER ADDRESSING MODE (Continued)

dst
OPCODE ADDRESS

4-bit
Working
Register
Address

Point to the
Working Register

(1 of 8)

Sample Instruction:

OR R3, @R6

Program Memory

Register File

src
3 LSBs

Value used in
Instruction

OPERAND

Selected
RP points
to start fo
working register
block

RP0 or RP1

MSB Points to
RP0 or RP1

~ ~

~ ~

Figure 3-5. Indirect Working Register Addressing to Register File

ADDRESSING MODES S3C80M4/F80M4

3-6

INDIRECT REGISTER ADDRESSING MODE (Concluded)

dst
OPCODE

4-bit Working
Register Address

Sample Instructions:

LCD R5,@RR6 ; Program memory access
LDE R3,@RR14 ; External data memory access
LDE @RR4, R8 ; External data memory access

Program Memory

Register File

src

Value used in
Instruction OPERAND

Example Instruction
References either

Program Memory or
Data Memory

Program Memory
or

Data Memory

Next 2-bit Point
 to Working

Register Pair
(1 of 4)

LSB Selects

Register
Pair

16-Bit
address
points to
program
memory
or data
memory

RP0 or RP1

MSB Points to
RP0 or RP1

Selected
RP points
to start of
working
register
block

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

S3C80M4/F80M4 ADDRESSING MODES

 3-7

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access
locations in the internal register file or in external memory. Please note, however, that you cannot access
locations C0H–FFH in set 1 using Indexed addressing mode.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128
to +127. This applies to external memory accesses only (see Figure 3-8.)

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained
in a working register. For external memory accesses, the base address is stored in the working register pair
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address
(see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for
external data memory, when implemented.

dst/src
OPCODE

Two-Operand
Instruction

Example
Point to One of the
Woking Register

(1 of 8)

Sample Instruction:

LD R0, #BASE[R1] ; Where BASE is an 8-bit immediate value

Program Memory

Register File

x 3 LSBs

Value used in
Instruction

OPERAND

INDEX
Base Address

RP0 or RP1

Selected RP
points to
start of
working
register
block

~ ~

~ ~+

Figure 3-7. Indexed Addressing to Register File

ADDRESSING MODES S3C80M4/F80M4

3-8

INDEXED ADDRESSING MODE (Continued)

Register File

OPERAND

Program Memory
or

Data Memory

Point to Working
Register Pair

(1 of 4)

LSB Selects

16-Bit
address
added to
offset

RP0 or RP1

MSB Points to
RP0 or RP1

Selected
RP points
to start of
working
register
block

dst/src
OPCODE

Program Memory

x
OFFSET

4-bit Working
Register Address

Sample Instructions:

LDC R4, #04H[RR2] ; The values in the program address (RR2 + 04H)
 are loaded into register R4.

LDE R4,#04H[RR2] ; Identical operation to LDC example, except that
 external program memory is accessed.

NEXT 2 Bits
Register

Pair

Value used in
Instruction

8-Bits 16-Bits

16-Bits

+

~ ~

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

S3C80M4/F80M4 ADDRESSING MODES

 3-9

INDEXED ADDRESSING MODE (Concluded)

Register File

OPERAND

Program Memory
or

Data Memory

Point to Working
Register Pair

LSB Selects

16-Bit
address
added to
offset

RP0 or RP1

MSB Points to
RP0 or RP1

Selected
RP points
to start of
working
register
block

Sample Instructions:

LDC R4, #1000H[RR2] ; The values in the program address (RR2 + 1000H)
 are loaded into register R4.

LDE R4,#1000H[RR2] ; Identical operation to LDC example, except that
 external program memory is accessed.

NEXT 2 Bits
Register

Pair

Value used in
Instruction

8-Bits 16-Bits

16-Bits

dst/src
OPCODE

Program Memory

src
OFFSET

4-bit Working
Register Address

OFFSET

+

~ ~

Figure 3-9. Indexed Addressing to Program or Data Memory

ADDRESSING MODES S3C80M4/F80M4

3-10

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC
whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Sample Instructions:

LDC R5,1234H ; The values in the program address (1234H)
 are loaded into register R5.

LDE R5,1234H ; Identical operation to LDC example, except that
 external program memory is accessed.

dst/src
OPCODE

Program Memory

"0" or "1"
Lower Address Byte

LSB Selects Program
Memory or Data Memory:
"0" = Program Memory
"1" = Data Memory

Memory
Address
Used

Upper Address Byte

Program or
Data Memory

Figure 3-10. Direct Addressing for Load Instructions

S3C80M4/F80M4 ADDRESSING MODES

 3-11

DIRECT ADDRESS MODE (Continued)

OPCODE

Program Memory

Lower Address Byte

Memory
Address
Used

Upper Address Byte

Sample Instructions:

JP C,JOB1 ; Where JOB1 is a 16-bit immediate address
CALL DISPLAY ; Where DISPLAY is a 16-bit immediate address

Next OPCODE

Figure 3-11. Direct Addressing for Call and Jump Instructions

ADDRESSING MODES S3C80M4/F80M4

3-12

INDIRECT ADDRESS MODE (IA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program
memory. The selected pair of memory locations contains the actual address of the next instruction to be executed.
Only the CALL instruction can use the Indirect Address mode.

Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program
memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are
assumed to be all zeros.

Current
Instruction

Program Memory
Locations 0-255

Program Memory

OPCODE
dst

Lower Address Byte
Upper Address Byte

Next Instruction

LSB Must be Zero

Sample Instruction:

CALL #40H ; The 16-bit value in program memory addresses 40H
 and 41H is the subroutine start address.

Figure 3-12. Indirect Addressing

S3C80M4/F80M4 ADDRESSING MODES

 3-13

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a twos-complement signed displacement between – 128 and + 127 is specified
in the instruction. The displacement value is then added to the current PC value. The result is the address of the
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction
immediately following the current instruction.

Several program control instructions use the Relative Address mode to perform conditional jumps. The
instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.

OPCODE

Program Memory

Displacement

Program Memory
Address Used

Sample Instructions:

JR ULT,$+OFFSET ; Where OFFSET is a value in the range +127 to -128

Next OPCODE

+
Signed
Displacement Value

Current Instruction

Current
PC Value

Figure 3-13. Relative Addressing

ADDRESSING MODES S3C80M4/F80M4

3-14

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand
field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate
addressing mode is useful for loading constant values into registers.

(The Operand value is in the instruction)

OPCODE

Sample Instruction:

LD R0,#0AAH

Program Memory

OPERAND

Figure 3-14. Immediate Addressing

S3C80M4/F80M4 CONTROL REGISTER

 4-1

4 CONTROL REGISTERS

OVERVIEW

In this chapter, detailed descriptions of the S3C80M4 control registers are presented in an easy-to-read format.
You can use this chapter as a quick-reference source when writing application programs. Figure 4-1 illustrates
the important features of the standard register description format.

Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed
information about control registers is presented in the context of the specific peripheral hardware descriptions in
Part II of this manual.

Data and counter registers are not described in detail in this reference chapter. More information about all of the
registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this
manual.

The locations and read/write characteristics of all mapped registers in the S3C80M4 register file are listed in
Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, "RESET and Power-
Down."

Table 4-1. Set 1 Registers

Register Name Mnemonic Decimal Hex R/W
Locations D0 – D2H are not mapped.

Basic Timer Control Register BTCON 211 D3H R/W
System Clock Control Register CLKCON 212 D4H R/W
System Flags Register FLAGS 213 D5H R/W
Register Pointer 0 RP0 214 D6H R/W
Register Pointer 1 RP1 215 D7H R/W
Stack Pointer (High Byte) SPH 216 D8H R/W
Stack Pointer (Low Byte) SPL 217 D9H R/W
Instruction Pointer (High Byte) IPH 218 DAH R/W
Instruction Pointer (Low Byte) IPL 219 DBH R/W
Interrupt Request Register IRQ 220 DCH R
Interrupt Mask Register IMR 221 DDH R/W
System Mode Register SYM 222 DEH R/W
Register Page Pointer PP 223 DFH R/W

CONTROL REGISTERS S3C80M4/F80M4

4-2

Table 4-2. Set 1, Bank 0 Registers

Register Name Mnemonic Decimal Hex R/W
Port 0 Data Register P0 224 E0H R/W
Port 1 Data Register P1 225 E1H R/W

Location E2H is not mapped.
Clock Output Control Register CLOCON 227 E3H R/W
Timer 0 Counter Register T0CNT 228 E4H R
Timer 0 Data Register T0DATA 229 E5H R/W
Timer 0 Control Register T0CON 230 E6H R/W
PWM Data Register PWMDATA 231 E7H R/W
PWM Control Register PWMCON 232 E8H R/W

Locations E9 – EEH are not mapped.
Port 1 Control Register(High Byte) P1CONH 240 EFH R/W
Port 1 Control Register(Low Byte) P1CONL 241 F0H R/W
Port 1 Pull-up Resistor Enable Register P1PUR 242 F1H R/W
Port 0 Control Register(High Byte) P0CONH 243 F2H R/W
Port 0 Control Register(Low Byte) P0CONL 244 F3H R/W
Port 0 Interrupt Control Register P0INT 245 F4H R/W
Port 0 Interrupt Pending Register P0PND 246 F5H R/W

Locations F6 – FAH are not mapped.
STOP Control Register STPCON 251 FBH R/W

Location FCH is not mapped.
Basic Timer Counter BTCNT 253 FDH R

Location FEH is not mapped.
Interrupt Priority Register IPR 255 FFH R/W

S3C80M4/F80M4 CONTROL REGISTER

 4-3

FLAGS - System Flags Register

.7 Carry Flag (C)

.6 Zero Flag (Z)

.5

Bit Identifier

RESET Value

Read/Write

Bit Addressing

Mode

R = Read-only
W = Write-only
R/W = Read/write
'-' = Not used

Type of addressing
that must be used to
address the bit
(1-bit, 4-bit, or 8-bit)

RESET value notation:
'-' = Not used
'x' = Undetermined value
'0' = Logic zero
'1' = Logic one

Bit number(s) that is/are appended to
the register name for bit addressing

Name of individual
bit or related bits

 Full Register nameRegister ID

Sign Flag (S)

0 Operation does not generate a carry or borrow condition

0 Operation generates carry-out or borrow into high-order bit 7

0 Operation result is a non-zero value

0 Operation result is zero

0 Operation generates positive number (MSB = "0")

0 Operation generates negative number (MSB = "1")

Description of the
effect of specific
bit settings

Set 1

Register location
in the internal
register file

D5H

Register address
(hexadecimal)

.7 .6 .5

x x x

R/W R/W R/W

Register addressing mode only

.4 .3 .2 .1 .0

x

R/W

x

R/W

x

R/W

x

R/W

0

R/W

Bit number:
MSB = Bit 7
LSB = Bit 0

Figure 4-1. Register Description Format

CONTROL REGISTERS S3C80M4/F80M4

4-4

BTCON — Basic Timer Control Register D3H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.4 Watchdog Timer Function Disable Code (for System Reset)
 1 0 1 0 Disable watchdog timer function
 Others Enable watchdog timer function

.3–.2 Basic Timer Input Clock Selection Bits
 0 0 fxx/4096
 0 1 fxx/1024
 1 0 fxx/128
 1 1 fxx/16

.1 Basic Timer Counter Clear Bit (1)
 0 No effect
 1 Clear the basic timer counter value

.0 Clock Frequency Divider Clear Bit for Basic Timer and Timer/Counters (2)
 0 No effect

 1 Clear both clock frequency dividers

NOTES:
1. When you write a “1” to BTCON.1, the basic timer counter value is cleared to "00H". Immediately following the write
 operation, the BTCON.1 value is automatically cleared to “0”.
2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to "00H". Immediately following the
 write operation, the BTCON.0 value is automatically cleared to "0".

S3C80M4/F80M4 CONTROL REGISTER

 4-5

CLKCON — System Clock Control Register D4H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 – – 0 0 – – –
Read/Write R/W – – R/W R/W – – –
Addressing Mode Register addressing mode only

.7 Oscillator IRQ Wake-up Function Bit
 0 Enable IRQ for main wake-up in power down mode
 1 Disable IRQ for main wake-up in power down mode

.6–.5 Not used for the S3C80M4

.4–.3 CPU Clock (System Clock) Selection Bits (note)
 0 0 fxx/16
 0 1 fxx/8
 1 0 fxx/2
 1 1 fxx

.2–.0 Not used for the S3C80M4

NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load
 the appropriate values to CLKCON.3 and CLKCON.4.

CONTROL REGISTERS S3C80M4/F80M4

4-6

CLOCON — Clock Output Control Register E3H Set 1, Bank0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value – – – – – – 0 0
Read/Write – – – – – – R/W R/W
Addressing Mode Register addressing mode only

.7–.2 Not used for the S3C80M4

.1–.0 Clock Output Frequency Selection Bits
 0 0 fxx/64
 0 1 fxx/16
 1 0 fxx/8
 1 1 fxx/4

S3C80M4/F80M4 CONTROL REGISTER

 4-7

FLAGS — System Flags Register D5H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value x x x x x x 0 0
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Addressing Mode Register addressing mode only

.7 Carry Flag (C)
 0 Operation does not generate a carry or borrow condition
 1 Operation generates a carry-out or borrow into high-order bit 7

.6 Zero Flag (Z)
 0 Operation result is a non-zero value
 1 Operation result is zero

.5 Sign Flag (S)
 0 Operation generates a positive number (MSB = "0")
 1 Operation generates a negative number (MSB = "1")

.4 Overflow Flag (V)
 0 Operation result is ≤ +127 or ≥ –128
 1 Operation result is > +127 or < –128

.3 Decimal Adjust Flag (D)
 0 Add operation completed
 1 Subtraction operation completed

.2 Half-Carry Flag (H)
 0 No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction
 1 Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3

.1 Fast Interrupt Status Flag (FIS)
 0 Interrupt return (IRET) in progress (when read)
 1 Fast interrupt service routine in progress (when read)

.0 Bank Address Selection Flag (BA)
 0 Bank 0 is selected
 1 Bank 1 is selected

CONTROL REGISTERS S3C80M4/F80M4

4-8

IMR — Interrupt Mask Register DDH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value x x x x x x x x
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7 Interrupt Level 7 (IRQ7) Enable Bit; External Interrupts P0.3
 0 Disable (mask)
 1 Enable (unmask)

.6 Interrupt Level 6 (IRQ6) Enable Bit; External Interrupts P0.2
 0 Disable (mask)
 1 Enable (unmask)

.5 Interrupt Level 5 (IRQ5) Enable Bit; External Interrupts P0.1
 0 Disable (mask)
 1 Enable (unmask)

.4 Interrupt Level 4 (IRQ4) Enable Bit; External Interrupts P0.0
 0 Disable (mask)
 1 Enable (unmask)

.3 Reserved

.2 Interrupt Level 2 (IRQ2) Enable Bit; PWM
 0 Disable (mask)
 1 Enable (unmask)

.1 Reserved

.0 Interrupt Level 0 (IRQ0) Enable Bit; Timer 0 Match
 0 Disable (mask)
 1 Enable (unmask)

NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.

S3C80M4/F80M4 CONTROL REGISTER

 4-9

IPH — Instruction Pointer (High Byte) DAH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value x x x x x x x x
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.0 Instruction Pointer Address (High Byte)
 The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction

pointer address (IP15–IP8). The lower byte of the IP address is located in the IPL
register (DBH).

IPL — Instruction Pointer (Low Byte) DBH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value x x x x x x x x
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.0 Instruction Pointer Address (Low Byte)

 The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction
pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH
register (DAH).

CONTROL REGISTERS S3C80M4/F80M4

4-10

IPR — Interrupt Priority Register FFH Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value x x x x x x x x
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7, .4, and .1 Priority Control Bits for Interrupt Groups A, B, and C
 0 0 0 Group priority undefined

 0 0 1 B > C > A
 0 1 0 A > B > C
 0 1 1 B > A > C
 1 0 0 C > A > B
 1 0 1 C > B > A
 1 1 0 A > C > B
 1 1 1 Group priority undefined

.6 Interrupt Subgroup C Priority Control Bit
 0 IRQ6 > IRQ7
 1 IRQ7 > IRQ6

.5 Interrupt Group C Priority Control Bit
 0 IRQ5 > (IRQ6, IRQ7)
 1 (IRQ6, IRQ7) > IRQ5

.3 Interrupt Subgroup B Priority Control Bit
 0 IRQ3 > IRQ4
 1 IRQ4 > IRQ3

.2 Interrupt Group B Priority Control Bit
 0 IRQ2 > (IRQ3, IRQ4)
 1 (IRQ3, IRQ4) > IRQ2

.0 Interrupt Group A Priority Control Bit
 0 IRQ0 > IRQ1
 1 IRQ1 > IRQ0

NOTE: Interrupt group A - IRQ0, IRQ1
 Interrupt group B -IRQ2, IRQ3, IRQ4
 Interrupt group C -IRQ5, IRQ6, IRQ7

S3C80M4/F80M4 CONTROL REGISTER

 4-11

IRQ — Interrupt Request Register DCH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R R R R R R R R
Addressing Mode Register addressing mode only

.7 Level 7 (IRQ7) Request Pending Bit; External Interrupts P0.3
 0 Not pending
 1 Pending

.6 Level 6 (IRQ6) Request Pending Bit; External Interrupts P0.2
 0 Not pending
 1 Pending

.5 Level 5 (IRQ5) Request Pending Bit; ; External Interrupts P0.1
 0 Not pending
 1 Pending

.4 Level 4 (IRQ4) Request Pending Bit; ; External Interrupts P0.0
 0 Not pending
 1 Pending

.3 Reserved

.2 Level 2 (IRQ2) Request Pending Bit; PWM
 0 Not pending
 1 Pending

.1 Reserved

.0 Level 0 (IRQ0) Request Pending Bit; Timer 0 Match
 0 Not pending
 1 Pending

CONTROL REGISTERS S3C80M4/F80M4

4-12

P0CONH — Port 0 Control Register (High Byte) F2H Set 1,Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 1 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.6 P0.7
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Not available
 1 1 Output mode, push-pull

.5–.4 P0.6/PWM
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Alternative function (PWM)
 1 1 Output mode, push-pull

.3–.2 P0.5
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Not available
 1 1 Output mode, push-pull

.1–.0 P0.4
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Not available
 1 1 Output mode, push-pull

S3C80M4/F80M4 CONTROL REGISTER

 4-13

P0CONL — Port 0 Control Register (Low Byte) F3H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.6 P0.3/INT3
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Not available
 1 1 Output mode, push-pull

.5–.4 P0.2/INT2
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Not available
 1 1 Output mode, push-pull

.3–.2 P0.1/INT1
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Not available
 1 1 Output mode, push-pull

.1–.0 P0.0/INT0
 0 0 Schmitt trigger input mode
 0 1 Schmitt trigger input mode with pull-up resistor
 1 0 Not available
 1 1 Output mode, push-pull

CONTROL REGISTERS S3C80M4/F80M4

4-14

P0INT — Port 0 Interrupt Control Register F4H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.6 P0.3/External interrupt (INT3) Enable Bits
 0 0 Disable interrupt
 0 1 Enable interrupt by falling edge
 1 0 Enable interrupt by rising edge
 1 1 Enable interrupt by both falling and rising edge

.5–.4 P0.2/External interrupt (INT2) Enable Bits
 0 0 Disable interrupt
 0 1 Enable interrupt by falling edge
 1 0 Enable interrupt by rising edge
 1 1 Enable interrupt by both falling and rising edge

.3–.2 P0.1/External interrupt (INT1) Enable Bits
 0 0 Disable interrupt
 0 1 Enable interrupt by falling edge
 1 0 Enable interrupt by rising edge
 1 1 Enable interrupt by both falling and rising edge

.1–.0 P0.0/External interrupt (INT0) Enable Bits
 0 0 Disable interrupt
 0 1 Enable interrupt by falling edge
 1 0 Enable interrupt by rising edge
 1 1 Enable interrupt by both falling and rising edge

S3C80M4/F80M4 CONTROL REGISTER

 4-15

P0PND — Port 0 Interrupt Pending Register F5H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.4 Not used for the S3C80M4

.3 P0.3/External Interrupt (INT3) Pending Bit
 0 Interrupt request is not pending (When read), Clear pending bit when write 0
 1 P0.3/INT3 interrupt request is pending (when read)

.2 P0.2/External Interrupt (INT2) Pending Bit
 0 Interrupt request is not pending (When read), Clear pending bit when write 0
 1 P0.2/INT2 interrupt request is pending (when read)

.1 P0.1/External Interrupt (INT1) Pending Bit
 0 Interrupt request is not pending (When read), Clear pending bit when write 0
 1 P0.1/INT1 interrupt request is pending (when read)

.0 P0.0/External Interrupt (INT0) Pending Bit
 0 Interrupt request is not pending (When read), Clear pending bit when write 0
 1 P0.0/INT0 interrupt request is pending (when read)

CONTROL REGISTERS S3C80M4/F80M4

4-16

P1CONH — Port 1 Control Register (High Byte) EFH Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value – – 0 0 0 0 0 0
Read/Write – – R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.6 Not used for the S3C80M4

.5–.4 P1.6/CLKOUT
 0 0 Input mode
 0 1 Output mode, N-channel open-drain
 1 0 Alternative function (CLKOUT)
 1 1 Output mode, push-pull

.3–.2 P1.5
 0 0 Input mode
 0 1 Output mode, N-channel open-drain
 1 0 Not available
 1 1 Output mode, push-pull

.1–.0 P1.4
 0 0 input mode
 0 1 Output mode, N-channel open-drain
 1 0 Not available
 1 1 Output mode, push-pull

S3C80M4/F80M4 CONTROL REGISTER

 4-17

P1CONL — Port 1 Control Register (Low Byte) F0H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.6 P1.3
 0 0 Schmitt trigger input mode
 0 1 Output mode, N-channel open-drain
 1 0 Not available
 1 1 Output mode, push-pull

.5–.4 P1.2
 0 0 Schmitt trigger input mode
 0 1 Output mode, N-channel open-drain
 1 0 Not available
 1 1 Output mode, push-pull

.3–.2 P1.1/T0CLK
 0 0 Schmitt trigger input mode (T0CLK)
 0 1 Output mode, N-channel open-drain
 1 0 Not available
 1 1 Output mode, push-pull

.1–.0 P1.0/T0OUT
 0 0 Schmitt trigger input mode
 0 1 Output mode, N-channel open-drain
 1 0 Alternative function (T0OUT)
 1 1 Output mode, push-pull

CONTROL REGISTERS S3C80M4/F80M4

4-18

P1PUR — Port 1 Pull-up Resistor Enable Register F1H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value – 0 0 0 0 0 0 0
Read/Write – R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7 Not used for the S3C80M4

.6 P1.6 Pull-up Resistor Enable Bit
 0 Pull-up disable
 1 Pull-up enable

.5 P1.5 Pull-up Resistor Enable Bit
 0 Pull-up disable
 1 Pull-up enable

.4 P1.4 Pull-up Resistor Enable Bit
 0 Pull-up disable
 1 Pull-up enable

.3 P1.3 Pull-up Resistor Enable Bit
 0 Pull-up disable
 1 Pull-up enable

.2 P1.2 Pull-up Resistor Enable Bit
 0 Pull-up disable
 1 Pull-up enable

.1 P1.1 Pull-up Resistor Enable Bit
 0 Pull-up disable
 1 Pull-up enable

.0 P1.0 Pull-up Resistor Enable Bit
 0 Pull-up disable
 1 Pull-up enable

NOTE: A pull-up resistor of port 1 is automatically disabled only when the corresponding pin is selected as push-pull output
 or alternative function.

S3C80M4/F80M4 CONTROL REGISTER

 4-19

PP — Register Page Pointer DFH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.4 Destination Register Page Selection Bits
 0 0 0 0 Destination: page 0
 Others Not used for the S3C80M4

.3– .0 Source Register Page Selection Bits
 0 0 0 0 Source: page 0
 Others Not used for the S3C80M4

NOTE: In the S3C80M4 microcontroller, the internal register file is configured as one pages (pages 0).
 The page 0 is used for general purpose register file.

CONTROL REGISTERS S3C80M4/F80M4

4-20

PWMCON — Pulse Width Modulation Control Register E8H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.6 PWM Input Clock Selection Bits
 0 0 fosc/64
 0 1 fosc/8
 1 0 fosc/2
 1 1 fosc/1

.5 Not used, But you must keep "1"

.4 PWMDATA Reload Interval Selection Bit
 0 Reload from 8-bit up counter overflow
 1 Reload from 6-bit up counter overflow

.3 PWM Counter Clear Bit
 0 No effect
 1 Clear the PWM counter (when write)

.2 PWM Counter Enable Bit
 0 Counter STOP
 1 Counter RUN (Resume countering)

.1 PWM Overflow Interrupt Enable Bit
 0 Disable interrupt
 1 Enable interrupt

.0 PWM Overflow Interrupt Pending Bit
 0 Interrupt is not pending (when read), Clear pending (when write)
 1 Interrupt is pending (when read), No effect (when write)

NOTE: The PWMCON.3 is not automatically cleared to "0". You must pay attention when clear pending bit.

S3C80M4/F80M4 CONTROL REGISTER

 4-21

RP0 — Register Pointer 0 D6H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 1 1 0 0 0 – – –
Read/Write R/W R/W R/W R/W R/W – – –
Addressing Mode Register addressing only

.7–.3 Register Pointer 0 Address Value
 Register pointer 0 can independently point to one of the 256-byte working register

areas in the register file. Using the register pointers RP0 and RP1, you can select
two 8-byte register slices at one time as active working register space. After a reset,
RP0 points to address C0H in register set 1, selecting the 8-byte working register
slice C0H–C7H.

.2–.0 Not used for the S3C80M4

RP1 — Register Pointer 1 D7H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 1 1 0 0 1 – – –
Read/Write R/W R/W R/W R/W R/W – – –
Addressing Mode Register addressing only

.7– .3 Register Pointer 1 Address Value
 Register pointer 1 can independently point to one of the 256-byte working register

areas in the register file. Using the register pointers RP0 and RP1, you can select
two 8-byte register slices at one time as active working register space. After a reset,
RP1 points to address C8H in register set 1, selecting the 8-byte working register
slice C8H–CFH.

.2– .0 Not used for the S3C80M4

CONTROL REGISTERS S3C80M4/F80M4

4-22

SPH — Stack Pointer (High Byte) D8H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value x x x x x x x x
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.0 Stack Pointer Address (High Byte)
 The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer

address (SP15–SP8). The lower byte of the stack pointer value is located in register
SPL (D9H). The SP value is undefined following a reset.

SPL — Stack Pointer (Low Byte) D9H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value x x x x x x x x
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.0 Stack Pointer Address (Low Byte)
 The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer

address (SP7–SP0). The upper byte of the stack pointer value is located in register
SPH (D8H). The SP value is undefined following a reset.

S3C80M4/F80M4 CONTROL REGISTER

 4-23

STPCON — Stop Control Register FBH Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.0 STOP Control Bits
 1 0 1 0 0 1 0 1 Enable stop instruction
 Other values Disable stop instruction

NOTE: Before execute the STOP instruction, You must set this STPCON register as “10100101b”. Otherwise the STOP
 instruction will not execute as well as reset will be generated.

CONTROL REGISTERS S3C80M4/F80M4

4-24

SYM — System Mode Register DEH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 – – x x x 0 0
Read/Write R/W – – R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7 Not used, But you must keep "0"

.6–.5 Not used for the S3C80M4

.4–.2 Fast Interrupt Level Selection Bits (1)
 0 0 0 IRQ0
 0 0 1 IRQ1
 0 1 0 IRQ2
 0 1 1 IRQ3
 1 0 0 IRQ4
 1 0 1 IRQ5
 1 1 0 IRQ6
 1 1 1 IRQ7

.1 Fast Interrupt Enable Bit (2)
 0 Disable fast interrupt processing
 1 Enable fast interrupt processing

.0 Global Interrupt Enable Bit (3)
 0 Disable all interrupt processing
 1 Enable all interrupt processing

NOTES:
1. You can select only one interrupt level at a time for fast interrupt processing.
2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2–SYM.4.
3. Following a reset, you must enable global interrupt processing by executing an EI instruction
 (not by writing a "1" to SYM.0).

S3C80M4/F80M4 CONTROL REGISTER

 4-25

T0CON — Timer 0 Control Register E6H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7–.5 Timer 0 Input Clock Selection Bits
 0 0 0 fxx/1024
 0 0 1 fxx/256
 0 1 0 fxx/64
 0 1 1 fxx/8
 1 0 0 fxx/1
 1 0 1 External clock (T0CLK) falling edge
 1 1 0 External clock (T0CLK) rising edge
 1 1 1 Counter stop

.4 Not used for the S3C80M4

.3 Timer 0 Counter Clear Bit
 0 No effect
 1 Clear the timer 0 counter (when write)

.2 Timer 0 Counter Enable Bit
 0 Disable counting operation
 1 Enable counting operation

.1 Timer 0 Match Interrupt Enable Bit
 0 Disable interrupt
 1 Enable interrupt

.0 Timer 0 Interrupt Pending Bit
 0 Interrupt request is not pending (when read),

Pending bit clear when write 0
 1 Interrupt request is pending (when read)

NOTE: The T0CON.3 value is automatically cleared to "0" after being cleared counter.

CONTROL REGISTERS S3C80M4/F80M4

4-26

NOTES

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-1

5 INTERRUPT STRUCTURE

OVERVIEW

The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU
recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has
more than one vector address, the vector priorities are established in hardware. A vector address can be
assigned to one or more sources.

Levels
Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight
possible interrupt levels: IRQ0–IRQ7, also called level 0–level 7. Each interrupt level directly corresponds to an
interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from
device to device. The S3C80M4 interrupt structure recognizes eight interrupt levels.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just
identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is
determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR
settings lets you define more complex priority relationships between different levels.

Vectors
Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The
maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for
S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector
priorities are set in hardware. S3C80M4 uses eight vectors.

Sources
A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow.
Each vector can have several interrupt sources. In the S3C80M4 interrupt structure, there are eight possible
interrupt sources.

When a service routine starts, the respective pending bit should be either cleared automatically by hardware or
cleared "manually" by program software. The characteristics of the source's pending mechanism determine which
method would be used to clear its respective pending bit.

INTERRUPT STRUCTURE S3C80M4/F80M4

5-2

INTERRUPT TYPES

The three components of the S3C8 interrupt structure described before — levels, vectors, and sources — are
combined to determine the interrupt structure of an individual device and to make full use of its available interrupt
logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3.
The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

 Type 1: One level (IRQn) + one vector (V1) + one source (S1)

 Type 2: One level (IRQn) + one vector (V1) + multiple sources (S1 – Sn)

 Type 3: One level (IRQn) + multiple vectors (V1 – Vn) + multiple sources (S1 – Sn , Sn+1 – Sn+m)

In the S3C80M4 microcontroller, two interrupt types are implemented.

Vectors SourcesLevels

S1

V1 S2Type 2: IRQn

S3

Sn

V1 S1

V2 S2Type 3: IRQn

V3 S3

V1 S1Type 1: IRQn

Vn

Sn + 1

Sn

Sn + 2

Sn + m

NOTES:
1. The number of Sn and Vn value is expandable.
2. In the S3C80M4 implementation,
 interrupt types 1 is used.

Figure 5-1. S3C8-Series Interrupt Types

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-3

S3C80M4 INTERRUPT STRUCTURE

The S3C80M4/F80M4 microcontroller supports nineteen interrupt sources. All nineteen of the interrupt sources
have a corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-
specific interrupt structure, as shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt
with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single
level are fixed in hardware).

When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the
service routine is executed.

P0.0 External interrupt

P0.1 External interrupt

P0.2 External interrupt

P0.3 External interrupt

IRQ6

PWM interrupt

IRQ7 S/W

Vectors SourcesLevels Reset/Clear

IRQ3

Reserved

Timer 0 match

IRQ2

Reserved

IRQ4

IRQ0 S/W

 -

S/W

 -

IRQ1

Basic Timer OverflowRESET H/W

IRQ5

S/W

S/W

S/W

EEH

100H

ECH

EAH

E8H

E6H

E4H

E2H

E0H

Figure 5-2. S3C80M4/F80M4 Interrupt Structure

INTERRUPT STRUCTURE S3C80M4/F80M4

5-4

INTERRUPT VECTOR ADDRESSES

All interrupt vector addresses for the S3C80M4/F80M4 interrupt structure are stored in the vector address area of
the internal 4-Kbyte ROM, 0H–FFFH (see Figure 5-3).

You can allocate unused locations in the vector address area as normal program memory. If you do so, please be
careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).

The program reset address in the ROM is 0100H.

S3C80M4/F80M4

(Decimal)
4,095

255

(Hex)
FFFH

00H0

4K-bytes
Internal
Program

Memory Area

Interrupt
Vector Area

FFH

Figure 5-3. ROM Vector Address Area

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-5

Table 5-1. Interrupt Vectors

Vector Address Interrupt Source Request Reset/Clear
Decimal

Value
Hex

Value
 Interrupt

Level
H/W S/W

256 100H Basic timer overflow Reset √
238 EEH Timer 0 match IRQ0 √
236 ECH Reserved IRQ1 – –
234 EAH PWM interrupt IRQ2 √
232 E8H Reserved IRQ3 – –
230 E6H P0.0 external interrupt IRQ4 √
228 E4H P0.1 external interrupt IRQ5 √
226 E2H P0.2 external interrupt IRQ6 √
224 E0H P0.3 external interrupt IRQ7 √

INTERRUPT STRUCTURE S3C80M4/F80M4

5-6

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then
serviced as they occur according to the established priorities.

NOTE
The system initialization routine executed after a reset must always contain an EI instruction to globally
enable the interrupt structure.

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable
interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level registers control interrupt
processing:

— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.
— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.
— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to

each interrupt source).
— The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable

fast interrupts and control the activity of external interface, if implemented).

Table 5-2. Interrupt Control Register Overview

Control Register ID R/W Function Description
Interrupt mask register IMR R/W Bit settings in the IMR register enable or disable interrupt

processing for each of the eight interrupt levels: IRQ0–IRQ7.
Interrupt priority register IPR R/W Controls the relative processing priorities of the interrupt levels.

The seven levels of S3C80M4/F80M4 are organized into three
groups: A, B, and C. Group A is IRQ0 and IRQ1, group B is
IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.

Interrupt request register IRQ R This register contains a request pending bit for each interrupt
level.

System mode register SYM R/W This register enables/disables fast interrupt processing,
dynamic global interrupt processing, and external interface
control (An external memory interface is implemented in the
S3C80M4/F80M4 microcontroller).

NOTE: Before IMR register is changed to any value, all interrupts must be disable. Using DI instruction is recommended.

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-7

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The
system-level control points in the interrupt structure are:

— Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0)
— Interrupt level enable/disable settings (IMR register)
— Interrupt level priority settings (IPR register)
— Interrupt source enable/disable settings in the corresponding peripheral control registers

NOTE
When writing an application program that handles interrupt processing, be sure to include the necessary
register file address (register pointer) information.

Interrupt Request Register
(Read-only)

IRQ0-IRQ7,
Interrupts

Interrupt Mask
Register

Polling
Cycle

Interrupt Priority
Register

Global Interrupt Control (EI,
DI or SYM.0 manipulation)

S

R

Q

RESET

EI

Vector
Interrupt
Cycle

Figure 5-4. Interrupt Function Diagram

INTERRUPT STRUCTURE S3C80M4/F80M4

5-8

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is one or more corresponding peripheral control registers that let you control the
interrupt generated by the related peripheral (see Table 5-3).

Table 5-3. Interrupt Source Control and Data Registers

Interrupt Source Interrupt Level Register(s) Location(s) in Set 1
Timer 0 match IRQ0 T0CON

T0DATA
T0CNT

E6H, bank 0
E5H, bank 0
E4H, bank 0

Reserved IRQ1 – –
PWM interrupt IRQ2 PWMCON

PWMDATA
E8H, bank 0
E7H, bank 0

Reserved IRQ3 – –
P0.0 external interrupt IRQ4 P0CONL

P0INT
P0PND

F3H, bank 0
F4H, bank 0
F5H, bank 0

P0.1 external interrupt IRQ5 P0CONL
P0INT
P0PND

F3H, bank 0
F4H, bank 0
F5H, bank 0

P0.2 external interrupt IRQ6 P0CONL
P0INT
P0PND

F3H, bank 0
F4H, bank 0
F5H, bank 0

P0.3 external interrupt IRQ7 P0CONL
P0INT
P0PND

F3H, bank 0
F4H, bank 0
F5H, bank 0

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-9

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to
control fast interrupt processing (see Figure 5-5).

A reset clears SYM.1, and SYM.0 to "0". The 3-bit value for fast interrupt level selection, SYM.4–SYM.2, is
undetermined.

The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0
value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EI) instruction must be
included in the initialization routine, which follows a reset operation. Although you can manipulate SYM.0 directly
to enable and disable interrupts during the normal operation, it is recommended to use the EI and DI instructions
for this purpose.

System Mode Register (SYM)
DEH, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Global interrupt enable bit: (3)
0 = Disable all interrupts processing
1 = Enable all interrupts processing

Fast interrupt enable bit: (2)
0 = Disable fast interrupts processing
1 = Enable fast interrupts processing

Fast interrupt level
selection bits: (1)

0 0 0 = IRQ0
0 0 1 = IRQ1
0 1 0 = IRQ2
0 1 1 = IRQ3
1 0 0 = IRQ4
1 0 1 = IRQ5
1 1 0 = IRQ6
1 1 1 = IRQ7

Not used for the S3C80M4

Always logic "0"

NOTES:
1. You can select only one interrupt level at a time for fast interrupt processing.
2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt processing for the
 interrupt level currently selected by SYM.2-SYM.4.
3. Following a reset, you must enable global interrupt processing by executing EI instruction
 (not by writing a "1" to SYM.0)

Figure 5-5. System Mode Register (SYM)

INTERRUPT STRUCTURE S3C80M4/F80M4

5-10

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required
settings by the initialization routine.

Each IMR bit corresponds to a specific interrupt level: bit 0 to IRQ0, bit 2 to IRQ2, and so on. When the IMR bit of
an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a level's
IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions
using the Register addressing mode.

Interrupt Mask Register (IMR)
DDH, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

ReservedIRQ2

IRQ4
IRQ5

IRQ6
IRQ7

IRQ0

Reserved

NOTE: When an interrupt level is masked, any interrupt requests that may be
 issued are not recognized by the CPU.

Interrupt level enable bits :
0 = Disable (mask) interrupt level
1 = Enable (un-mask) interrupt level

Figure 5-6. Interrupt Mask Register (IMR)

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-11

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in
the microcontroller’s interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be
written to their required settings by the initialization routine.

When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two
sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This
priority is fixed in hardware).

To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register
priority definitions (see Figure 5-7):

 Group A IRQ0, IRQ1
 Group B IRQ2, IRQ3, IRQ4
 Group C IRQ5, IRQ6, IRQ7

IPR
Group B

IPR
Group C

IRQ2

B1

IRQ4

B2

IRQ3

B22B21

IRQ5

C1

IRQ7

C2

IRQ6

C22C21

IPR
Group A

IRQ1

A2

IRQ0

A1

Figure 5-7. Interrupt Request Priority Groups

As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.
For example, the setting "001B" for these bits would select the group relationship B > C > A. The setting "101B"
would select the relationship C > B > A.

The functions of the other IPR bit settings are as follows:

— IPR.5 controls the relative priorities of group C interrupts.
— Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5,

6, and 7. IPR.6 defines the subgroup C relationship. IPR.5 controls the interrupt group C.
— IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.

INTERRUPT STRUCTURE S3C80M4/F80M4

5-12

Interrupt Priority Register (IPR)
FFH, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Group A:
0 = IRQ0 > IRQ1
1 = IRQ1 > IRQ0

Subgroup B:
0 = IRQ3 > IRQ4
1 = IRQ4 > IRQ3

Group C:
0 = IRQ5 > (IRQ6, IRQ7)
1 = (IRQ6, IRQ7) > IRQ5

Subgroup C:
0 = IRQ6 > IRQ7
1 = IRQ7 > IRQ6

Group B:
0 = IRQ2 > (IRQ3, IRQ4)
1 = (IRQ3, IRQ4) > IRQ2

Group priority:

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

= Undefined
= B > C > A
= A > B > C
= B > A > C
= C > A > B
= C > B > A
= A > C > B
= Undefined

D7 D4 D1

Figure 5-8. Interrupt Priority Register (IPR)

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-13

INTERRUPT REQUEST REGISTER (IRQ)

You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all
levels in the microcontroller’s interrupt structure. Each bit corresponds to the interrupt level of the same number:
bit 0 to IRQ0, bit 2 to IRQ2, and so on. A "0" indicates that no interrupt request is currently being issued for that
level. A "1" indicates that an interrupt request has been generated for that level.

IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the
IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific
interrupt levels. After a reset, all IRQ status bits are cleared to “0”.

You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events
occurred while the interrupt structure was globally disabled.

Interrupt Request Register (IRQ)
DCH, Set 1, Read-only

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

ReservedIRQ2
Reserved

IRQ4
IRQ5

IRQ6
IRQ7

IRQ0

Interrupt level request pending bits:
0 = Interrupt level is not pending
1 = Interrupt level is pending

Figure 5-9. Interrupt Request Register (IRQ)

INTERRUPT STRUCTURE S3C80M4/F80M4

5-14

INTERRUPT PENDING FUNCTION TYPES

Overview
There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt
service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.

Pending Bits Cleared Automatically by Hardware
For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting
to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine,
and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written
by application software.

In the S3C80M4 interrupt structure, the timer 0 overflow interrupt (IRQ0) belongs to this category of interrupts in
which pending condition is cleared automatically by hardware.

Pending Bits Cleared by the Service Routine
The second type of pending bit is the one that should be cleared by program software. The service routine must
clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be
written to the corresponding pending bit location in the source’s mode or control register.

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-15

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

1. A source generates an interrupt request by setting the interrupt request bit to "1".
2. The CPU polling procedure identifies a pending condition for that source.
3. The CPU checks the source's interrupt level.
4. The CPU generates an interrupt acknowledge signal.
5. Interrupt logic determines the interrupt's vector address.
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).
7. The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:

— Interrupt processing must be globally enabled (EI, SYM.0 = "1")
— The interrupt level must be enabled (IMR register)
— The interrupt level must have the highest priority if more than one levels are currently requesting service
— The interrupt must be enabled at the interrupt's source (peripheral control register)

When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.
The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
2. Save the program counter (PC) and status flags to the system stack.
3. Branch to the interrupt vector to fetch the address of the service routine.
4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores
the PC and status flags, setting SYM.0 to "1". It allows the CPU to process the next interrupt request.

INTERRUPT STRUCTURE S3C80M4/F80M4

5-16

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:

1. Push the program counter's low-byte value to the stack.
2. Push the program counter's high-byte value to the stack.
3. Push the FLAG register values to the stack.
4. Fetch the service routine's high-byte address from the vector location.
5. Fetch the service routine's low-byte address from the vector location.
6. Branch to the service routine specified by the concatenated 16-bit vector address.

NOTE
A 16-bit vector address always begins at an even-numbered ROM address within the range of 00H–FFH.

NESTING OF VECTORED INTERRUPTS

It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,
you must follow these steps:

1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.
3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it

occurs).
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the

previous mask value from the stack (POP IMR).
5. Execute an IRET.

Depending on the application, you may be able to simplify the procedure above to some extent.

INSTRUCTION POINTER (IP)

The instruction pointer (IP) is adopted by all the S3C8-series microcontrollers to control the optional high-speed
interrupt processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The names of IP
registers are IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).

FAST INTERRUPT PROCESSING

The feature called fast interrupt processing allows an interrupt within a given level to be completed in
approximately 6 clock cycles rather than the usual 16 clock cycles. To select a specific interrupt level for fast
interrupt processing, you write the appropriate 3-bit value to SYM.4–SYM.2. Then, to enable fast interrupt
processing for the selected level, you set SYM.1 to “1”.

S3C80M4/F80M4 INTERRUPT STRUCTURE

 5-17

FAST INTERRUPT PROCESSING (Continued)

Two other system registers support fast interrupt processing:

— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the
program counter values), and

— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated register
called FLAGS' (“FLAGS prime”).

NOTE
For the S3C80M4/F80M4 microcontroller, the service routine for any one of the eight interrupt levels:
IRQ0–IRQ7, can be selected for fast interrupt processing.

Procedure for Initiating Fast Interrupts
To initiate fast interrupt processing, follow these steps:

1. Load the start address of the service routine into the instruction pointer (IP).
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4–SYM.2)
3. Write a "1" to the fast interrupt enable bit in the SYM register.

Fast Interrupt Service Routine
When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:

1. The contents of the instruction pointer and the PC are swapped.
2. The FLAG register values are written to the FLAGS' (“FLAGS prime”) register.
3. The fast interrupt status bit in the FLAGS register is set.
4. The interrupt is serviced.
5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction

pointer and PC values are swapped back.
6. The content of FLAGS' (“FLAGS prime”) is copied automatically back to the FLAGS register.
7. The fast interrupt status bit in FLAGS is cleared automatically.

Relationship to Interrupt Pending Bit Types
As described previously, there are two types of interrupt pending bits: One type that is automatically cleared by
hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared by the
application program's interrupt service routine. You can select fast interrupt processing for interrupts with either
type of pending condition clear function — by hardware or by software.

Programming Guidelines
Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the
SYM register, SYM.1. Executing an EI or DI instruction globally enables or disables all interrupt processing,
including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast
interrupt service routine ends.

INTERRUPT STRUCTURE S3C80M4/F80M4

5-18

NOTES

S3C80M4/F80M4 INSTRUCTION SET

 6-1

6 INSTRUCTION SET

OVERVIEW

The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8
microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the
instruction set include:

— A full complement of 8-bit arithmetic and logic operations, including multiply and divide
— No special I/O instructions (I/O control/data registers are mapped directly into the register file)
— Decimal adjustment included in binary-coded decimal (BCD) operations
— 16-bit (word) data can be incremented and decremented
— Flexible instructions for bit addressing, rotate, and shift operations

DATA TYPES

The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least
significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."

ADDRESSING MODES

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative
(RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to
Section 3, "Addressing Modes."

INSTRUCTION SET S3C80M4/F80M4

6-2

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear
LD dst,src Load
LDB dst,src Load bit
LDE dst,src Load external data memory
LDC dst,src Load program memory
LDED dst,src Load external data memory and decrement
LDCD dst,src Load program memory and decrement
LDEI dst,src Load external data memory and increment
LDCI dst,src Load program memory and increment
LDEPD dst,src Load external data memory with pre-decrement
LDCPD dst,src Load program memory with pre-decrement
LDEPI dst,src Load external data memory with pre-increment
LDCPI dst,src Load program memory with pre-increment
LDW dst,src Load word
POP dst Pop from stack
POPUD dst,src Pop user stack (decrementing)
POPUI dst,src Pop user stack (incrementing)
PUSH src Push to stack
PUSHUD dst,src Push user stack (decrementing)
PUSHUI dst,src Push user stack (incrementing)

S3C80M4/F80M4 INSTRUCTION SET

 6-3

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Arithmetic Instructions

ADC dst,src Add with carry
ADD dst,src Add
CP dst,src Compare
DA dst Decimal adjust
DEC dst Decrement
DECW dst Decrement word
DIV dst,src Divide
INC dst Increment
INCW dst Increment word
MULT dst,src Multiply
SBC dst,src Subtract with carry
SUB dst,src Subtract

Logic Instructions

AND dst,src Logical AND
COM dst Complement
OR dst,src Logical OR
XOR dst,src Logical exclusive OR

INSTRUCTION SET S3C80M4/F80M4

6-4

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Program Control Instructions

BTJRF dst,src Bit test and jump relative on false
BTJRT dst,src Bit test and jump relative on true
CALL dst Call procedure
CPIJE dst,src Compare, increment and jump on equal
CPIJNE dst,src Compare, increment and jump on non-equal
DJNZ r,dst Decrement register and jump on non-zero
ENTER Enter
EXIT Exit
IRET Interrupt return
JP cc,dst Jump on condition code
JP dst Jump unconditional
JR cc,dst Jump relative on condition code
NEXT Next
RET Return
WFI Wait for interrupt

Bit Manipulation Instructions

BAND dst,src Bit AND
BCP dst,src Bit compare
BITC dst Bit complement
BITR dst Bit reset
BITS dst Bit set
BOR dst,src Bit OR
BXOR dst,src Bit XOR
TCM dst,src Test complement under mask
TM dst,src Test under mask

S3C80M4/F80M4 INSTRUCTION SET

 6-5

Table 6-1. Instruction Group Summary (Concluded)

Mnemonic Operands Instruction

Rotate and Shift Instructions

RL dst Rotate left
RLC dst Rotate left through carry
RR dst Rotate right
RRC dst Rotate right through carry
SRA dst Shift right arithmetic
SWAP dst Swap nibbles

CPU Control Instructions

CCF Complement carry flag
DI Disable interrupts
EI Enable interrupts
IDLE Enter Idle mode
NOP No operation
RCF Reset carry flag
SB0 Set bank 0
SB1 Set bank 1
SCF Set carry flag
SRP src Set register pointers
SRP0 src Set register pointer 0
SRP1 src Set register pointer 1
STOP Enter Stop mode

INSTRUCTION SET S3C80M4/F80M4

6-6

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these
bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and
FLAGS.2 are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank
address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.

Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For
example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will
occur to the Flags register producing an unpredictable result.

System Flags Register (FLAGS)
D5H, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Bank address
status flag (BA)

First interrupt
status flag (FIS)

Half-carry flag (H)

Decimal adjust flag (D)Overflow (V)

Sign flag (S)

Zero flag (Z)

Carry flag (C)

Figure 6-1. System Flags Register (FLAGS)

S3C80M4/F80M4 INSTRUCTION SET

 6-7

FLAG DESCRIPTIONS

C Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the
specified register. Program instructions can set, clear, or complement the carry flag.

Z Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is
logic zero.

S Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the
result. A logic zero indicates a positive number and a logic one indicates a negative number.

V Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than
– 128. It is also cleared to "0" following logic operations.

D Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by
programmers, and cannot be used as a test condition.

H Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a
program.

FIS Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET
instruction is executed.

BA Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected,
bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0 instruction and
is set to "1" (select bank 1) when you execute the SB1 instruction.

INSTRUCTION SET S3C80M4/F80M4

6-8

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description
C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag
0 Cleared to logic zero
1 Set to logic one
* Set or cleared according to operation
– Value is unaffected
x Value is undefined

Table 6-3. Instruction Set Symbols

Symbol Description
dst Destination operand
src Source operand
@ Indirect register address prefix
PC Program counter
IP Instruction pointer

FLAGS Flags register (D5H)
RP Register pointer
Immediate operand or register address prefix
H Hexadecimal number suffix
D Decimal number suffix
B Binary number suffix

opc Opcode

S3C80M4/F80M4 INSTRUCTION SET

 6-9

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range
cc Condition code See list of condition codes in Table 6-6.
r Working register only Rn (n = 0–15)
rb Bit (b) of working register Rn.b (n = 0–15, b = 0–7)
r0 Bit 0 (LSB) of working register Rn (n = 0–15)
rr Working register pair RRp (p = 0, 2, 4, ..., 14)
R Register or working register reg or Rn (reg = 0–255, n = 0–15)

Rb Bit 'b' of register or working register reg.b (reg = 0–255, b = 0–7)
RR Register pair or working register pair reg or RRp (reg = 0–254, even number only, where

p = 0, 2, ..., 14)
IA Indirect addressing mode addr (addr = 0–254, even number only)
Ir Indirect working register only @Rn (n = 0–15)
IR Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)
Irr Indirect working register pair only @RRp (p = 0, 2, ..., 14)

IRR Indirect register pair or indirect working
register pair

@RRp or @reg (reg = 0–254, even only, where
p = 0, 2, ..., 14)

X Indexed addressing mode #reg [Rn] (reg = 0–255, n = 0–15)
XS Indexed (short offset) addressing mode #addr [RRp] (addr = range –128 to +127, where

p = 0, 2, ..., 14)
xl Indexed (long offset) addressing mode #addr [RRp] (addr = range 0–65535, where

p = 0, 2, ..., 14)
da Direct addressing mode addr (addr = range 0–65535)
ra Relative addressing mode addr (addr = number in the range +127 to –128 that is

an offset relative to the address of the next instruction)
im Immediate addressing mode #data (data = 0–255)
iml Immediate (long) addressing mode #data (data = range 0–65535)

INSTRUCTION SET S3C80M4/F80M4

6-10

Table 6-5. Opcode Quick Reference

OPCODE MAP
LOWER NIBBLE (HEX)

 – 0 1 2 3 4 5 6 7

U 0 DEC
R1

DEC
IR1

ADD
r1,r2

ADD
r1,Ir2

ADD
R2,R1

ADD
IR2,R1

ADD
R1,IM

BOR
r0–Rb

P 1 RLC
R1

RLC
IR1

ADC
r1,r2

ADC
r1,Ir2

ADC
R2,R1

ADC
IR2,R1

ADC
R1,IM

BCP
r1.b, R2

P 2 INC
R1

INC
IR1

SUB
r1,r2

SUB
r1,Ir2

SUB
R2,R1

SUB
IR2,R1

SUB
R1,IM

BXOR
r0–Rb

E 3 JP
IRR1

SRP/0/1
IM

SBC
r1,r2

SBC
r1,Ir2

SBC
R2,R1

SBC
IR2,R1

SBC
R1,IM

BTJR
r2.b, RA

R 4 DA
R1

DA
IR1

OR
r1,r2

OR
r1,Ir2

OR
R2,R1

OR
IR2,R1

OR
R1,IM

LDB
r0–Rb

 5 POP
R1

POP
IR1

AND
r1,r2

AND
r1,Ir2

AND
R2,R1

AND
IR2,R1

AND
R1,IM

BITC
r1.b

N 6 COM
R1

COM
IR1

TCM
r1,r2

TCM
r1,Ir2

TCM
R2,R1

TCM
IR2,R1

TCM
R1,IM

BAND
r0–Rb

I 7 PUSH
R2

PUSH
IR2

TM
r1,r2

TM
r1,Ir2

TM
R2,R1

TM
IR2,R1

TM
R1,IM

BIT
r1.b

B 8 DECW
RR1

DECW
IR1

PUSHUD
IR1,R2

PUSHUI
IR1,R2

MULT
R2,RR1

MULT
IR2,RR1

MULT
IM,RR1

LD
r1, x, r2

B 9 RL
R1

RL
IR1

POPUD
IR2,R1

POPUI
IR2,R1

DIV
R2,RR1

DIV
IR2,RR1

DIV
IM,RR1

LD
r2, x, r1

L A INCW
RR1

INCW
IR1

CP
r1,r2

CP
r1,Ir2

CP
R2,R1

CP
IR2,R1

CP
R1,IM

LDC
r1, Irr2, xL

E B CLR
R1

CLR
IR1

XOR
r1,r2

XOR
r1,Ir2

XOR
R2,R1

XOR
IR2,R1

XOR
R1,IM

LDC
r2, Irr2, xL

 C RRC
R1

RRC
IR1

CPIJE
Ir,r2,RA

LDC
r1,Irr2

LDW
RR2,RR1

LDW
IR2,RR1

LDW
RR1,IML

LD
r1, Ir2

H D SRA
R1

SRA
IR1

CPIJNE
Irr,r2,RA

LDC
r2,Irr1

CALL
IA1

 LD
IR1,IM

LD
Ir1, r2

E E RR
R1

RR
IR1

LDCD
r1,Irr2

LDCI
r1,Irr2

LD
R2,R1

LD
R2,IR1

LD
R1,IM

LDC
r1, Irr2, xs

X F SWAP
R1

SWAP
IR1

LDCPD
r2,Irr1

LDCPI
r2,Irr1

CALL
IRR1

LD
IR2,R1

CALL
DA1

LDC
r2, Irr1, xs

S3C80M4/F80M4 INSTRUCTION SET

 6-11

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP
LOWER NIBBLE (HEX)

 – 8 9 A B C D E F

U 0 LD
r1,R2

LD
r2,R1

DJNZ
r1,RA

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NEXT

P 1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ENTER

P 2 EXIT

E 3 WFI

R 4 SB0

 5 SB1

N 6 IDLE

I 7 ↓ ↓ ↓ ↓ ↓ ↓ ↓ STOP

B 8 DI

B 9 EI

L A RET

E B IRET

 C RCF

H D ↓ ↓ ↓ ↓ ↓ ↓ ↓ SCF

E E CCF

X F LD
r1,R2

LD
r2,R1

DJNZ
r1,RA

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NOP

INSTRUCTION SET S3C80M4/F80M4

6-12

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump
instructions.

Table 6-6. Condition Codes

Binary Mnemonic Description Flags Set

0000 F Always false –
1000 T Always true –
0111 (note) C Carry C = 1

1111 (note) NC No carry C = 0

0110 (note) Z Zero Z = 1

1110 (note) NZ Not zero Z = 0
1101 PL Plus S = 0
0101 MI Minus S = 1
0100 OV Overflow V = 1
1100 NOV No overflow V = 0
0110 (note) EQ Equal Z = 1

1110 (note) NE Not equal Z = 0
1001 GE Greater than or equal (S XOR V) = 0
0001 LT Less than (S XOR V) = 1
1010 GT Greater than (Z OR (S XOR V)) = 0
0010 LE Less than or equal (Z OR (S XOR V)) = 1
1111 (note) UGE Unsigned greater than or equal C = 0

0111 (note) ULT Unsigned less than C = 1
1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1
0011 ULE Unsigned less than or equal (C OR Z) = 1

NOTES:
1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For
 example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;
 after a CP instruction, however, EQ would probably be used.
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

S3C80M4/F80M4 INSTRUCTION SET

 6-13

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction in the SAM8
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The
following information is included in each instruction description:

— Instruction name (mnemonic)
— Full instruction name
— Source/destination format of the instruction operand
— Shorthand notation of the instruction's operation
— Textual description of the instruction's effect
— Specific flag settings affected by the instruction
— Detailed description of the instruction's format, execution time, and addressing mode(s)
— Programming example(s) explaining how to use the instruction

INSTRUCTION SET S3C80M4/F80M4

6-14

ADC — Add with carry
ADC dst,src

Operation: dst ← dst + src + c

 The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. Two's-
complement addition is performed. In multiple precision arithmetic, this instruction permits the
carry from the addition of low-order operands to be carried into the addition of high-order
operands.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result

is of the opposite sign; cleared otherwise.
 D: Always cleared to "0".
 H: Set if there is a carry from the most significant bit of the low-order four bits of the result;

cleared otherwise.
Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 12 r r
 6 13 r lr

 opc src dst 3 6 14 R R
 6 15 R IR

 opc dst src 3 6 16 R IM

Examples: Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and
register 03H = 0AH:

 ADC R1,R2 → R1 = 14H, R2 = 03H

 ADC R1,@R2 → R1 = 1BH, R2 = 03H

 ADC 01H,02H → Register 01H = 24H, register 02H = 03H

 ADC 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADC 01H,#11H → Register 01H = 32H

 In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.

S3C80M4/F80M4 INSTRUCTION SET

 6-15

ADD — Add
ADD dst,src

Operation: dst ← dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise.
 D: Always cleared to "0".
 H: Set if a carry from the low-order nibble occurred.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 02 r r
 6 03 r lr

 opc src dst 3 6 04 R R
 6 05 R IR

 opc dst src 3 6 06 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

 ADD R1,R2 → R1 = 15H, R2 = 03H

 ADD R1,@R2 → R1 = 1CH, R2 = 03H

 ADD 01H,02H → Register 01H = 24H, register 02H = 03H

 ADD 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADD 01H,#25H → Register 01H = 46H

 In the first example, destination working register R1 contains 12H and the source working register
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in
register R1.

INSTRUCTION SET S3C80M4/F80M4

6-16

AND — Logical AND
AND dst,src

Operation: dst ← dst AND src

 The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the
source are unaffected.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Always cleared to "0".
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 52 r r
 6 53 r lr

 opc src dst 3 6 54 R R
 6 55 R IR

 opc dst src 3 6 56 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

 AND R1,R2 → R1 = 02H, R2 = 03H

 AND R1,@R2 → R1 = 02H, R2 = 03H

 AND 01H,02H → Register 01H = 01H, register 02H = 03H

 AND 01H,@02H → Register 01H = 00H, register 02H = 03H

AND 01H,#25H → Register 01H = 21H

 In the first example, destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.

S3C80M4/F80M4 INSTRUCTION SET

 6-17

BAND — Bit AND
BAND dst,src.b

BAND dst.b,src

Operation: dst(0) ← dst(0) AND src(b)
 or

 dst(b) ← dst(b) AND src(0)
 The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of

the destination (or source). The resultant bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Cleared to "0".
 V: Undefined.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | b | 0 src 3 6 67 r0 Rb

 opc src | b | 1 dst 3 6 67 Rb r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H and register 01H = 05H:

 BAND R1,01H.1 → R1 = 06H, register 01H = 05H

BAND 01H.1,R1 → Register 01H = 05H, R1 = 07H

 In the first example, source register 01H contains the value 05H (00000101B) and destination
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1
value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the value
06H (00000110B) in register R1.

INSTRUCTION SET S3C80M4/F80M4

6-18

BCP — Bit Compare
BCP dst,src.b

Operation: dst(0) – src(b)
 The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.

The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both
operands are unaffected by the comparison.

Flags: C: Unaffected.
 Z: Set if the two bits are the same; cleared otherwise.
 S: Cleared to "0".
 V: Undefined.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | b | 0 src 3 6 17 r0 Rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is
three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H and register 01H = 01H:

BCP R1,01H.1 → R1 = 07H, register 01H = 01H

If destination working register R1 contains the value 07H (00000111B) and the source register
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of
the source register (01H) and bit zero of the destination register (R1). Because the bit values are
not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).

S3C80M4/F80M4 INSTRUCTION SET

 6-19

BITC — Bit Complement
BITC dst.b

Operation: dst(b) ← NOT dst(b)
This instruction complements the specified bit within the destination without affecting any other
bits in the destination.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Cleared to "0".
 V: Undefined.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst | b | 0 2 4 57 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H

BITC R1.1 → R1 = 05H

 If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H) is
cleared.

INSTRUCTION SET S3C80M4/F80M4

6-20

BITR — Bit Reset
BITR dst.b

Operation: dst(b) ← 0
The BITR instruction clears the specified bit within the destination without affecting any other bits
in the destination.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst | b | 0 2 4 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BITR R1.1 → R1 = 05H

 If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one
of the destination register R1, leaving the value 05H (00000101B).

S3C80M4/F80M4 INSTRUCTION SET

 6-21

BITS — Bit Set
BITS dst.b

Operation: dst(b) ← 1
 The BITS instruction sets the specified bit within the destination without affecting any other bits in

the destination.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst | b | 1 2 4 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BITS R1.3 → R1 = 0FH

 If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit
three of the destination register R1 to "1", leaving the value 0FH (00001111B).

INSTRUCTION SET S3C80M4/F80M4

6-22

BOR — Bit OR
BOR dst,src.b

BOR dst.b,src

Operation: dst(0) ← dst(0) OR src(b)
 or

 dst(b) ← dst(b) OR src(0)
 The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the

destination (or the source). The resulting bit value is stored in the specified bit of the destination.
No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Cleared to "0".
 V: Undefined.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | b | 0 src 3 6 07 r0 Rb

 opc src | b | 1 dst 3 6 07 Rb r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit.

Examples: Given: R1 = 07H and register 01H = 03H:

 BOR R1, 01H.1 → R1 = 07H, register 01H = 03H

BOR 01H.2, R1 → Register 01H = 07H, R1 = 07H

 In the first example, destination working register R1 contains the value 07H (00000111B) and
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value
(07H) in working register R1.

 In the second example, destination register 01H contains the value 03H (00000011B) and the
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H
in register 01H.

S3C80M4/F80M4 INSTRUCTION SET

 6-23

BTJRF — Bit Test, Jump Relative on False
BTJRF dst,src.b

Operation: If src(b) is a "0", then PC ← PC + dst
 The specified bit within the source operand is tested. If it is a "0", the relative address is added to

the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRF instruction is executed.

Flags: No flags are affected.

Format:

(Note 1)

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src | b | 0 dst 3 10 37 RA rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is
 three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BTJRF SKIP,R1.3 → PC jumps to SKIP location

 If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the
memory location pointed to by the SKIP. (Remember that the memory location must be within the
allowed range of + 127 to – 128.)

INSTRUCTION SET S3C80M4/F80M4

6-24

BTJRT — Bit Test, Jump Relative on True
BTJRT dst,src.b

Operation: If src(b) is a "1", then PC ← PC + dst
 The specified bit within the source operand is tested. If it is a "1", the relative address is added to

the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRT instruction is executed.

Flags: No flags are affected.

Format:

(Note 1)

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src | b | 1 dst 3 10 37 RA rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is
 three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BTJRT SKIP,R1.1

 If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"
tests bit one in the source register (R1). Because it is a "1", the relative address is added to the
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the
memory location must be within the allowed range of + 127 to – 128.)

S3C80M4/F80M4 INSTRUCTION SET

 6-25

BXOR — Bit XOR

BXOR dst,src.b

BXOR dst.b,src

Operation: dst(0) ← dst(0) XOR src(b)
 or

 dst(b) ← dst(b) XOR src(0)
 The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)

of the destination (or source). The result bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Cleared to "0".
 V: Undefined.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | b | 0 src 3 6 27 r0 Rb

 opc src | b | 1 dst 3 6 27 Rb r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):

 BXOR R1,01H.1 → R1 = 06H, register 01H = 03H

BXOR 01H.2,R1 → Register 01H = 07H, R1 = 07H

 In the first example, destination working register R1 has the value 07H (00000111B) and source
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is
unaffected.

INSTRUCTION SET S3C80M4/F80M4

6-26

CALL — Call Procedure
CALL dst

Operation: SP ← SP – 1
 @SP ← PCL
 SP ← SP –1
 @SP ← PCH
 PC ← dst

The current contents of the program counter are pushed onto the top of the stack. The program
counter value used is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the program counter and points to the first
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used
to return to the original program flow. RET pops the top of the stack back into the program
counter.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 3 14 F6 DA

 opc dst 2 12 F4 IRR

 opc dst 2 14 D4 IA

Examples: Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:

 CALL 3521H → SP = 0000H
 (Memory locations 0000H = 1AH, 0001H = 4AH, where

 4AH is the address that follows the instruction.)

 CALL @RR0 → SP = 0000H (0000H = 1AH, 0001H = 49H)

CALL #40H → SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the
value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the
statement "CALL @RR0" produces the same result except that the 49H is stored in stack
location 0001H (because the two-byte instruction format was used). The PC is then loaded with
the value 3521H, the address of the first instruction in the program sequence to be executed.
Assuming that the contents of the program counter and stack pointer are the same as in the first
example, if program address 0040H contains 35H and program address 0041H contains 21H, the
statement "CALL #40H" produces the same result as in the second example.

S3C80M4/F80M4 INSTRUCTION SET

 6-27

CCF — Complement Carry Flag

CCF

Operation: C ← NOT C
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero; if C = "0", the value of the carry flag is changed to logic one.

Flags: C: Complemented.
No other flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 EF

Example: Given: The carry flag = "0":

CCF

 If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),
changing its value from logic zero to logic one.

INSTRUCTION SET S3C80M4/F80M4

6-28

CLR — Clear
CLR dst

Operation: dst ← "0"
The destination location is cleared to "0".

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 B0 R
 4 B1 IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

 CLR 00H → Register 00H = 00H

CLR @01H → Register 01H = 02H, register 02H = 00H

 In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)
addressing mode to clear the 02H register value to 00H.

S3C80M4/F80M4 INSTRUCTION SET

 6-29

COM — Complement

COM dst

Operation: dst ← NOT dst
 The contents of the destination location are complemented (one's complement); all "1s" are

changed to "0s", and vice-versa.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Always reset to "0".
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 60 R
 4 61 IR

Examples: Given: R1 = 07H and register 07H = 0F1H:

 COM R1 → R1 = 0F8H

COM @R1 → R1 = 07H, register 07H = 0EH

 In the first example, destination working register R1 contains the value 07H (00000111B). The
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,
and vice-versa, leaving the value 0F8H (11111000B).

 In the second example, Indirect Register (IR) addressing mode is used to complement the value
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).

INSTRUCTION SET S3C80M4/F80M4

6-30

CP — Compare
CP dst,src

Operation: dst – src
 The source operand is compared to (subtracted from) the destination operand, and the

appropriate flags are set accordingly. The contents of both operands are unaffected by the
comparison.

Flags: C: Set if a "borrow" occurred (src > dst); cleared otherwise.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 A2 r r
 6 A3 r lr

 opc src dst 3 6 A4 R R
 6 A5 R IR

 opc dst src 3 6 A6 R IM

Examples: 1. Given: R1 = 02H and R2 = 03H:

 CP R1,R2 → Set the C and S flags

 Destination working register R1 contains the value 02H and source register R2 contains the value
03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value
(destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are
"1".

 2. Given: R1 = 05H and R2 = 0AH:
 CP R1,R2

 JP UGE,SKIP
 INC R1
 SKIP LD R3,R1

 In this example, destination working register R1 contains the value 05H which is less than the
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"
executes, the value 06H remains in working register R3.

S3C80M4/F80M4 INSTRUCTION SET

 6-31

CPIJE — Compare, Increment, and Jump on Equal
CPIJE dst,src,RA

Operation: If dst – src = "0", PC ← PC + RA

 Ir ← Ir + 1
 The source operand is compared to (subtracted from) the destination operand. If the result is "0",

the relative address is added to the program counter and control passes to the statement whose
address is now in the program counter. Otherwise, the instruction immediately following the
CPIJE instruction is executed. In either case, the source pointer is incremented by one before the
next instruction is executed.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src dst RA 3 12 C2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 02H:

CPIJE R1,@R2,SKIP → R2 = 04H, PC jumps to SKIP location

 In this example, working register R1 contains the value 02H, working register R2 the value 03H,
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the
relative address is added to the PC and the PC then jumps to the memory location pointed to by
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that
the memory location must be within the allowed range of + 127 to – 128.)

INSTRUCTION SET S3C80M4/F80M4

6-32

CPIJNE — Compare, Increment, and Jump on Non-Equal
CPIJNE dst,src,RA

Operation: If dst – src "0", PC ← PC + RA

 Ir ← Ir + 1
 The source operand is compared to (subtracted from) the destination operand. If the result is not

"0", the relative address is added to the program counter and control passes to the statement
whose address is now in the program counter; otherwise the instruction following the CPIJNE
instruction is executed. In either case the source pointer is incremented by one before the next
instruction.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src dst RA 3 12 D2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 04H:

CPIJNE R1,@R2,SKIP → R2 = 04H, PC jumps to SKIP location

 Working register R1 contains the value 02H, working register R2 (the source pointer) the value
03H, and general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal, the
relative address is added to the PC and the PC then jumps to the memory location pointed to by
SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.
(Remember that the memory location must be within the allowed range of + 127 to – 128.)

S3C80M4/F80M4 INSTRUCTION SET

 6-33

DA — Decimal Adjust
DA dst

Operation: dst ← DA dst

The destination operand is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table
indicates the operation performed. (The operation is undefined if the destination operand was not
the result of a valid addition or subtraction of BCD digits):

Instruction Carry
Before DA

Bits 4–7
Value (Hex)

H Flag
Before DA

Bits 0–3
Value (Hex)

Number Added
to Byte

Carry
After DA

 0 0–9 0 0–9 00 0
 0 0–8 0 A–F 06 0
 0 0–9 1 0–3 06 0

ADD 0 A–F 0 0–9 60 1
ADC 0 9–F 0 A–F 66 1

 0 A–F 1 0–3 66 1
 1 0–2 0 0–9 60 1
 1 0–2 0 A–F 66 1
 1 0–3 1 0–3 66 1
 0 0–9 0 0–9 00 = – 00 0

SUB 0 0–8 1 6–F FA = – 06 0
SBC 1 7–F 0 0–9 A0 = – 60 1

 1 6–F 1 6–F 9A = – 66 1

Flags: C: Set if there was a carry from the most significant bit; cleared otherwise (see table).
 Z: Set if result is "0"; cleared otherwise.
 S: Set if result bit 7 is set; cleared otherwise.
 V: Undefined.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 40 R
 4 41 IR

INSTRUCTION SET S3C80M4/F80M4

6-34

DA — Decimal Adjust
DA (Continued)

Example: Given: Working register R0 contains the value 15 (BCD), working register R1 contains
 27 (BCD), and address 27H contains 46 (BCD):

ADD R1,R0 ; C ← "0", H ← "0", Bits 4–7 = 3, bits 0–3 = C, R1 ← 3CH
DA R1 ; R1 ← 3CH + 06

If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic:

 0 0 0 1 0 1 0 1 15
 + 0 0 1 0 0 1 1 1 27
 0 0 1 1 1 1 0 0 = 3CH

 The DA instruction adjusts this result so that the correct BCD representation is obtained:

 0 0 1 1 1 1 0 0
 + 0 0 0 0 0 1 1 0
 0 1 0 0 0 0 1 0 = 42

Assuming the same values given above, the statements

 SUB 27H,R0 ; C ← "0", H ← "0", Bits 4–7 = 3, bits 0–3 = 1

DA @R1 ; @R1 ← 31–0

 leave the value 31 (BCD) in address 27H (@R1).

S3C80M4/F80M4 INSTRUCTION SET

 6-35

DEC — Decrement
DEC dst

Operation: dst ← dst – 1
The contents of the destination operand are decremented by one.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 00 R
 4 01 IR

Examples: Given: R1 = 03H and register 03H = 10H:

 DEC R1 → R1 = 02H

DEC @R1 → Register 03H = 0FH

 In the first example, if working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by
one, leaving the value 0FH.

INSTRUCTION SET S3C80M4/F80M4

6-36

DECW — Decrement Word
DECW dst

Operation: dst ← dst – 1
 The contents of the destination location (which must be an even address) and the operand

following that location are treated as a single 16-bit value that is decremented by one.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 8 80 RR
 8 81 IR

Examples: Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:

 DECW RR0 → R0 = 12H, R1 = 33H

DECW @R2 → Register 30H = 0FH, register 31H = 20H

 In the first example, destination register R0 contains the value 12H and register R1 the value
34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word
and decrements the value of R1 by one, leaving the value 33H.

NOTE: A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW
instruction. To avoid this problem, we recommend that you use DECW as shown in the following
example:

 LOOP: DECW RR0
 LD R2,R1
 OR R2,R0

 JR NZ,LOOP

S3C80M4/F80M4 INSTRUCTION SET

 6-37

DI — Disable Interrupts

DI

Operation: SYM (0) ← 0
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,
but the CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 8F

Example: Given: SYM = 01H:

DI

 If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the
register and clears SYM.0 to "0", disabling interrupt processing.

 Before changing IMR, interrupt pending and interrupt source control
register, be sure DI state.

INSTRUCTION SET S3C80M4/F80M4

6-38

DIV — Divide (Unsigned)

DIV dst,src

Operation: dst ÷ src

 dst (UPPER) ← REMAINDER

 dst (LOWER) ← QUOTIENT

 The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of
the destination. When the quotient is ≥ 28, the numbers stored in the upper and lower halves of
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned
integers.

Flags: C: Set if the V flag is set and quotient is between 28 and 29 –1; cleared otherwise.
 Z: Set if divisor or quotient = "0"; cleared otherwise.
 S: Set if MSB of quotient = "1"; cleared otherwise.
 V: Set if quotient is ≥ 28 or if divisor = "0"; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src dst 3 26/10 94 RR R
 26/10 95 RR IR
 26/10 96 RR IM

NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.

Examples: Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:

 DIV RR0,R2 → R0 = 03H, R1 = 40H

 DIV RR0,@R2 → R0 = 03H, R1 = 20H

DIV RR0,#20H → R0 = 03H, R1 = 80H

 In the first example, destination working register pair RR0 contains the values 10H (R0) and 03H
(R1), and register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit
RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0 contains the
value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the destination
register RR0 (R0) and the quotient in the lower half (R1).

S3C80M4/F80M4 INSTRUCTION SET

 6-39

DJNZ — Decrement and Jump if Non-Zero
DJNZ r,dst

Operation: r ← r – 1

 If r ≠ 0, PC ← PC + dst
 The working register being used as a counter is decremented. If the contents of the register are

not logic zero after decrementing, the relative address is added to the program counter and
control passes to the statement whose address is now in the PC. The range of the relative
address is +127 to –128, and the original value of the PC is taken to be the address of the
instruction byte following the DJNZ statement.

 NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at
 the one of location 0C0H to 0CFH with SRP, SRP0, or SRP1 instruction.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 r | opc dst 2 8 (jump taken) rA RA
 8 (no jump) r = 0 to F

Example: Given: R1 = 02H and LOOP is the label of a relative address:

 SRP #0C0H
DJNZ R1,LOOP

 DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the
destination operand instead of a numeric relative address value. In the example, working register
R1 contains the value 02H, and LOOP is the label for a relative address.

 The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H.
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative
address specified by the LOOP label.

INSTRUCTION SET S3C80M4/F80M4

6-40

EI — Enable Interrupts
EI

Operation: SYM (0) ← 1
 An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to

be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced
when you execute the EI instruction.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 9F

Example: Given: SYM = 00H:

EI

 If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for
global interrupt processing.)

S3C80M4/F80M4 INSTRUCTION SET

 6-41

ENTER — Enter
ENTER

Operation: SP ← SP – 2
 @SP ← IP
 IP ← PC
 PC ← @IP
 IP ← IP + 2
 This instruction is useful when implementing threaded-code languages. The contents of the

instruction pointer are pushed to the stack. The program counter (PC) value is then written to the
instruction pointer. The program memory word that is pointed to by the instruction pointer is
loaded into the PC, and the instruction pointer is incremented by two.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 14 1F

Example: The diagram below shows one example of how to use an ENTER statement.

0050IP

0022SP

22 Data

Address Data

0040PC 40
41
42
43

Enter
Address H
Address L
Address H

Address Data

1F
01
10

Memory

0043IP

0020SP

20
21
22

IPH
IPL
Data

Address Data

0110PC 40
41
42
43

Enter
Address H
Address L
Address H

Address Data

1F
01
10

Memory

00
50

Stack Stack

110 Routine

Before After

INSTRUCTION SET S3C80M4/F80M4

6-42

EXIT — Exit
EXIT

Operation: IP ← @SP
 SP ← SP + 2
 PC ← @IP
 IP ← IP + 2
 This instruction is useful when implementing threaded-code languages. The stack value is

popped and loaded into the instruction pointer. The program memory word that is pointed to by
the instruction pointer is then loaded into the program counter, and the instruction pointer is
incremented by two.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 14 (internal stack) 2F
 16 (internal stack)

Example: The diagram below shows one example of how to use an EXIT statement.

0050IP

0022SP

Address Data

0040PC

Address Data

Memory

0052IP

0022SP

Address Data

0060PC

Address Data

Memory

Stack Stack

Before After

22 Data

20
21
22

IPH
IPL
Data

00
50

50
51

140

PCL old
PCH

Exit

60
00

2F

60 Main

S3C80M4/F80M4 INSTRUCTION SET

 6-43

IDLE — Idle Operation

IDLE

Operation:

 The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle
mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc 1 4 6F – –

Example: The instruction

IDLE

 stops the CPU clock but not the system clock.

INSTRUCTION SET S3C80M4/F80M4

6-44

INC — Increment
INC dst

Operation: dst ← dst + 1
The contents of the destination operand are incremented by one.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 dst | opc 1 4 rE r
 r = 0 to F

 opc dst 2 4 20 R
 4 21 IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

 INC R0 → R0 = 1CH

 INC 00H → Register 00H = 0DH

INC @R0 → R0 = 1BH, register 01H = 10H

 In the first example, if destination working register R0 contains the value 1BH, the statement "INC
R0" leaves the value 1CH in that same register.

 The next example shows the effect an INC instruction has on register 00H, assuming that it
contains the value 0CH.

 In the third example, INC is used in Indirect Register (IR) addressing mode to increment the
value of register 1BH from 0FH to 10H.

S3C80M4/F80M4 INSTRUCTION SET

 6-45

INCW — Increment Word

INCW dst

Operation: dst ← dst + 1
 The contents of the destination (which must be an even address) and the byte following that

location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 8 A0 RR
 8 A1 IR

Examples: Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:

 INCW RR0 → R0 = 1AH, R1 = 03H

INCW @R1 → Register 02H = 10H, register 03H = 00H

 In the first example, the working register pair RR0 contains the value 1AH in register R0 and 02H
in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the
value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect
Register (IR) addressing mode to increment the contents of general register 03H from 0FFH to
00H and register 02H from 0FH to 10H.

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the
following example:

LOOP: INCW RR0
 LD R2,R1
 OR R2,R0
 JR NZ,LOOP

INSTRUCTION SET S3C80M4/F80M4

6-46

IRET — Interrupt Return
IRET IRET (Normal) IRET (Fast)

Operation: FLAGS ← @SP PC ↔ IP
 SP ← SP + 1 FLAGS ← FLAGS'
 PC ← @SP FIS ← 0
 SP ← SP + 2
 SYM(0) ← 1
 This instruction is used at the end of an interrupt service routine. It restores the flag register and

the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

 IRET
(Normal)

 Bytes Cycles Opcode (Hex)

 opc 1 10 (internal stack) BF

 12 (internal stack)

 IRET

(Fast)
 Bytes Cycles Opcode (Hex)

 opc 1 6 BF

Example: In the figure below, the instruction pointer is initially loaded with 100H in the main program before
interrupts are enabled. When an interrupt occurs, the program counter and instruction pointer are
swapped. This causes the PC to jump to address 100H and the IP to keep the return address.
The last instruction in the service routine normally is a jump to IRET at address FFH. This causes
the instruction pointer to be loaded with 100H "again" and the program counter to jump back to
the main program. Now, the next interrupt can occur and the IP is still correct at 100H.

IRET

Interrupt
Service
Routine

JP to FFH

0H

FFH

100H

FFFFH
NOTE: In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay

attention to the order of the last two instructions. The IRET cannot be immediately proceded by a
clearing of the interrupt status (as with a reset of the IPR register).

S3C80M4/F80M4 INSTRUCTION SET

 6-47

JP — Jump

JP cc,dst (Conditional)

JP dst (Unconditional)

Operation: If cc is true, PC ← dst
 The conditional JUMP instruction transfers program control to the destination address if the

condition specified by the condition code (cc) is true; otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the
PC.

Flags: No flags are affected.

Format: (1)

(2)

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 cc | opc dst 3 8 ccD DA
 cc = 0 to F

 opc dst 2 8 30 IRR

NOTES:
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the
 opcode are both four bits.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

JP C,LABEL_W → LABEL_W = 1000H, PC = 1000H

JP @00H → PC = 0120H

 The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

 The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

INSTRUCTION SET S3C80M4/F80M4

6-48

JR — Jump Relative
JR cc,dst

Operation: If cc is true, PC ← PC + dst
 If the condition specified by the condition code (cc) is true, the relative address is added to the

program counter and control passes to the statement whose address is now in the program
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition
codes).

 The range of the relative address is +127, –128, and the original value of the program counter is
taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(1)

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 cc | opc dst 2 6 ccB RA
 cc = 0 to F

NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each
 four bits.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:

JR C,LABEL_X → PC = 1FF7H

 If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will
pass control to the statement whose address is now in the PC. Otherwise, the program
instruction following the JR would be executed.

S3C80M4/F80M4 INSTRUCTION SET

 6-49

LD — Load
LD dst,src

Operation: dst ← src
The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 dst | opc src 2 4 rC r IM
 4 r8 r R

 src | opc dst 2 4 r9 R r
 r = 0 to F

 opc dst | src 2 4 C7 r lr
 4 D7 Ir r

 opc src dst 3 6 E4 R R
 6 E5 R IR

 opc dst src 3 6 E6 R IM
 6 D6 IR IM

 opc src dst 3 6 F5 IR R

 opc dst | src x 3 6 87 r x [r]

 opc src | dst x 3 6 97 x [r] r

INSTRUCTION SET S3C80M4/F80M4

6-50

LD — Load
LD (Continued)

Examples: Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:

 LD R0,#10H → R0 = 10H

 LD R0,01H → R0 = 20H, register 01H = 20H

 LD 01H,R0 → Register 01H = 01H, R0 = 01H

 LD R1,@R0 → R1 = 20H, R0 = 01H

 LD @R0,R1 → R0 = 01H, R1 = 0AH, register 01H = 0AH

 LD 00H,01H → Register 00H = 20H, register 01H = 20H

 LD 02H,@00H → Register 02H = 20H, register 00H = 01H

 LD 00H,#0AH → Register 00H = 0AH

 LD @00H,#10H → Register 00H = 01H, register 01H = 10H

 LD @00H,02H → Register 00H = 01H, register 01H = 02, register 02H = 02H

 LD R0,#LOOP[R1] → R0 = 0FFH, R1 = 0AH

LD #LOOP[R0],R1 → Register 31H = 0AH, R0 = 01H, R1 = 0AH

S3C80M4/F80M4 INSTRUCTION SET

 6-51

LDB — Load Bit

LDB dst,src.b

LDB dst.b,src

Operation: dst(0) ← src(b)
 or

 dst(b) ← src(0)
 The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the

source is loaded into the specified bit of the destination. No other bits of the destination are
affected. The source is unaffected.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | b | 0 src 3 6 47 r0 Rb

 opc src | b | 1 dst 3 6 47 Rb r0

NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the bit
address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R0 = 06H and general register 00H = 05H:

LDB R0,00H.2 → R0 = 07H, register 00H = 05H

LDB 00H.0,R0 → R0 = 06H, register 00H = 04H

 In the first example, destination working register R0 contains the value 06H and the source
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the
00H register into bit zero of the R0 register, leaving the value 07H in register R0.

 In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit
zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04H in general
register 00H.

INSTRUCTION SET S3C80M4/F80M4

6-52

LDC/LDE — Load Memory
LDC/LDE dst,src

Operation: dst ← src
This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory. The
assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd number
for data memory.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

1. opc dst | src 2 10 C3 r Irr

2. opc src | dst 2 10 D3 Irr r

3. opc dst | src XS 3 12 E7 r XS [rr]

4. opc src | dst XS 3 12 F7 XS [rr] r

5. opc dst | src XLL XLH 4 14 A7 r XL [rr]

6. opc src | dst XLL XLH 4 14 B7 XL [rr] r

7. opc dst | 0000 DAL DAH 4 14 A7 r DA

8. opc src | 0000 DAL DAH 4 14 B7 DA r

9. opc dst | 0001 DAL DAH 4 14 A7 r DA

10. opc src | 0001 DAL DAH 4 14 B7 DA r

NOTES:
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one
 byte.
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two
 bytes.
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set
 of values, used in formats 9 and 10, are used to address data memory.

S3C80M4/F80M4 INSTRUCTION SET

 6-53

LDC/LDE — Load Memory
LDC/LDE (Continued)

Examples: Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:

LDC R0,@RR2 ; R0 ← contents of program memory location 0104H
 ; R0 = 1AH, R2 = 01H, R3 = 04H

LDE R0,@RR2 ; R0 ← contents of external data memory location 0104H
 ; R0 = 2AH, R2 = 01H, R3 = 04H

LDC (note) @RR2,R0 ; 11H (contents of R0) is loaded into program memory
 ; location 0104H (RR2),
 ; working registers R0, R2, R3 → no change

LDE @RR2,R0 ; 11H (contents of R0) is loaded into external data memory
 ; location 0104H (RR2),
 ; working registers R0, R2, R3 → no change

LDC R0,#01H[RR2] ; R0 ← contents of program memory location 0105H
 ; (01H + RR2),
 ; R0 = 6DH, R2 = 01H, R3 = 04H

LDE R0,#01H[RR2] ; R0 ← contents of external data memory location 0105H
 ; (01H + RR2), R0 = 7DH, R2 = 01H, R3 = 04H

LDC (note) #01H[RR2],R0 ; 11H (contents of R0) is loaded into program memory location
 ; 0105H (01H + 0104H)

LDE #01H[RR2],R0 ; 11H (contents of R0) is loaded into external data memory
 ; location 0105H (01H + 0104H)

LDC R0,#1000H[RR2] ; R0 ← contents of program memory location 1104H
 ; (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H

LDE R0,#1000H[RR2] ; R0 ← contents of external data memory location 1104H
 ; (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H

LDC R0,1104H ; R0 ← contents of program memory location 1104H, R0 = 88H

LDE R0,1104H ; R0 ← contents of external data memory location 1104H,
 ; R0 = 98H

LDC (note) 1105H,R0 ; 11H (contents of R0) is loaded into program memory location
 ; 1105H, (1105H) ← 11H

LDE 1105H,R0 ; 11H (contents of R0) is loaded into external data memory
 ; location 1105H, (1105H) ← 11H

 NOTE: These instructions are not supported by masked ROM type devices.

INSTRUCTION SET S3C80M4/F80M4

6-54

LDCD/LDED — Load Memory and Decrement

LDCD/LDED dst,src

Operation: dst ← src

 rr ← rr – 1
 These instructions are used for user stacks or block transfers of data from program or data

memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

 LDCD references program memory and LDED references external data memory. The assembler
makes 'Irr' an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 10 E2 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and
 external data memory location 1033H = 0DDH:

 LDCD R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
 ; into R8 and RR6 is decremented by one

 ; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ← RR6 – 1)

 LDED R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded

 ; into R8 and RR6 is decremented by one (RR6 ← RR6 – 1)
 ; R8 = 0DDH, R6 = 10H, R7 = 32H

S3C80M4/F80M4 INSTRUCTION SET

 6-55

LDCI/LDEI — Load Memory and Increment

LDCI/LDEI dst,src

Operation: dst ← src

 rr ← rr + 1
 These instructions are used for user stacks or block transfers of data from program or data

memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

 LDCI refers to program memory and LDEI refers to external data memory. The assembler makes
'Irr' even for program memory and odd for data memory.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 10 E3 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and
 1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:

 LDCI R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded

 ; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1)
 ; R8 = 0CDH, R6 = 10H, R7 = 34H

 LDEI R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded

 ; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1)
 ; R8 = 0DDH, R6 = 10H, R7 = 34H

INSTRUCTION SET S3C80M4/F80M4

6-56

LDCPD/LDEPD — Load Memory with Pre-Decrement
LDCPD/
LDEPD dst,src

Operation: rr ← rr – 1

 dst ← src
 These instructions are used for block transfers of data from program or data memory from the

register file. The address of the memory location is specified by a working register pair and is first
decremented. The contents of the source location are then loaded into the destination location.
The contents of the source are unaffected.

 LDCPD refers to program memory and LDEPD refers to external data memory. The assembler
makes 'Irr' an even number for program memory and an odd number for external data memory.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src | dst 2 14 F2 Irr r

Examples: Given: R0 = 77H, R6 = 30H, and R7 = 00H:

LDCPD @RR6,R0 ; (RR6 ← RR6 – 1)
 ; 77H (contents of R0) is loaded into program memory location
 ; 2FFFH (3000H – 1H)
 ; R0 = 77H, R6 = 2FH, R7 = 0FFH

LDEPD @RR6,R0 ; (RR6 ← RR6 – 1)
 ; 77H (contents of R0) is loaded into external data memory
 ; location 2FFFH (3000H – 1H)
 ; R0 = 77H, R6 = 2FH, R7 = 0FFH

S3C80M4/F80M4 INSTRUCTION SET

 6-57

LDCPI/LDEPI — Load Memory with Pre-Increment
LDCPI/
LDEPI dst,src

Operation: rr ← rr + 1

 dst ← src
 These instructions are used for block transfers of data from program or data memory from the

register file. The address of the memory location is specified by a working register pair and is first
incremented. The contents of the source location are loaded into the destination location. The
contents of the source are unaffected.

 LDCPI refers to program memory and LDEPI refers to external data memory. The assembler
makes 'Irr' an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src | dst 2 14 F3 Irr r

Examples: Given: R0 = 7FH, R6 = 21H, and R7 = 0FFH:

LDCPI @RR6,R0 ; (RR6 ← RR6 + 1)
 ; 7FH (contents of R0) is loaded into program memory
 ; location 2200H (21FFH + 1H)
 ; R0 = 7FH, R6 = 22H, R7 = 00H

LDEPI @RR6,R0 ; (RR6 ← RR6 + 1)
 ; 7FH (contents of R0) is loaded into external data memory
 ; location 2200H (21FFH + 1H)
 ; R0 = 7FH, R6 = 22H, R7 = 00H

INSTRUCTION SET S3C80M4/F80M4

6-58

LDW — Load Word

LDW dst,src

Operation: dst ← src
The contents of the source (a word) are loaded into the destination. The contents of the source
are unaffected.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src dst 3 8 C4 RR RR
 8 C5 RR IR

 opc dst src 4 8 C6 RR IML

Examples: Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,
register 01H = 02H, register 02H = 03H, and register 03H = 0FH:

LDW RR6,RR4 → R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH

LDW 00H,02H → Register 00H = 03H, register 01H = 0FH,
 register 02H = 03H, register 03H = 0FH

LDW RR2,@R7 → R2 = 03H, R3 = 0FH,

LDW 04H,@01H → Register 04H = 03H, register 05H = 0FH

LDW RR6,#1234H → R6 = 12H, R7 = 34H

LDW 02H,#0FEDH → Register 02H = 0FH, register 03H = 0EDH

In the second example, please note that the statement "LDW 00H,02H" loads the contents of the
source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in general
register 00H and the value 0FH in register 01H.

The other examples show how to use the LDW instruction with various addressing modes and
formats.

S3C80M4/F80M4 INSTRUCTION SET

 6-59

MULT — Multiply (Unsigned)
MULT dst,src

Operation: dst ← dst × src
 The 8-bit destination operand (even register of the register pair) is multiplied by the source

operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination
address. Both operands are treated as unsigned integers.

Flags: C: Set if result is > 255; cleared otherwise.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if MSB of the result is a "1"; cleared otherwise.
 V: Cleared.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src dst 3 22 84 RR R
 22 85 RR IR
 22 86 RR IM

Examples: Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:

MULT 00H, 02H → Register 00H = 01H, register 01H = 20H, register 02H = 09H

MULT 00H, @01H → Register 00H = 00H, register 01H = 0C0H

MULT 00H, #30H → Register 00H = 06H, register 01H = 00H

 In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The
16-bit product, 0120H, is stored in the register pair 00H, 01H.

INSTRUCTION SET S3C80M4/F80M4

6-60

NEXT — Next

NEXT

Operation: PC ← @ IP

 IP ← IP + 2
 The NEXT instruction is useful when implementing threaded-code languages. The program

memory word that is pointed to by the instruction pointer is loaded into the program counter. The
instruction pointer is then incremented by two.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 10 0F

Example: The following diagram shows one example of how to use the NEXT instruction.

Data

01
10

Before After

0045IP

Address Data

0130PC 43
44
45

Address H
Address L
Address H

Address Data

Memory

130 Routine

0043IP

Address Data

0120PC 43
44
45

Address H
Address L
Address H

Address Data

Memory

120 Next

S3C80M4/F80M4 INSTRUCTION SET

 6-61

NOP — No Operation
NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to effect a timing delay of variable duration.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 FF

Example: When the instruction

NOP

 is encountered in a program, no operation occurs. Instead, there is a delay in instruction
execution time.

INSTRUCTION SET S3C80M4/F80M4

6-62

OR — Logical OR
OR dst,src

Operation: dst ← dst OR src
 The source operand is logically ORed with the destination operand and the result is stored in the

destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is
stored.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Always cleared to "0".
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

 Addr Mode
dst src

 opc dst | src 2 4 42 r r
 6 43 r lr

 opc src dst 3 6 44 R R
 6 45 R IR

 opc dst src 3 6 46 R IM

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and
register 08H = 8AH:

OR R0,R1 → R0 = 3FH, R1 = 2AH

OR R0,@R2 → R0 = 37H, R2 = 01H, register 01H = 37H

OR 00H,01H → Register 00H = 3FH, register 01H = 37H

OR 01H,@00H → Register 00H = 08H, register 01H = 0BFH

OR 00H,#02H → Register 00H = 0AH

 In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result
(3FH) in destination register R0.

 The other examples show the use of the logical OR instruction with the various addressing
modes and formats.

S3C80M4/F80M4 INSTRUCTION SET

 6-63

POP — Pop From Stack
POP dst

Operation: dst ← @SP

 SP ← SP + 1
 The contents of the location addressed by the stack pointer are loaded into the destination. The

stack pointer is then incremented by one.

Flags: No flags affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 8 50 R
 8 51 IR

Examples: Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH,
and stack register 0FBH = 55H:

POP 00H → Register 00H = 55H, SP = 00FCH

POP @00H → Register 00H = 01H, register 01H = 55H, SP = 00FCH

 In the first example, general register 00H contains the value 01H. The statement "POP 00H"
loads the contents of location 00FBH (55H) into destination register 00H and then increments the
stack pointer by one. Register 00H then contains the value 55H and the SP points to location
00FCH.

INSTRUCTION SET S3C80M4/F80M4

6-64

POPUD — Pop User Stack (Decrementing)

POPUD dst,src

Operation: dst ← src

 IR ← IR – 1
 This instruction is used for user-defined stacks in the register file. The contents of the register file

location addressed by the user stack pointer are loaded into the destination. The user stack
pointer is then decremented.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src dst 3 8 92 R IR

Example: Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and
register 02H = 70H:

POPUD 02H,@00H → Register 00H = 41H, register 02H = 6FH, register 42H = 6FH

 If general register 00H contains the value 42H and register 42H the value 6FH, the statement
"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The
user stack pointer is then decremented by one, leaving the value 41H.

S3C80M4/F80M4 INSTRUCTION SET

 6-65

POPUI — Pop User Stack (Incrementing)

POPUI dst,src

Operation: dst ← src

 IR ← IR + 1
The POPUI instruction is used for user-defined stacks in the register file. The contents of the
register file location addressed by the user stack pointer are loaded into the destination. The user
stack pointer is then incremented.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc src dst 3 8 93 R IR

Example: Given: Register 00H = 01H and register 01H = 70H:

POPUI 02H,@00H → Register 00H = 02H, register 01H = 70H, register 02H = 70H

 If general register 00H contains the value 01H and register 01H the value 70H, the statement
"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.

INSTRUCTION SET S3C80M4/F80M4

6-66

PUSH — Push To Stack
PUSH src

Operation: SP ← SP – 1

 @SP ← src
 A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)

into the location addressed by the decremented stack pointer. The operation then adds the new
value to the top of the stack.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc src 2 8 (internal clock) 70 R
 8 (external clock)

 8 (internal clock)
 8 (external clock) 71 IR

Examples: Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 00H, and SPL = 00H:

PUSH 40H → Register 40H = 4FH, stack register 0FFH = 4FH,
 SPH = 0FFH, SPL = 0FFH

PUSH @40H → Register 40H = 4FH, register 4FH = 0AAH, stack register
 0FFH = 0AAH, SPH = 0FFH, SPL = 0FFH

 In the first example, if the stack pointer contains the value 0000H, and general register 40H the
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It
then loads the contents of register 40H into location 0FFFFH and adds this new value to the top
of the stack.

S3C80M4/F80M4 INSTRUCTION SET

 6-67

PUSHUD — Push User Stack (Decrementing)

PUSHUD dst,src

Operation: IR ← IR – 1

 dst ← src
 This instruction is used to address user-defined stacks in the register file. PUSHUD decrements

the user stack pointer and loads the contents of the source into the register addressed by the
decremented stack pointer.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst src 3 8 82 IR R

Example: Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:

PUSHUD @00H,01H → Register 00H = 02H, register 01H = 05H, register 02H = 05H

 If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The
01H register value, 05H, is then loaded into the register addressed by the decremented user
stack pointer.

INSTRUCTION SET S3C80M4/F80M4

6-68

PUSHUI — Push User Stack (Incrementing)

PUSHUI dst,src

Operation: IR ← IR + 1

 dst ← src
 This instruction is used for user-defined stacks in the register file. PUSHUI increments the user

stack pointer and then loads the contents of the source into the register location addressed by
the incremented user stack pointer.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst src 3 8 83 IR R

Example: Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:

PUSHUI @00H,01H → Register 00H = 04H, register 01H = 05H, register 04H = 05H

 If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H
register value, 05H, is then loaded into the location addressed by the incremented user stack
pointer.

S3C80M4/F80M4 INSTRUCTION SET

 6-69

RCF — Reset Carry Flag

RCF RCF

Operation: C ← 0
 The carry flag is cleared to logic zero, regardless of its previous value.

Flags: C: Cleared to "0".

 No other flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 CF

Example: Given: C = "1" or "0":

 The instruction RCF clears the carry flag (C) to logic zero.

INSTRUCTION SET S3C80M4/F80M4

6-70

RET — Return

RET

Operation: PC ← @SP

 SP ← SP + 2
 The RET instruction is normally used to return to the previously executing procedure at the end of

a procedure entered by a CALL instruction. The contents of the location addressed by the stack
pointer are popped into the program counter. The next statement that is executed is the one that
is addressed by the new program counter value.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode (Hex)
 opc 1 8 (internal stack) AF
 10 (internal stack)

Example: Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:

RET → PC = 101AH, SP = 00FEH

 The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte
of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the
PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to
memory location 00FEH.

S3C80M4/F80M4 INSTRUCTION SET

 6-71

RL — Rotate Left

RL dst

Operation: C ← dst (7)

 dst (0) ← dst (7)

 dst (n + 1) ← dst (n), n = 0–6
 The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is

moved to the bit zero (LSB) position and also replaces the carry flag.

7 0

C

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Set if arithmetic overflow occurred; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 90 R
 4 91 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL 00H → Register 00H = 55H, C = "1"

RL @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

 In the first example, if general register 00H contains the value 0AAH (10101010B), the statement
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)
and setting the carry and overflow flags.

INSTRUCTION SET S3C80M4/F80M4

6-72

RLC — Rotate Left Through Carry
RLC dst

Operation: dst (0) ← C

 C ← dst (7)

 dst (n + 1) ← dst (n), n = 0–6
 The contents of the destination operand with the carry flag are rotated left one bit position. The

initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

7 0

C

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 10 R
 4 11 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":

RLC 00H → Register 00H = 54H, C = "1"

RLC @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

 In the first example, if general register 00H has the value 0AAH (10101010B), the statement
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag
and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.

S3C80M4/F80M4 INSTRUCTION SET

 6-73

RR — Rotate Right
RR dst

Operation: C ← dst (0)

 dst (7) ← dst (0)

 dst (n) ← dst (n + 1), n = 0–6
 The contents of the destination operand are rotated right one bit position. The initial value of bit

zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

7 0

C

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 E0 R
 4 E1 IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR 00H → Register 00H = 98H, C = "1"

RR @01H → Register 01H = 02H, register 02H = 8BH, C = "1"

 In the first example, if general register 00H contains the value 31H (00110001B), the statement
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

INSTRUCTION SET S3C80M4/F80M4

6-74

RRC — Rotate Right Through Carry

RRC dst

Operation: dst (7) ← C

 C ← dst (0)

 dst (n) ← dst (n + 1), n = 0–6
 The contents of the destination operand and the carry flag are rotated right one bit position. The

initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7
(MSB).

7 0

C

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
 Z: Set if the result is "0" cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 C0 R
 4 C1 IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":

RRC 00H → Register 00H = 2AH, C = "1"

RRC @01H → Register 01H = 02H, register 02H = 0BH, C = "1"

 In the first example, if general register 00H contains the value 55H (01010101B), the statement
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both
cleared to "0".

S3C80M4/F80M4 INSTRUCTION SET

 6-75

SB0 — Select Bank 0

SB0

Operation: BANK ← 0
 The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,

selecting bank 0 register addressing in the set 1 area of the register file.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 4F

Example: The statement

SB0

 clears FLAGS.0 to "0", selecting bank 0 register addressing.

INSTRUCTION SET S3C80M4/F80M4

6-76

SB1 — Select Bank 1
SB1

Operation: BANK ← 1
 The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,

selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not
implemented in some S3C8-series microcontrollers.)

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 5F

Example: The statement

SB1

 sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.

S3C80M4/F80M4 INSTRUCTION SET

 6-77

SBC — Subtract with Carry

SBC dst,src

Operation: dst ← dst – src – c
 The source operand, along with the current value of the carry flag, is subtracted from the

destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Flags: C: Set if a borrow occurred (src > dst); cleared otherwise.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign

of the result is the same as the sign of the source; cleared otherwise.
 D: Always set to "1".
 H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

set otherwise, indicating a "borrow".

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 32 r r
 6 33 r lr

 opc src dst 3 6 34 R R
 6 35 R IR

 opc dst src 3 6 36 R IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register
03H = 0AH:

SBC R1,R2 → R1 = 0CH, R2 = 03H

SBC R1,@R2 → R1 = 05H, R2 = 03H, register 03H = 0AH

SBC 01H,02H → Register 01H = 1CH, register 02H = 03H

SBC 01H,@02H → Register 01H = 15H,register 02H = 03H, register 03H = 0AH

SBC 01H,#8AH → Register 01H = 95H; C, S, and V = "1"

 In the first example, if working register R1 contains the value 10H and register R2 the value 03H,
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the
destination (10H) and then stores the result (0CH) in register R1.

INSTRUCTION SET S3C80M4/F80M4

6-78

SCF — Set Carry Flag

SCF

Operation: C ← 1
 The carry flag (C) is set to logic one, regardless of its previous value.

Flags: C: Set to "1".

 No other flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4 DF

Example: The statement

SCF

 sets the carry flag to logic one.

S3C80M4/F80M4 INSTRUCTION SET

 6-79

SRA — Shift Right Arithmetic

SRA dst

Operation: dst (7) ← dst (7)

 C ← dst (0)

 dst (n) ← dst (n + 1), n = 0–6
 An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the

LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit
position 6.

7 0

C

6

Flags: C: Set if the bit shifted from the LSB position (bit zero) was "1".
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Always cleared to "0".
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 D0 R
 4 D1 IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":

SRA 00H → Register 00H = 0CD, C = "0"

SRA @02H → Register 02H = 03H, register 03H = 0DEH, C = "0"

 In the first example, if general register 00H contains the value 9AH (10011010B), the statement
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the
value 0CDH (11001101B) in destination register 00H.

INSTRUCTION SET S3C80M4/F80M4

6-80

SRP/SRP0/SRP1 — Set Register Pointer

SRP src

SRP0 src

SRP1 src

Operation: If src (1) = 1 and src (0) = 0 then: RP0 (3–7) ← src (3–7)

 If src (1) = 0 and src (0) = 1 then: RP1 (3–7) ← src (3–7)

 If src (1) = 0 and src (0) = 0 then: RP0 (4–7) ← src (4–7),

 RP0 (3) ← 0

 RP1 (4–7) ← src (4–7),

 RP1 (3) ← 1
 The source data bits one and zero (LSB) determine whether to write one or both of the register

pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
src

 opc src 2 4 31 IM

Examples: The statement

SRP #40H

 sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location
0D7H to 48H.

 The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to
68H.

S3C80M4/F80M4 INSTRUCTION SET

 6-81

STOP — Stop Operation
STOP

Operation:

 The STOP instruction stops the both the CPU clock and system clock and causes the
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,
peripheral registers, and I/O port control and data registers are retained. Stop mode can be
released by an external reset operation or by external interrupts. For the reset operation, the
RESET pin must be held to Low level until the required oscillation stabilization interval has
elapsed.

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc 1 4 7F – –

Example: The statement

STOP

 halts all microcontroller operations.

INSTRUCTION SET S3C80M4/F80M4

6-82

SUB — Subtract

SUB dst,src

Operation: dst ← dst – src
 The source operand is subtracted from the destination operand and the result is stored in the

destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

Flags: C: Set if a "borrow" occurred; cleared otherwise.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result is negative; cleared otherwise.
 V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the

sign of the result is of the same as the sign of the source operand; cleared otherwise.
 D: Always set to "1".
 H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

set otherwise indicating a "borrow".

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 22 r r
 6 23 r lr

 opc src dst 3 6 24 R R
 6 25 R IR

 opc dst src 3 6 26 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

SUB R1,R2 → R1 = 0FH, R2 = 03H

SUB R1,@R2 → R1 = 08H, R2 = 03H

SUB 01H,02H → Register 01H = 1EH, register 02H = 03H

SUB 01H,@02H → Register 01H = 17H, register 02H = 03H

SUB 01H,#90H → Register 01H = 91H; C, S, and V = "1"

SUB 01H,#65H → Register 01H = 0BCH; C and S = "1", V = "0"

 In the first example, if working register R1 contains the value 12H and if register R2 contains the
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination
value (12H) and stores the result (0FH) in destination register R1.

S3C80M4/F80M4 INSTRUCTION SET

 6-83

SWAP — Swap Nibbles
SWAP dst

Operation: dst (0 – 3) ↔ dst (4 – 7)
 The contents of the lower four bits and upper four bits of the destination operand are swapped.

7 04 3

Flags: C: Undefined.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Undefined.
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst

 opc dst 2 4 F0 R
 4 F1 IR

Examples: Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:

SWAP 00H → Register 00H = 0E3H

SWAP @02H → Register 02H = 03H, register 03H = 4AH

 In the first example, if general register 00H contains the value 3EH (00111110B), the statement
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the 00H register, leaving the value
0E3H (11100011B).

INSTRUCTION SET S3C80M4/F80M4

6-84

TCM — Test Complement Under Mask

TCM dst,src

Operation: (NOT dst) AND src
 This instruction tests selected bits in the destination operand for a logic one value. The bits to be

tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and
source operands are unaffected.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Always cleared to "0".
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 62 r r
 6 63 r lr

 opc src dst 3 6 64 R R
 6 65 R IR

 opc dst src 3 6 66 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TCM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "1"

TCM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TCM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "1"

TCM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
 register 02H = 23H, Z = "1"

TCM 00H,#34 → Register 00H = 2BH, Z = "0"

 In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one
and can be tested to determine the result of the TCM operation.

S3C80M4/F80M4 INSTRUCTION SET

 6-85

TM — Test Under Mask
TM dst,src

Operation: dst AND src
 This instruction tests selected bits in the destination operand for a logic zero value. The bits to be

tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Always reset to "0".
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 72 r r
 6 73 r lr

 opc src dst 3 6 74 R R
 6 75 R IR

 opc dst src 3 6 76 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "0"

TM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "0"

TM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
 register 02H = 23H, Z = "0"

TM 00H,#54H → Register 00H = 2BH, Z = "1"

 In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic
zero and can be tested to determine the result of the TM operation.

INSTRUCTION SET S3C80M4/F80M4

6-86

WFI — Wait for Interrupt
WFI

Operation:
 The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take

place during this wait state. The WFI status can be released by an internal interrupt, including a
fast interrupt .

Flags: No flags are affected.

Format:

 Bytes Cycles Opcode
(Hex)

 opc 1 4n 3F
 (n = 1, 2, 3, …)

Example: The following sample program structure shows the sequence of operations that follow a "WFI"
statement:

EI
WFI
(Next instruction)

Main program
...

...
Interrupt occurs

Interrupt service routine
...
Clear interrupt flag
IRET

Service routine completed

(Enable global interrupt)
(Wait for interrupt)

S3C80M4/F80M4 INSTRUCTION SET

 6-87

XOR — Logical Exclusive OR
XOR dst,src

Operation: dst ← dst XOR src
 The source operand is logically exclusive-ORed with the destination operand and the result is

stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

Flags: C: Unaffected.
 Z: Set if the result is "0"; cleared otherwise.
 S: Set if the result bit 7 is set; cleared otherwise.
 V: Always reset to "0".
 D: Unaffected.
 H: Unaffected.

Format:

 Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

 opc dst | src 2 4 B2 r r
 6 B3 r lr

 opc src dst 3 6 B4 R R
 6 B5 R IR

 opc dst src 3 6 B6 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

XOR R0,R1 → R0 = 0C5H, R1 = 02H

XOR R0,@R1 → R0 = 0E4H, R1 = 02H, register 02H = 23H

XOR 00H,01H → Register 00H = 29H, register 01H = 02H

XOR 00H,@01H → Register 00H = 08H, register 01H = 02H, register 02H = 23H

XOR 00H,#54H → Register 00H = 7FH

 In the first example, if working register R0 contains the value 0C7H and if register R1 contains
the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0
value and stores the result (0C5H) in the destination register R0.

INSTRUCTION SET S3C80M4/F80M4

6-88

NOTES

S3C80M4/F80M4 CLOCK CIRCUIT

 7-1

7 CLOCK CIRCUIT

OVERVIEW

The clock frequency generated for the S3C80M4/F80M4 by an external crystal can range from 0.4 MHz to 10
MHz. The maximum CPU clock frequency is 10 MHz. The XIN and XOUT pins connect the external oscillator or
clock source to the on-chip clock circuit.

SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

— External crystal or ceramic resonator oscillation source (or an external clock source)
— Oscillator stop and wake-up functions
— Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)
— System clock control register, CLKCON
— Clock output control register, CLOCON
— STOP control register, STPCON

CPU CLOCK NOTATION

In this document, the following notation is used for descriptions of the CPU clock;

fx: main clock
fxx: selected system clock

CLOCK CIRCUIT S3C80M4/F80M4

7-2

MAIN OSCILLATOR CIRCUITS

XIN

XOUT

Figure 7-1. Crystal/Ceramic Oscillator (fx)

XIN

XOUT

Figure 7-2. External Oscillator (fx)

XIN

XOUT

R

Figure 7-3. RC Oscillator (fx)

S3C80M4/F80M4 CLOCK CIRCUIT

 7-3

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator is started, by a reset
operation or an external interrupt (with RC delay noise filter), and can be released by internal interrupt too
when the sub-system oscillator is running and watch timer is operating with sub-system clock.

— In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/
counters. Idle mode is released by a reset or by an external or internal interrupt.

1/1-1/4096

Frequency
Dividing
Circuit

Main-System
Oscillator

Circuit

INT

Selector

STPCON

STOP OSC
inst.

CLKCON.4-.3

CPU Clock

Basic Timer

Timer/Counter 0

IDLE Instruction

1/1 1/161/2 1/8

PWM

CLKCON.7

Stop Release

fx (fxx)

Stop

Figure 7-4. System Clock Circuit Diagram

CLOCK CIRCUIT S3C80M4/F80M4

7-4

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in the set 1, address D4H. It is read/write addressable and
has the following functions:

— Oscillator frequency divide-by value

After the main oscillator is activated, and the fxx/16 (the slowest clock speed) is selected as the CPU clock. If
necessary, you can then increase the CPU clock speed fxx/8, fxx/2, or fxx/1.

System Clock Control Register (CLKCON)
D4H, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Not used for the
S3C80M4

Not used for the
S3C80M4

Divide-by selection bits for
CPU clock frequency:
00 = fXX/16
01 = fXX/8
10 = fXX/2
11 = fXX/1

NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock.
 To select faster speeds, load the appropriate values to CLKCON.3 and CLKCON.4.

Oscillator IRQ wake-up function bit:
0 = Enable IRQ for main wake-up in
 power down mode
1 = Diable IRQ for main wake-up
 in power down mode

Figure 7-5. System Clock Control Register (CLKCON)

S3C80M4/F80M4 CLOCK CIRCUIT

 7-5

CLOCK OUTPUT CONTROL REGISTER (CLOCON)

The clock output control register, CLOCON, is located in the bank 0 of set1, address E3H. It is read/write
addressable and has the following functions;

— Clock Output Frequency Selection

After a reset, fxx/64 is select for Clock Output Frequency because the reset value of CLOCON.1-.0 is "0".

Clock Output Control Register (CLOCON)
E3H, Set 1, bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Clock Output Frequency Selection Bits:
00 = fxx/64
01 = fxx/16
10 = fxx/8
11 = fxx/4

Not used for the S3C80M4

Figure 7-6. Clock Output Control Register (CLOCON)

CLOCON.1-.0

CLKOUTMUX

fxx/64

fxx/16

fxx/8

fxx/4

P1CONH.5-.4

Figure 7-7. Clock Output Block Diagram

CLOCK CIRCUIT S3C80M4/F80M4

7-6

STOP CONTROL REGISTER (STPCON)

The STOP control register, STPCON, is located in the bank 0 of set1, address FBH. It is read/write addressable
and has the following functions:

— Enable/Disable STOP instruction

After a reset, the STOP instruction is disabled, because the value of STPCON is "other values".
If necessary, you can use the STOP instruction by setting the value of STPCON to "10100101B".

STOP Control Register (STPCON)
FBH, Set 1,bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

STOP Control bits:
Other values = Disable STOP instruction
10100101 = Enable STOP instruction

NOTE: Before executing the STOP instruction, set the STPCON
register as "10100101b". Otherwise the STOP instruction
will not be executed and reset will be generated.

Figure 7-8. STOP Control Register (STPCON)

) PROGRAMMING TIP — How to Use Stop Instruction

This example shows how to go STOP mode when a main clock is selected as the system clock.

 LD STOPCON,#1010010B ; Enable STOP instruction
 STOP ; Enter STOP mode
 NOP
 NOP
 NOP ; Release STOP mode
 LD STOPCON,#00000000B ; Disable STOP instruction

S3C80M4/F80M4 RESET and POWER-DOWN

 8-1

8 RESET and POWER-DOWN

SYSTEM RESET

OVERVIEW

During a power-on reset, the voltage at VDD goes to High level and the RESET pin is forced to Low level. The
RESET signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock. This
procedure brings the S3C80M4/F80M4 into a known operating status.

To allow time for internal CPU clock oscillation to stabilize, the RESET pin must be held to Low level for a
minimum time interval after the power supply comes within tolerance. The minimum required time of a reset
operation for oscillation stabilization is 1 millisecond.

Whenever a reset occurs during normal operation (that is, when both VDD and RESET are High level), the
nRESET pin is forced Low level and the reset operation starts. All system and peripheral control registers are
then reset to their default hardware values

In summary, the following sequence of events occurs during a reset operation:

— All interrupt is disabled.
— The watchdog function (basic timer) is enabled.
— Ports 0-1 and set to input mode, and all pull-up resistors are disabled for the I/O port.
— Peripheral control and data register settings are disabled and reset to their default hardware values.
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM

location 0100H (and 0101H) is fetched and executed at normal mode by smart option.

NORMAL MODE RESET OPERATION

A reset enables access to the S3C80M4 (4Kbyte) on-chip ROM. (The external interface is not automatically
configured).

NOTE
To program the duration of the oscillation stabilization interval, you make the appropriate settings to the
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can
disable it by writing "1010B" to the upper nibble of BTCON.

RESET and POWER-DOWN S3C80M4/F80M4

8-2

HARDWARE RESET VALUES

Table 8-1, 8-2 list the reset values for CPU and system registers, peripheral control registers, and peripheral data
registers following a reset operation. The following notation is used to represent reset values:

— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.
— An "x" means that the bit value is undefined after a reset.
— A dash ("–") means that the bit is either not used or not mapped, but read 0 is the bit value.

Table 8-1. S3C80M4/F80M4 Set 1 Register and Values After RESET

Register Name Mnemonic Address Bit Values After RESET
 Dec Hex 7 6 5 4 3 2 1 0

Locations D0H-D2H are not mapped.
Basic timer control register BTCON 211 D3H 0 0 0 0 0 0 0 0
System clock control register CLKCON 212 D4H 0 – – 0 0 – – –
System flags register FLAGS 213 D5H x x x x x x 0 0
Register pointer 0 RP0 214 D6H 1 1 0 0 0 – – –
Register pointer 1 RP1 215 D7H 1 1 0 0 1 – – –
Stack pointer (high byte) SPH 216 D8H x x x x x x x x
Stack pointer (low byte) SPL 217 D9H x x x x x x x x
Instruction pointer (high byte) IPH 218 DAH x x x x x x x x
Instruction pointer (low byte) IPL 219 DBH x x x x x x x x
Interrupt request register IRQ 220 DCH 0 0 0 0 0 0 0 0
Interrupt mask register IMR 221 DDH x x x x x x x x
System mode register SYM 222 DEH 0 – – x x x 0 0
Register page pointer PP 223 DFH 0 0 0 0 0 0 0 0

S3C80M4/F80M4 RESET and POWER-DOWN

 8-3

Table 8-2. S3C80M4/F80M4 Set 1, Bank 0 Register and Values After RESET

Register Name Mnemonic Address Bit Values After RESET
 Dec Hex 7 6 5 4 3 2 1 0

Port 0 Data Register P0 224 E0H 0 0 0 0 0 0 0 0
Port 1 Data Register P1 225 E1H 0 0 0 0 0 0 0 0

Location E2H is not mapped.
Clock Output Control Register CLOCON 227 E3H – – – – – – 0 0
Timer 0 Counter Register T0CNT 228 E4H 0 0 0 0 0 0 0 0
Timer 0 Data Register T0DATA 229 E5H 1 1 1 1 1 1 1 1
Timer 0 Control Register T0CNT 230 E6H 0 0 0 0 0 0 0 0
PWM Data Register PWMDATA 231 E7H 0 0 0 0 0 0 0 0
PWM Control Register PWMCON 232 E8H 0 0 – 0 0 0 0 0

Locations E9H-EEH are not mapped.

Port 1 Control Register (High Byte) P1CONH 240 EFH – – 0 0 0 0 0 0

Port 1 Control Register (Low Byte) P1CONL 241 F0H 0 0 0 0 0 0 0 0
Port 1 Pull-up Resistor Enable Register P1PUR 242 F1H – 1 1 1 0 0 0 0

Port 0 Control Register (High Byte) P0CONH 243 F2H 0 1 0 0 0 0 0 0
Port 0 Control Register (Low Byte) P0CONL 244 F3H 0 0 0 0 0 0 0 0
Port 0 Interrupt Control Register P0INT 245 F4H 0 0 0 0 0 0 0 0
Port 0 Interrupt Pending Register P0PND 246 F5H 0 0 0 0 0 0 0 0

Locations F6H-FAH are not mapped.
STOP control register STPCON 251 FBH 0 0 0 0 0 0 0 0

Location FCH is not mapped.
Basic Timer Counter BTCNT 253 FDH 0 0 0 0 0 0 0 0

Location FEH is not mapped.
Interrupt Priority Register IPR 255 FFH x x x x x x x x

RESET and POWER-DOWN S3C80M4/F80M4

8-4

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than
3µA. All system functions stop when the clock “freezes”, but data stored in the internal register file is retained.
Stop mode can be released in one of two ways: by a reset or by interrupts, for more details see Figure 7-4.

NOTE
Do not use stop mode if you are using an external clock source because XIN input must be restricted
internally to VSS to reduce current leakage.

Using nRESET to Release Stop Mode
Stop mode is released when the nRESET signal is released and returns to high level: all system and peripheral
control registers are reset to their default hardware values and the contents of all data registers are retained. A
reset operation automatically selects a slow clock fxx/16 because CLKCON.3 and CLKCON.4 are cleared to
‘00B’. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization
routine by fetching the program instruction stored in ROM location 0100H (and 0101H)

Using an External Interrupt to Release Stop Mode
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can
use to release Stop mode in a given situation depends on the microcontroller’s current internal operating mode.
The external interrupts in the S3C80M4/F80M4 interrupt structure that can be used to release Stop mode are:
— External interrupts P0.0–P0.3 (INT0–INT3)

Please note the following conditions for Stop mode release:
— If you release Stop mode using an external interrupt, the current values in system and peripheral control

registers are unchanged except STPCON register.
— If you use an internal or external interrupt for Stop mode release, you can also program the duration of the

oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before
entering Stop mode.

— When the Stop mode is released by external interrupt, the CLKCON.4 and CLKCON.3 bit-pair setting remains
unchanged and the currently selected clock value is used.

— The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service
routine, the instruction immediately following the one that initiated Stop mode is executed.

Using an Internal Interrupt to Release Stop Mode
Activate any enabled interrupt, causing Stop mode to be released. Other things are same as using external
interrupt.

How to Enter into Stop Mode
Handling STPCON register then writing STOP instruction (keep the order).

LD STPCON,#10100101B
STOP
NOP
NOP
NOP

S3C80M4/F80M4 RESET and POWER-DOWN

 8-5

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some
peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all
peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was
entered.

There are two ways to release idle mode:

1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents
of all data registers are retained. The reset automatically selects the slow clock fxx/16 because CLKCON.4
and CLKCON.3 are cleared to ‘00B’. If interrupts are masked, a reset is the only way to release idle mode.

2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle
mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction
immediately following the one that initiated idle mode is executed.

RESET and POWER-DOWN S3C80M4/F80M4

8-6

NOTES

S3C80M4/F80M4 I/O PORTS

 9-1

9 I/O PORTS

OVERVIEW

The S3C80M4/F80M4 microcontroller has two bit-programmable I/O ports, P0–P1. The port 0 is a 8-bit port, the
port 1 is a 7-bit port. This gives a total of 15 I/O pins. Each port can be flexibly configured to meet application
design requirements. The CPU accesses ports by directly writing or reading port registers. No special I/O
instructions are required.
Table 9-1 gives you a general overview of the S3C80M4/F80M4 I/O port functions.

Table 9-1. S3C80M4/F80M4 Port Configuration Overview

Port Configuration Options
0 1-bit programmable I/O port.

Schmitt trigger input or push-pull output mode selected by software; software assignable pull-ups.
P0.0–P0.3 can be used as inputs for external interrupts INT0–INT3
(with interrupt enable and pending control). Alternately P0.6 can be used as PWM.

1 1-bit programmable I/O port.
Input or push-pull, open-drain output mode selected by software; software assignable pull-ups.
Alternately P1.0, P1.0, P1.6 can be used as T0OUT, T0CLK, CLKOUT.

PORT DATA REGISTERS

Table 9-2 gives you an overview of the register locations of all four S3C80M4/F80M4 I/O port data registers. Data
registers for ports 0 and 1 have the general format shown in Figure 9-1.

Table 9-2. Port Data Register Summary

Register Name Mnemonic Decimal Hex Location R/W
Port 0 data register P0 224 E0H Set 1, Bank 0 R/W
Port 1 data register P1 225 E1H Set 1, Bank 0 R/W

I/O PORTS S3C80M4/F80M4

9-2

PORT 0

Port 0 is an 8-bit I/O port with individually configurable pins. Port 0 pins are accessed directly by writing or reading
the port 0 data register, P0 at location E0H in set 1, bank 0. P0.0–P0.7 can serve inputs, as output push pull
or you can configure the following alternative functions:

— Low-byte pins (P0.0–P0.3): INT0–INT3
— High-byte pins (P0.4–P0.7): PWM

Port 0 Control Register (P0CONH, P0CONL)
Port 0 has two 8-bit control registers: P0CONH for P0.4-P0.7 and P0CONL for P0.0-P0.3. A reset clears the
P0CONH and P0CONL registers to "40H" and "00H", configuring all pins to input mode. In input mode, three
different selections are available:

— Schmitt trigger input with interrupt generation on falling signal edges.
— Schmitt trigger input with interrupt generation on rising signal edges.
— Schmitt trigger input with interrupt generation on falling/rising signal edges.

Port 0 Interrupt Enable and Pending Registers (P0INT)
To process external interrupts at the port 0 pins, the additional control registers are provided: the port 0 interrupt
enable register P0INT (F4H, set 1, bank 0) and the port 0 interrupt pending register P0PND (F5H, set 1, bank 0).

The port 0 interrupt pending register P0PND lets you check for interrupt pending conditions and clear the pending
condition when the interrupt service routine has been initiated. The application program detects interrupt requests
by polling the P0PND register at regular intervals.

When the interrupt enable bit of any port 0 pin is “1”, a rising or falling signal edge at that pin will generate an
interrupt request. The corresponding P0PND bit is then automatically set to “1” and the IRQ level goes low to
signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application
software must the clear the pending condition by writing a “0” to the corresponding P0PND bit.

S3C80M4/F80M4 I/O PORTS

 9-3

Port 0 Control Register, High Byte (P0CONH)
F2H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P0.7 P0.6
(PWM)

P0.5 P0.4

P0CONH bit-pair pin configuration settings:

00
01
10
11

Schmitt trigger input mode
Schmitt trigger input mode, pull-up
Alternative function (PWM,not used for P0.7/P0.5/P0.4)
Output mode, push-pull

Figure 9-1. Port 0 High-Byte Control Register (P0CONH)

Port 0 Control Register, Low Byte (P0CONL)
F3H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P0.3
(INT3)

P0.2
(INT2)

P0.1
(INT1)

P0.0
(INT0)

P0CONL bit-pair pin configuration settings:

00
01
10
11

Schmitt trigger input mode
Schmitt trigger input mode, pull-up
Not available
Output mode, push-pull

Figure 9-2. Port 0 Low-Byte Control Register (P0CONL)

I/O PORTS S3C80M4/F80M4

9-4

Port 0 Interrupt Control Register (P0INT)
F4H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

INT3 INT2 INT1 INT0

P0INT bit configuration settings:

00
01

Disable interrupt
Enable interrupt by falling edge

10 Enable interrupt by rising edge
11 Enable interrupt by both falling and rising edge

Figure 9-3. Port 0 Interrupt Control Register

Port 0 Interrupt Pending Register (P0PND)
F5H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Not used for the S3C80M4 PND3 PND2 PND1 PND0

P0PND bit configuration settings:

0

1

Interrupt request is not pending,
pending bit clear when write 0

Interrupt request is pending

Figure 9-4. Port 0 Interrupt Pending Register (P0PND)

S3C80M4/F80M4 I/O PORTS

 9-5

PORT 1

Port 1 is an 7-bit I/O port with individually configurable pins. Port 1 pins are accessed directly by writing or reading
the port 1 data register, P1 at location E1H in set 1, bank 0. P1.0–P1.6 can serve inputs, as outputs
(push pull or open-drain) or you can configure the following alternative functions:

— Low-byte pins (P1.0-P1.3): T0OUT, T0CLK
— High-byte pins (P1.4-P1.6): CLKOUT

Port 1 Control Register (P1CONH, P1CONL)
Port 1 has two 8-bit control registers: P1CONH for P1.4–P1.6 and P1CONL for P1.0–P1.3. A reset clears the
P1CONH and P1CONL registers to “00H”, configuring all pins to input mode. You use control registers settings to
select input or output mode (push-pull or open drain) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the
port 1 control registers must also be enabled in the associated peripheral module.

Port 1 Pull-up Resistor Enable Register (P1PUR)
Using the port 1 pull-up resistor enable register, P1PUR (F1H, set 1, bank 0), you can configure pull-up resistors
to individual port 1 pins.

Port 1 Control Register, High Byte (P1CONH)
EFH, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Not used for the S3C80M4

P1CONH bit-pair pin configuration settings:

00
01
10
11 Output mode, Push-pull

P1.6/CLKOUT
P1.5

P1.4

Output mode, N-channel open-drain
Input mode

Alternative function (CLKOUT, not used for P1.5/P1.4)

Figure 9-5. Port 1 High-Byte Control Register (P1CONH)

I/O PORTS S3C80M4/F80M4

9-6

Port 1 Control Register, Low Byte (P1CONL)
F0H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P1.3

P1CONL bit-pair pin configuration settings:

00
01
10
11 Output mode, push-pull

Alternative function (T0OUT, not used for P1.3/P1.2/P1.1)

P1.2
P1.1/T0CLK

P1.0/T0OUT

Output mode, N-channel open-drain
Input mode (T0CLK)

Figure 9-6. Port 1 Low-Byte Control Register (P1CONL)

Port 1 Pull-up Resistor Enable Register (P1PUR)
F1H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P1PUR bit configuration settings:

0
1

Pull-up Disable

Not used for
the S3C80M4

P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

Pull-up Enable

Figure 9-7. Port 1 Pull-up Resistor Enable Register (P1PUR)

S3C80M4/F80M4 BASIC TIMER

 10-1

10 BASIC TIMER

OVERVIEW

S3C80M4/F80M4 has an 8-bit basic timer .

BASIC TIMER (BT)

You can use the basic timer (BT) in two different ways:

— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction, or
— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:

— Clock frequency divider (fxx divided by 4096, 1024, 128, or 16) with multiplexer
— 8-bit basic timer counter, BTCNT (set 1, Bank 0, FDH, read-only)
— Basic timer control register, BTCON (set 1, D3H, read/write)

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,
address D3H, and is read/write addressable using Register addressing mode.

A reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of
fxx/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register
control bits BTCON.7–BTCON.4.

The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during the normal
operation by writing a "1" to BTCON.1. To clear the frequency dividers, write a "1" to BTCON.0.

BASIC TIMER S3C80M4/F80M4

10-2

Basic TImer Control Register (BTCON)
D3H, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Divider clear bit:
0 = No effect
1= Clear dvider

Basic timer counter clear bit:
0 = No effect
1= Clear BTCNT

Basic timer input clock selection bits:
00 = fXX/4096
01 = fXX/1024
10 = fXX/128
11 = fXX/16

Watchdog timer enable bits:
1010B = Disable watchdog function
Other value = Enable watchdog function

Figure 10-1. Basic Timer Control Register (BTCON)

S3C80M4/F80M4 BASIC TIMER

 10-3

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to
any value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to
"00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by
the current CLKCON register setting), divided by 4096, as the BT clock.

The MCU is reset whenever a basic timer counter overflow occurs, During normal operation, the application
program must prevent the overflow, and the accompanying reset operation, from occurring, To do this, the
BTCNT value must be cleared (by writing a “1” to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function
You can also use the basic timer to program a specific oscillation stabilization interval after a reset or when stop
mode has been released by an external interrupt.

In stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts
increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an external interrupt).
When BTCNT.4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate
the clock signal off to the CPU so that it can resume the normal operation.

In summary, the following events occur when stop mode is released:

1. During the stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and
oscillation starts.

2. If a power-on reset occurred, the basic timer counter will increase at the rate of fxx/4096. If an interrupt is
used to release stop mode, the BTCNT value increases at the rate of the preset clock source.

3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.
4. When a BTCNT.4 overflow occurs, the normal CPU operation resumes.

BASIC TIMER S3C80M4/F80M4

10-4

NOTE: During a power-on reset operation, the CPU is idle during the required oscillation
stabilization interval (until bit 4 of the basic timer counter overflows).

MUX

fXX/4096

DIV

fXX/1024

fXX/128

fXX/16

fXX

Bits 3, 2

Bit 0

Basic Timer Control Register
(Write '1010xxxxB' to Disable)

Clear

Bit 1
RESET or STOP

Data Bus

8-Bit Up Counter
(BTCNT, Read-Only)

Start the CPU (NOTE)

OVF
RESET

R

Figure 10-2. Basic Timer Block Diagram

S3C80M4/F80M4 8-BIT TIMER 0

 11-1

11 8-BIT TIMER 0

OVERVIEW

The 8-bit timer 0 is an 8-bit general-purpose timer/counter.

Timer 0 has the following functional components:

— Clock frequency divider (fxx divided by 1024, 256, 64, 8 or 1) with multiplexer
— External clock input pin (T0CLK)
— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)
— I/O pins for match output (T0OUT)
— Timer 0 interrupt (IRQ0, vector EEH) generation
— Timer 0 control register, T0CON (set 1, Bank 0, E6H, read/write)

TIMER 0 FUNCTION DESCRIPTION

Interval Timer Mode
The timer 0 can generate an interrupt, the timer 0 match interrupt (T0INT). T0INT belongs to interrupt level IRQ0,
and is assigned the separate vector address, EEH.

The T0INT pending condition should be cleared by software when it has been serviced. Even though T0INT is
disabled, the application’s service routine can detect a pending condition of T0INT by the software and execute its
sub-routine. When this case is used, the T0INT pending bit must be cleared by application sub-routine by writing a
“0” to the T0CON.0 pending bit.

In interval timer mode, a match signal is generated when the counter value is identical to the value written to the
timer 0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt (T0INT, vector
EEH) and clears the counter.

If, for example, you write the value "10H" to T0DATA, the counter will increment until it reaches “10H”. At this
point, the timer 0 interrupt request is generated, the counter value is reset, and counting resumes

8-BIT TIMER 0 S3C80M4/F80M4

11-2

TIMER 0 CONTROL REGISTER (T0CON)

You use the timer 0 control register, T0CON, to
— Enable the timer 0 operating mode (interval timer)
— Select the timer 0 input clock frequency
— Clear the timer 0 counter, T0CNT
— Enable the timer 0 interrupt
— Clear timer 0 interrupt pending condition

T0CON is located in set 1, Bank 0 at address E6H, and is read/write addressable using Register addressing
mode.

A reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency of
fxx/1024, and disables all timer 0 interrupts. You can clear the timer 0 counter at any time during normal operation
by writing a "1" to T0CON.3.

To enable the timer 0 interrupt (IRQ0, vector EEH), you must write T0CON.2, and T0CON.1 to "1". To detect an
interrupt pending condition, when T0INT is disabled, the application program polls pending bit, T0CON.0. When
a "1" is detected, a timer 0 interrupt is pending. When the interrupt request has been serviced, the pending
condition must be cleared by software by writing a "0" to the timer 0 interrupt pending bit, T0CON.0.

Timer 0 Control Register (T0CON)
E6H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Timer 0 match interrupt enable bit:
0 = DIsable interrupt
1 = Enable interrupt

Timer 0 interrupt pending bit:
0 = No interrupt pending
0 = Clear pending bit(when write)
1 = Interrupt is pending

Timer 0 counter clear bit:
0 = No effect
1 = Clear the timer 0 counter (when write)

Timer 0 input clock selection bits:
000 = fXX/1024
001 = fXX/256
010 = fXX/64
011 = fxx/8
100 = fxx
101 = External clock (T0CLK) falling edge
110 = External clock (T0CLK) rising edge
111 = Counter stop Timer 0 counter enable selection bit:

0 = Disable counting operation
1 = Disable counting operation

Not uesed for the S3C80M4

Figure 11-1. Timer 0 Control Register (T0CON)

S3C80M4/F80M4 8-BIT TIMER 0

 11-3

BLOCK DIAGRAM

Timer 0 Data Register

Timer 0 Buffer Register

8-bit Comparator

8-bit Up-Counter
(Read Only)

Clear

Match

T0CON.7-.5

fXX/1024

fXX/64
fXX/8

T0CLK

T0CON.3
M

U

X T0INT

T0CON.1

T0OUT

T0CON.0

Data Bus

8

Data Bus

8

fXX/256

fXX/1

Counter stop

Counter clear signal (T0CON.3)
or Match signal

(IRQ0)

R

Pending

T0CON.2

Figure 11-2. Timer 0 Functional Block Diagram

8-BIT TIMER 0 S3C80M4/F80M4

11-4

NOTES

S3C80M4/F80M4 8-BIT PULSE WIDTH MODULATION

 12-1

12 8-BIT PULSE WIDTH MODULATION

OVERVIEW

The S3C80M4/F80M4 microcontroller has a 8-bit PWM.
The PWM have the following components:

— Clock frequency dividers (fOSC divider by 64, 8, 2 and 1)

— 6-bit counter, 6-bit comparators and data registers (PWMDATA)
— 8-bit counter overflow interrupt generations
— Selectors for data reload 6- and 8- bit overflow
— PWM control register, PWMON (set 1, bank 0, E8H, read/write)

8-BIT PULSE WIDTH MODULATION S3C80M4/F80M4

12-2

8-BIT PULSE WIDTH MODULATION (PWMCON)

The PWM control register, PWMCON is used to select the PWM interrupt to enable or disable the PWM function.
It is located in set 1, bank 0 at address E8H, and is read/write addressable using register addressing mode.
A reset clears PWMCON to "00H". This disable the PWM interrupt, selects an input clock frequency of fosc/64,
disables all PWM interrupt. So, if you want to use the PWM, you must write PWMCON.5 to “1” and write
P0CONH.5-.4 to “10”.

To enable the PWM interrupt (IRQ2, vector EAH), you must write PWMCON.2, and PWMCON.1 to “1”. To detect
an interrupt pending condition when PWMINT is disabled, the application program polls pending bit, PWMCON.0.
When a “1” is detected, a PWM interrupt is pending. When PWMINT sub-routine has been serviced, the pending
condition must be cleared by software by writing a “0” to the PWM interrupt pending bit, PWMCON.0.

PWM input clock selection bits:
00 = fosc/64
01 = fosc/8
10 = fosc/2
11 = fosc/1

PWM Control Register (PWMCON)
E8H, Set 1, Bank 0, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

PWMDATA reload interval Selection bit:
0 = Reload from 8-bit up counter overflow
1 = Reload from 6-bit up counter overflow

PWM overflow interrupt pending bit:
0 = No interrupt pending (when read)
0 = Clear pending bit (when write)
1 = Interrupt is pending (when read)
1 = No effect (when write)

PWM counter enable bit:
0 = Stop counter
1 = Start counter (Resume countering)

PWM overflow interrupt enable bit:(8-bit overflow)
0 = Disable interrupt
1 = Enable interrupt

Not used for the S3C80M4
(must keep always "1")

PWM counter clear bit:
0 = No effect
1 = Clear the PWM counter (when write)

Figure 12-1. PWM Control Register (PWMCON)

S3C80M4/F80M4 8-BIT PULSE WIDTH MODULATION

 12-3

BLOCK DIAGRAM

fosc/8

fosc/1

From 8-Bit Up Counter(5:0)

PWMCON.2

fosc/64

fosc/2

M
U
X

6-Bit Counter

6-Bit Comparator

6-Bit Data Buffer

6-Bit Data Register

2-Bit Counter

Extension
Control Logic

Extension Data
Buffer

PWM Extension
Data Register

Clear
PWMCON.3PWMCON.4

8

Data Bus

PWMCON.7-.6

From 8-Bit Up Counter(7:6)

PWM/P0.6

"1" When
REG = Count

"1" When
 REG > Count

PWMDATA.7-.2 PWMDATA.1-.0

8

Data Bus

 Figure 12-2. PWM Circuit Diagram

8-BIT PULSE WIDTH MODULATION S3C80M4/F80M4

12-4

NOTES

S3C80M4/F80M4 ELECTRICAL DATA

 13-1

13 ELECTRICAL DATA

OVERVIEW

In this chapter, S3C80M4/F80M4 electrical characteristics are presented in tables and graphs. The information is
arranged in the following order:

— Absolute maximum ratings
— D.C. electrical characteristics
— Input/output capacitance
— A.C. electrical characteristics
— Oscillation characteristics
— Oscillation stabilization time
— Data retention supply voltage in stop mode
— Operating voltage range

ELECTRICAL DATA S3C80M4/F80M4

13-2

Table13-1. Absolute Maximum Ratings

(TA = 25 °C)

Parameter Symbol Conditions Rating Unit
Supply voltage VDD – – 0.3 to +6.5 V

Input voltage VI Ports 0-1 – 0.3 to VDD + 0.3

Output voltage VO – – 0.3 to VDD + 0.3

Output current high IOH One I/O pin active – 15 mA

 All I/O pins active – 60
Output current low IOL One I/O pin active + 30(Peak value)

 Total pin current for ports + 100(Peak value)
Operating temperature TA – – 25 to + 85 °C

Storage temperature TSTG – – 65 to + 150

Table 13-2. D.C. Electrical Characteristics

(TA = –25 °C to + 85 °C, VDD = 2.4 V to 5.5V)

Parameter Symbol Conditions Min Typ Max Unit
Operating voltage VDD fx = 0.4 – 4.2 MHz 2.4 – 5.5 V

 fx = 0.4 – 10.0 MHz 2.7 – 5.5

Input high voltage VIH1 All input pins except VIH2, VIH3 0.7VDD – VDD

 VIH2 Ports0, Ports1.0 - 1.3, nRESET 0.8VDD VDD

 VIH3 XIN, XOUT VDD-0.1 VDD

Input low voltage VIL1 All input pins except VIL2, VIL3 – – 0.3VDD

 VIL2 Ports0, Ports1.0 - 1.3, nRESET 0.2VDD

 VIL3 XIN, XOUT 0.1

S3C80M4/F80M4 ELECTRICAL DATA

 13-3

Table 13-2. D.C. Electrical Characteristics (Continued)

(TA = –25 °C to + 85 °C, VDD = 2.4V to 5.5V)

Parameter Symbol Conditions Min Typ Max Unit
Output high
voltage

VOH VDD = 4.5V to 5.5V
IOH = –1 mA
All output pins

VDD–1.0 – – V

Output low
voltage

VOL1 VDD = 4.5V to 5.5V
IOL = 15 mA
Ports1.0–.3

– – 2.0

 VOL2 VDD = 4.5V to 5.5V
IOL = 10 mA
All output ports except VOL1

– – 2.0

Input high
leakage
current

ILIH1 VIN = VDD
All input pins except ILIH2

– – 3 µA

 ILIH2 VIN = VDD, XIN, XOUT 20

Input low
leakage
current

ILIL1 VIN = 0 V
All input pins except for nRESET, ILIL2

– – –3

 ILIL2 VIN = 0 V, XIN, XOUT –20

Output high
leakage
current

ILOH VOUT = VDD
All output pins

– – 3

Output low
leakage
current

ILOL VOUT = 0 V
All output pins

– – –3

Oscillator feed
back resistors

ROSC1 VDD = 5 V, TA=25 °C
XIN = VDD, XOUT = 0 V

300 600 1200 kΩ

Pull-up resistor VIN = 0 V, TA = 25 °C
Port 0–1

VDD = 5 V 30 60 120

RL1

VIN = 0 V, TA = 25 °C
Port 0–1

VDD = 3 V 60 110 220

ELECTRICAL DATA S3C80M4/F80M4

13-4

Table 13-2. D.C. Electrical Characteristics (Continued)

(TA = –25 °C to + 85 °C, VDD = 2.4 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit
10 MHz 4.0 8.0 Run mode:

Crystal oscillator
C1 = C2 = 22pF
VDD = 5.0V ± 10%

4.0 MHz 2.0 4.0

mA IDD1

VDD = 3.0V ± 10% 4.0 MHz

–

1.5 3.0

10 MHz – 1.2 2.4 Idle mode:
Crystal oscillator
C1 = C2 = 22pF
VDD = 5.0V ± 10%

4.0 MHz 1.0 2.0

IDD2

VDD = 3.0V ± 10% 4.0 MHz – 0.5 1.0

Stop mode:
VDD = 5V ± 10%, TA = 25 °C

– 100 200 µA

Supply current
(1)

IDD3
(2)

VDD = 3V ± 10%, TA = 25 °C – 80 160

NOTES:
1. Supply current does not include current drawn through internal pull-up resistors and external output current loads.
2. IDD3 is current when main clock oscillation stops.
3. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4–.3) is set to 11B.

S3C80M4/F80M4 ELECTRICAL DATA

 13-5

Table 13-3. A.C. Electrical Characteristics

(TA = –25 °C to +85 °C, VDD = 2.4 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit
Interrupt input
high, low width

tINTH, tINTL All interrupt, VDD = 3.0 V 500 700 – ns

nRESET input low
width

tRSL VDD = 3.0 V 10 – – µs

tINTHtINTL

0.8 VDD

0.2 VDD

External
Interrupt

Figure 13-1. Input Timing for External Interrupts

nRESET

tRSL

0.2 VDD

Figure 13-2. Input Timing for nRESET

ELECTRICAL DATA S3C80M4/F80M4

13-6

Table 13-4. Input/Output Capacitance

(TA = –25 °C to +85 °C, VDD = 2.4 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit
Input
capacitance

CIN f = 1 MHz; unmeasured pins
are returned to VSS

– – 10 pF

Output
capacitance

COUT

I/O capacitance CIO

Table 13-5. Data Retention Supply Voltage in Stop Mode

(TA = –25 °C to + 85 °C, VDD = 2.4 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit
Data retention
supply voltage

VDDDR 2.4 – 5.5 V

Data retention
supply current

IDDDR VDDDR = 2.4V
Stop mode, TA = 25 °C

– – 1 uA

Execution of
STOP Instrction

RESET
Occurs

~ ~

VDDDR

~ ~

Stop Mode

Oscillation
Stabilization

Time
Normal
Operating ModeData Retention Mode

tWAIT

nRESET

VDD

NOTE: tWAIT is the same as 16 x 1/BT clock.

0.2 VDD

0.8 VDD

Figure 13-3. Stop Mode Release Timing Initiated by RESET

S3C80M4/F80M4 ELECTRICAL DATA

 13-7

Execution of
STOP Instruction

~ ~

VDDDR

~ ~

Stop Mode

Idle Mode
(Basic Timer Active)

Data Retention Mode

tWAIT

VDD

Normal
Operating Mode

0.8VDD

NOTE: tWAIT is the same as 16 x 1/BT clock.

Figure 13-4. Stop Mode Release Timing Initiated by Interrupt

ELECTRICAL DATA S3C80M4/F80M4

13-8

Table13-6. Main Oscillator Characteristics

(TA = –25 °C to +85 °C, VDD = 2.4V to 5.5V)

Oscillator Clock Configuration Parameter Test Condition Min Typ Max Units
2.7 V – 5.5 V 0.4 – 10 MHz Crystal

XIN
C1

XOUT
C2

Main oscillation
frequency

2.4 V – 5.5 V 0.4 – 4.2

2.7 V – 5.5 V 0.4 – 10 Ceramic
Oscillator XIN

C1

XOUT
C2

Main oscillation
frequency

2.4 V – 5.5 V 0.4 – 4.2

2.7 V – 5.5 V 0.4 – 10 External
Clock XIN

XOUT

XIN input frequency

2.4 V – 5.5 V 0.4 – 4.2

5.0 V 0.4 – 2 MHz RC
Oscillator XIN

XOUT

R

Frequency

3.0 V 0.4 – 1

S3C80M4/F80M4 ELECTRICAL DATA

 13-9

Table 13-7. Main Oscillation Stabilization Time

(TA = –25 °C to + 85 °C, VDD = 2.4V to 5.5V)

Oscillator Test Condition Min Typ Max Unit
Crystal – – 40 ms
Ceramic

fx > 1 MHz
Oscillation stabilization occurs when VDD is
equal to the minimum oscillator voltage range.

– – 10 ms

External clock XIN input high and low width (tXH, tXL) 62.5 – 1250 ns

XIN

1/fx

0.1V

tXL tXH

VDD - 0.1V

0.1V

Figure 13-5. Clock Timing Measurement at XIN

2.5 MHz

Instruction Clock

6.25 kHz(Main)

2.4 5

Supply Voltage (V)

Minimum instruction clock = 1/4n x oscillator frequency (n = 1,2,8,16)

5.5

1.05 MHz

fx (Main oscillation frequency)

10 MHz
4.2 MHz

2.7

400 kHz(Main)

1 643

Figure 13-6. Operating Voltage Range

ELECTRICAL DATA S3C80M4/F80M4

13-10

NOTES

S3C80M4/F80M4 MECHANICAL DATA

 14-1

14 MECHANICAL DATA

OVERVIEW

The S3C80M/F80M4 microcontroller is currently available in 20-DIP-300A/20-SOP-375 and 16-DIP-300A/16-
SOP-375 package.

NOTE: Dimensions are in millimeters.

26.80 MAX

26.40 ± 0.20

(1.77)

20-DIP-300A

6.
40

 ±
 0

.2
0

#20

#1

0.46 ± 0.10

1.52 ± 0.10

#11

#10

0-15

0.
25

+
0.

10
- 0

.0
57.

62

2.54

0.
51

 M
IN

3.
30

 ±
 0

.3
0

3.
25

 ±
 0

.2
0

5.
08

 M
AX

Figure 14-1. 20-DIP-300A Package Dimensions

MECHANICAL DATA S3C80M4/F80M4

14-2

NOTE: Dimensions are in millimeters.

20-SOP-375

10
.3

0
±

0.
30

#11#20

#1 #10

13.14 MAX

12.74 ± 0.20

(0.66)

0-8

0.203
+ 0.10
- 0.05

9.
53

7.
50

 ±
 0

.2
0

0.
85

 ±
 0

.2
0

0.
05

 M
IN

2.
30

 ±
 0

.1
0

2.
50

 M
AX

0.40

0.10 MAX

+ 0.10
- 0.05

1.27

Figure 14-2. 20-SOP-375 Package Dimensions

S3C80M4/F80M4 MECHANICAL DATA

 14-3

NOTE: Dimensions are in millimeters.

19.80 MAX

19.40 ±0.20

(0.81)

6.
40

±
0.

20

#16

#1

16-DIP-300A

0.46

1.50

#9

#8

0-15

0.
25

+
0.

10
-

0.
057.

62

2.54

0.
38

 M
IN

3.
30

0.

30

3.
25

5.
08

 M
AX

±

Figure 14-3. 16-DIP-300A Package Dimensions

MECHANICAL DATA S3C80M4/F80M4

14-4

NOTE: Dimensions are in millimeters.

16-SOP-375

#9#16

#1 #8

10.50 MAX

10.10 ± 0.20

0-8

0.203
+ 0.10
- 0.05

9.
53

7.
50

 ±
 0

.2
0

0.
85

 ±
 0

.2
0

2.
30

 ±
 0

.1
0

2.
50

 M
AX

1.27

10
.3

0
±

0.
30

0.40
+ 0.10
- 0.05

(0.66)

0.
05

 M
IN

0.10 MAX

Figure 14-4. 16-SOP-375 Package Dimensions

S3C80M4/F80M4 S3F80M4 FLASH MCU

 15-1

15 S3F80M4 FLASH MCU

OVERVIEW

The S3F80M4 single-chip CMOS microcontroller is the Flash MCU version of the S3C80M4 microcontroller. It has
an on-chip Flash MCU ROM instead of a masked ROM. The Flash ROM is accessed by serial data format.

The S3F80M4 is fully compatible with the S3C80M4, both in function and in pin configuration. Because of its
simple programming requirements, the S3F80M4 is ideal as an evaluation chip for the S3C80M4.

S3F80M4 FLASH MCU S3C80M4/F80M4

15-2

VSS/VSS

XIN/XIN

XOUT

VPP/nRESET

P1.0/T0OUT

P1.1/T0CLK

P1.2

P1.3

P1.4
P1.5

S3F80M4
(20-DIP-300A)
(20-SOP-375)

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

VDD/VDD

P0.0/INT0/SCLK

P0.1/INT1/SDAT

P0.2/INT2

P0.3/INT3

P0.4

P0.5

P0.6/PWM

P0.7

P1.6/CLKOUT

Figure 15-1. S3F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)

S3C80M4/F80M4 S3F80M4 FLASH MCU

 15-3

S3F80M4
(16-DIP-300A)
(16-SOP-375)

VSS/VSS

XIN/XIN

XOUT

VPP/nRESET

P1.0/T0OUT

P1.1/T0CLK

P1.2

P1.3

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VDD/VDD

P0.0/INT0/SCLK
P0.1/INT1/SDAT
P0.2/INT2

P0.3/INT3

P0.4

P0.5

P0.6/PWM

Figure 15-2. S3F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375)

S3F80M4 FLASH MCU S3C80M4/F80M4

15-4

Table 15-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip During Programming
Pin Name Pin Name Pin No. I/O Function

P0.1

SDAT 18(14) I/O Serial data pin. Output port when reading and input port
when writing. Can be assigned as a Input/push-pull output
port.

P0.0 SCLK 19(15) I/O Serial clock pin. Input only pin.
nRESET VPP 4(4) I Power supply pin for Flash ROM cell writing (indicates that

FLASH MCU enters into the writing mode). When 12.5 V is
applied, FLASH MCU is in writing mode and when 3.3 V is
applied, FLASH MCU is in reading mode. (Option)

VDD
VSS

VDD
VSS

20(16)
1(1)

– Power supply pin for logic circuit. VDD should be tied to
+3.3V during programming.

XIN XIN 2(2) I This pin should be connected to VSS in the tool program
mode.

NOTE: Parentheses indicate pin number for 16-DIP-300A/16-SOP-375 package.

Table 15-2. Comparison of S3F80M4 and S3C80M4 Features

Characteristic S3F80M4 S3C80M4
Program Memory 4K-byte Flash ROM 4K-byte mask ROM
Operating Voltage (VDD) 2.4 V to 5.5 V 2.4 V to 5.5 V

FLASH MCU Programming Mode VDD = 3.3 V, VPP (nRESET) = 12.5 V

Programmability User Program multi time Programmed at the factory

S3C80M4/F80M4 S3F80M4 FLASH MCU

 15-5

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the VPP (nRESET) pin of the S3C80M4, the Flash ROM programming mode is
entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins
listed in Table 15-3 below.

Table 15-3. Operating Mode Selection Criteria

VDD VPP(nRESET) REG/nMEM Address
(A15–A0)

R/W Mode

3.3 V 3.3 V 0 0000H 1 Flash ROM read
 12.5 V 0 0000H 0 Flash ROM program
 12.5 V 0 0000H 1 Flash ROM verify
 12.5 V 1 0E3FH 0 Flash ROM read protection

NOTE: "0" means Low level; "1" means High level.

Table 15-4. D.C. Electrical Characteristics

(TA = –25 °C to + 85 °C, VDD = 2.4 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit
10 MHz – 4.0 8.0 Run mode:

Crystal oscillator
C1 = C2 = 22pF
VDD = 5.0V ± 10%

4.0 MHz – 2.0 4.0

IDD1

VDD = 3.0V ± 10% 4.0 MHz – 1.5 3.0

10 MHz – 1.2 2.4 Idle mode:
Crystal oscillator
C1 = C2 = 22pF
VDD = 5.0V ± 10%

4.0 MHz – 1.0 2.0

IDD2

VDD = 3.0V ± 10% 4.0 MHz – 0.5 1.0

mA

Stop mode:
VDD = 5V ± 10%, TA = 25 °C

– 100 200

Supply current(1)

IDD3
(2)

VDD = 3V ± 10%, TA = 25 °C – 80 160

µA

NOTES:
1. Supply current does not include current drawn through internal pull-up resistors and external output current loads.
2. IDD3 is current when main clock oscillation stops.
3. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4–.3) is set to 11B.

S3F80M4 FLASH MCU S3C80M4/F80M4

15-6

2.5 MHz

Instruction Clock

6.25 kHz(Main)

2.4 5

Supply Voltage (V)

Minimum instruction clock = 1/4n x oscillator frequency (n = 1,2,8,16)

5.5

1.05 MHz

fx (Main oscillation frequency)

10 MHz
4.2 MHz

2.7

400 kHz(Main)

1 643

Figure 15-3. Operating Voltage Range

S3C80M4/F80M4 DEVELOPMENT TOOLS

 16-1

16 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS, Windows 95, and 98 as its operating system can be used. One
type of debugging tool including hardware and software is provided: the sophisticated and powerful in-circuit
emulator, SMDS2+, and OPENice for S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and
improved version of SMDS2. Samsung also offers support software that includes debugger, assembler, and a
program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help.
It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized,
moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and an
auxiliary definition (DEF) file with device specific information.

SASM88

The SASM88 is a relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by
HEX2ROM, the value "FF" is filled into the unused ROM area up to the maximum ROM size of the target device
automatically.

TARGET BOARDS

Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

DEVELOPMENT TOOLS S3C80M4/F80M4

16-2

BU
S

SMDS2+RS-232C

POD

Probe
Adapter

PROM/OTP Writer Unit

RAM Break/Display Unit

Trace/Timer Unit

SAM8 Base Unit

Power Supply Unit

IBM-PC AT or Compatible

TB80M4
Target
Board

EVA
Chip

Target
Application

System

Figure 16-1. SMDS Product Configuration (SMDS2+)

S3C80M4/F80M4 DEVELOPMENT TOOLS

 16-3

TB80M4 TARGET BOARD

The TB80M4 target board is used for the S3C80M4/F80M4 microcontroller. It is supported with the SMDS2+.

TB80M4

J101
201

9 10

30
-P

in
 C

on
ne

ct
or

241

12 13

10
0-

Pi
n

C
on

ne
ct

or

25

1

J102
Device Selection

SMDS2 SMDS2+

Smart Option Source

+

Idle

+

Stop

G
N

D
VC

C

20
-P

in
 C

on
ne

ct
or

To User_VCC

Off On

RESET

7411

XI

XTAL

MDS

JP5Smart Option Selection

ON

SW1 B0B1B2B3B4B5B6B7B8 High

Low

External

Internal

JP1
S3C80M4

S3C84G5

JP2

128 QFP
S3E84G0
EVA Chip

1 38

65

39

64
102

103

128

S3C84G5 24-SDIP

S3C84G5/S3C80M4
20-DIP

Figure 16-2. TB80M4 Target Board Configuration

DEVELOPMENT TOOLS S3C80M4/F80M4

16-4

Table 16-1. Power Selection Settings for TB80M4

"To User_Vcc"
Settings

Operating Mode Comments

To User_VCC

Off On

Target
System

SMDS2/SMDS2+

TB80M4
VCC

VSS

VCC

The SMDS2/SMDS2+
supplies VCC to the target
board (evaluation chip) and
the target system.

To User_VCC

Off On

Target
System

SMDS2/SMDS2+

TB80M4 External
VCC

VSS

VCC

The SMDS2/SMDS2+
supplies VCC only to the target
board (evaluation chip).
The target system must have
its own power supply.

NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:

 Table 16-2. Main-clock Selection Settings for TB80M4

Main Clock Settings Operating Mode Comments

XIN

XTAL MDS

No Connection

SMDS2/SMDS2+
100 Pin Connector

EVA Chip
S3E84G0

XIN
XOUT

Set the XI switch to “MDS”
when the target board is
connected to the
SMDS2/SMDS2+.

XIN

XTAL MDS

Target Board

EVA Chip
S3E84G0

XIN
XOUT

XTAL

Set the XI switch to “XTAL”
when the target board is used
as a standalone unit, and is
not connected to the
SMDS2/SMDS2+.

S3C80M4/F80M4 DEVELOPMENT TOOLS

 16-5

Table 16-3. Device Selection Settings for TB80M4

"Device Selection"
Settings

Operating Mode Comments

Device Selection

80M4 84G5

Target
SystemTB84G5

Operate with TB84G5

Device Selection

80M4 84G5 Target
SystemTB80M4

Operate with TB80M4

SMDS2+ SELECTION (SAM8)

In order to write data into program memory that is available in SMDS2+, the target board should be selected to be
for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

Table 16-4. The SMDS2+ Tool Selection Setting

"SMDS2+" Setting Operating Mode

SMDS2 SMDS2+

Target
System

R/W R/W

SMDS2+

IDLE LED

The Yellow LED is ON when the evaluation chip (S3E84G0) is in idle mode.

STOP LED

The Red LED is ON when the evaluation chip (S3E84G0) is in stop mode.

DEVELOPMENT TOOLS S3C80M4/F80M4

16-6

Table 16-5. Smart Option Source Settings for TB80M4

"Smart Option Source"
Settings

Operating Mode Comments

Internal External

Select Smart
Option Source

Target
SystemTB80M4

Always must keep the External.

Internal External

Select Smart
Option Source

Target
SystemTB80M4

Do not setting on left figure.

Table 16-6. Smart Option Switch Setting for TB80M4

"Smart Option" Setting Comments

Smart Option

Low : "0"

High: "1"B0 B1 B2 B3 B4 B5 B6 B7 B8

ON

Always must keep all High (“1”).

S3C80M4/F80M4 DEVELOPMENT TOOLS

 16-7

J101

VSS

XIN

XOUT

nRESET

P1.0/T0OUT

P1.1/T0CLK

P1.2

P1.3

P1.4

P1.5

VDD

P0.0/INT0

P0.1/INT1

P0.2/INT2

P0.3/INT3

P0.4

P0.5

P0.6PWM

P0.7

P1.6/CLKOUT

1

2

3

4

5

6

7

8

9

1
0

2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1

20-Pin D
IP C

onnector

S3C80M4 20-DIP

Figure 16-3. 20-Pin Connectors (J101) for TB80M4

Target Board Target System

Target Cable for 16/20-Pin Connector

Part Name: AS40D-A

Order Code: SM6306

1 20

10 11

J101J101

1 20

10 11

16/20-P D
IP C

onnector

16/20-P D
IP C

onnector (8) (9)(8) (9)

(1) (16) (1) (16)

Figure 16-4. S3E80M0 Cables for 16/20-DIP Package

DEVELOPMENT TOOLS S3C80M4/F80M4

16-8

NOTES

	Table of Contents
	Table of Figures
	Table of Tables
	List of Programming Tips
	List of Register Descriptions
	List of Instruction Descriptions
	1. Product Overview
	2. Address Spaces
	3. Addressing Modes
	4. Control Registers
	5. Interrupt Structure
	6. Instruction Set
	7. Clock Circuit
	8. RESET and Power-Down
	9. I/O Ports
	10. Basic Timer
	11. 8-bit Timer 0
	12. 8-bit Pulse Width Modulation
	13. Electrical Data
	14. Mechanical Data
	15. S3F80M4 Flash MCU
	16. Development Tools

